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Abstract

A new formulation of the additivity rule is proposed. Here atomic cross sections are added by taking into account the
geometrical screening of the component atoms, as seen by the impinging electron. Atomic cross sections are obtained

Ž .starting from the experimental TCS of simple molecules H , N , O , CO via inversion procedure. The model has been2 2 2

successfully applied to the linear molecules NO, N O, CO , for energies as low as 50 eV up to 5 keV. A simplified2 2
Ž .algorithm has been used to evaluate the cross sections of NO a bent molecule and of CH : the results underestimate the2 4

low energy cross sections. q 1999 Elsevier Science B.V. All rights reserved.

PACS: 34.80.-i

1. Introduction

Ž .Total Cross Section TCS for electron scattering
by atoms and molecules plays an important role in

w xmany applied sciences 1 . There is, however, a lack
of theoretical calculations in the high and intermedi-
ate energy range at which almost all molecular in-
elastic channels are open. Therefore, simpler, phe-
nomenological procedures have been recently devel-
oped.

One such methodology develops from the consid-
eration that, at high impact energies, the TCS of a
molecule approaches the sum of the atomic TCS of

w xits constituents 2 . Recently, the ‘‘additivity rule’’
Ž .AR prescription has been used to evaluate both

w x Žhigh-energy molecular elastic 3 and total i.e. elas-
. w xticq inelastic cross sections 4–7 . In this range

Ž .say from a hundred eV to a few thousand eV those

works were moderately successful, whereas failed
completely at lower energies. This is obviously due
to the fact that AR neglects the interaction of con-
stituent atoms inside the formed molecule. All these
recent works used ab- initio calculations in the opti-

Ž w x.cal approximation see Jain and Baluja 8 to derive
atomic cross sections and summed these contribu-
tions to yield molecular TCS. The use of AR at high
energies is well established for elastic cross sections
in the framework of an independent-atoms model
Ž . w xIAM 9,10 . This model includes intrinsically the
molecular geometry via interference scattering terms.
However, the application of the IAM to inelastic

w xscattering is not straightforward 11 .
w xIn the most recent papers 12 some progress has

been made in extending AR validity to low energies
Ž .50–100 eV by including molecular polarization
potential. A way to include effects of molecular

0375-9601r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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geometry in TCS was proposed by Jiang et al.
w x13,14 for linear targets. In the low energy limit they
used geometry-averaged cross sections determined as

Ž . Ž . Ž . Ž .s E s1r3s E q2r3s E , where s EM I H I
Ž .and s E are the cross sections for electrons ap-H

proaching the molecule parallel and perpendicular to
its axis, respectively.

w xIn a recent paper 15 a different, semiempirical
approach has been proposed. Experimental TCS in
the 100–4000 eV range have been approximated by
a two parameters formula

s bz
s E s 1Ž . Ž .

bqs Ez

with s defining the cross section in the zero-energyz

limit, and b giving the asymptotic slope of TCS in
Ž .the high energy several keV limit. We have shown

that the parameter s is related to molecular polaris-z

ability while the molecular b parameter turn out to
be the sum of the corresponding atomic parameters.
The model has been successfully applied to molecules

Ž .of compact geometry tetrahedral and octahedral .
In this paper we present a different formulation of

the additivity rule which takes into account the ge-
ometry of the molecule. In particular, we study the

Ž .case of linear NO, N O, CO and bent triatomic2 2
Ž . Ž .NO molecules, and spherical molecules CH .2 4

Explicit geometrical calculations of the molecular
cross sections through spatial averaging of the differ-
ent orientations under which the molecule is seen by
the impinging electrons in a real experiment is per-
formed. This leads to express the molecular TCS as a
linear combination of the atomic TCS, that is:

s s k s 2Ž .ÝM a a

a

where the energy-dependent k-coefficients are linked
to the geometric parameters of the molecule. Those
coefficients approach unity at high energies, so in
this range the present method merges with the simple
AR prescription.

w xLike in our previous paper 15 , an inverse addi-
tivity procedure has been applied to extract atomic
TCS from experimental molecular TCS. In turn,
these data are used to predict cross sections for more
complex molecules. The predicted cross sections are
then compared with measured ones.

2. Model

At energies above 50 eV different inelastic chan-
nels are open including multiple ionisation and elec-
tronic excitations. Therefore, we will assume that sa

Žcan be described as a ‘‘black sphere’’ i.e. perfectly
.absorbing . The atomic TCS s is given then by aa

w xknown quantity 16

s s2p r 2 3Ž .a a

where r is the black sphere radius.a

In collision experiments where the target is in a
gas phase, molecules are randomly oriented and the
observed cross sections are averaged over the differ-
ent relative beam-to-molecule orientations. In order
to compare the calculated cross section with the
experimental cross sections need to take the average
value of s over all the possible orientations of theM

molecules. Considering collision energy well above
the roto- vibrational levels of the target, we will
perform the average procedure in the fixed-nuclei
approximation: the molecule will be seen as a rigid
body. We note that in our model the atom-atom
interaction within the molecule is accounted for im-
plicitly: the ground state average values of the inter-
atomic distances are the results of such interactions.

The following part is dedicated to find analyti-
cally the average TCS over different orientations for
a given diatomic heteronuclear molecule.

A diatomic molecule will be represented by two
associated spheres with radii

r s s r2p , as1,2 4Ž .(a a

and a centre-to-centre distance which equals the
molecular bound length d. The projection of d on
the xy plane, perpendicular to the direction z of
projectile electrons, is indicated by l.

We first evaluate the projected area on the xy
plane of the associated spheres for a given angle u

of the molecular axis with the z axis. The reference
system and the projection of the spheres in the three
cases described below are schematically reported in

Ž . Ž . Ž .Fig. 1 a and b – d , respectively. We have thus
lsdsinu . The projected area A reads as a linear12

combination

A sC A qC A12 1 j 1 2 j 2

where A sp r 2 and A sp r 2.1 1 2 2
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Fig. 1. Reference system for the calculation of the diatomic
molecule projection. Schematic representation of three cases de-

Ž . Ž .scribed by Eqs. 5 – 7 .

The coefficient C j, C are evaluated in the1 2 j

following three cases.
Ž Ž .Ist case Fig. 1 b , the projection of the two

spheres do not overlap:

C sC s1 for r qr - l 5Ž .11 21 1 2

Ž Ž .IInd case Fig. 1 c , the projection of the two spheres
partially overlap:

1 b ¶1 2(C s 1y arccosb q 1yb12 1 1ž /p p •
1 b2 2(C s 1y arccosb q 1yb22 2 2 ßž /p p

< <for r yr F lFr qr 6Ž .1 2 1 2

where

x r 2 yr 2 q l 2 x r 2 yr 2 q l 2
1 2 2 1

b s s , b s s1 2r 2 r l r 2 r l1 1 2 2

7Ž .

b and b are respectively the distances of the1 2
Ž Ž .centres of the two projected spheres Fig. 1 c from

the co-ordinate x of the intersection point of the two
projections.

Ž Ž .IIIrd case Fig. 1 d , the projection of the two
spheres completely overlap:

C sh r yr , C sh r yrŽ . Ž .13 1 2 23 2 1

< <for l- r yr 8Ž .1 2

Ž .Where h x is a Heaviside function.
We gather the expression referred to the different

cases into a unique formula:

A u sC u ;r ,r ,d A qC u ;r ,r ,d AŽ . Ž . Ž .12 1 j 1 2 1 2 j 1 2 2

9Ž .

where C and C are the coefficients of A and A1 j 2 j 1 2
Ž . Ž . Ž .in the three different cases of Eqs. 5 , 6 and 8 ,

and j equals 1, 2, 3 according to specific cases of
Ž . Ž .overlap, see below Eqs. 15 – 17 .

The average of A over all the possible u reads12

as:

² : ² :A u s C u ;r ,r ,d AŽ . Ž .12 1 j 1 2 1

² :q C u ;r ,r ,d AŽ .2 j 1 2 2

sk r ,r ,d A qk r ,r ,d AŽ . Ž .1 1 2 1 2 1 2 2

10Ž .

or, in terms of molecular and atomic cross sections:

² :s s2 A u sk s qk s 11Ž . Ž .M 12 1 1 2 2

Making the average over the solid angle, we have
thus to solve the integral

1
k r ,r ,d s dF C u ;r ,r ,d sinu duŽ . Ž .H H1,2 1 2 1 j ,2 j 1 24p

12Ž .

The geometrical representation is clearly symmet-
ric under rotation about the z axis and about the
molecular dipole direction. Also, the coefficients k1,2

are written with a dependence on three parameters,
but they appear only through the ratios r rd and1

r rd, because the coefficients cannot be affected by2

an overall scaling of lengths. Note additionally, that
as the atomic cross sections s depend on energy,a

also the coefficients k are energy dependent.1,2
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Ž .We now give the solution for k r ,r ,d , re-1,2 1 2
Ž .writing the Eq. 7 for b and b as a function of the1 2

variable jscosu

2 2r yr d1 2 2(F j sb j s q 1yjŽ . Ž .1 2 2 r(2 dr 1yj 11

13Ž .

We also define the following constants:

2r "r1 2
a s 1y 14Ž .(1,2 ž /d

We have to distinguish three cases:
1. the two spheres do not overlap each other,

r qr -d,1 2

a a1 2

k s C u ;r ,r ,d dxq C u ;r ,r ,d dxŽ . Ž .H H1 11 1 2 12 1 2
0 a1

1
q C u ;r ,r ,d dxŽ .H 13 1 2

a2

a1 2

s1y 1ya h r yr y arccos F jŽ . Ž . Ž .H ž2 1 2
p a1

2(yF j 1yF j dx 15Ž . Ž . Ž ./
2. the two spheres are partially overlapping: r q1

< <r )d, r yr -d.2 1 2

a 12

k s C u ;r ,r ,d dxq C u ;r ,r ,d dxŽ . Ž .H H1 12 1 2 13 1 2
0 a2

a1 2

sa y 1ya h r yr y arccos F jŽ . Ž . Ž .H ž2 2 1 2
p 0

2(yF j 1yF j dx 16Ž . Ž . Ž ./
< <3. one sphere is included in the other: r yr )d1 2

1
k s C u ;r ,r ,d dxsh r yr 17Ž . Ž . Ž .H1 13 1 2 1 2

0

Ž . Ž .In all three cases k r ,r ,d sk r ,r ,d .2 2 1 1 1 2

In Fig. 2 calculated values of the k coefficients1,2

are plotted for chosen values of non-dimensional
variables r rd and r rd.1 2

The above formalism considers the problem of
estimating a molecular TCS by using the cross sec-
tions – at a given energy – of its atomic con-
stituents. However, in general TCS of molecules are

Fig. 2. Variation of the geometrical coefficients k and k with1 2

dimensionless radii of atoms. d stands for the molecular bond
length.

better known than the TCS of atoms. Therefore, it is
of interest to study an inversion algorithm, in order
to extract atomic cross sections from TCS values of
their compounds.

We first consider the simplest case of a homonu-
clear molecule. The radii of the associated spheres

Ž .are r sr sr, and Eq. 11 reads as:1 2

s s4p r 2 k r ,d 18Ž . Ž .M 1

In the present case, s and d can be considered asM

known quantities, while r is unknown. If we define
the auxiliary function

G r ss yrp r 2 k r 19Ž . Ž . Ž .1 M 1

Ž .the searched values of r are given by G r s0. If1
Ž .G r is also a monotonically decreasing function of

r, the inversion will be single-valued.
The case r /r can be treated on the same1 2

footing. If r is a known parameter, i.e. if we know2

the cross section of one of the atoms, we can rewrite
the k-coefficients as depending on the only variable
r :1

k r ,r ,d ™k r 20Ž . Ž . Ž .1,2 1 2 1,2 1

We can thus define the auxiliary function

G r ss yrp r 2 k r y4p r 2 k r , 21Ž . Ž . Ž . Ž .2 1 M 1 1 1 2 2 1

and find the searched value of r by imposing1
Ž .G r s0.2 1

Without increasing the complexity of calculations
the above model for diatomic molecules can be, in
some cases, easily extended to triatomic and poly-
atomic targets. In the case of linear or slightly bent
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triatomic molecules with identical satellite atoms, if
the shadowing effect between the two satellite atoms
is neglected the s can be written as:M

s s2s k q 2k y1 s 22Ž . Ž .M 1 1 2 2

where the index 2 refers to the central atom.
This approximation is certainly true for triatomic

linear molecules, where the central atom is larger or
comparable in size with the others. In the other cases

Ž Ž ..the approximation Eq. 22 overestimates the exact
theoretical prediction of the geometrical shadowing

Ž . Žmodel. We have applied Eq. 22 to two linear CO ,2
. Ž .N O and one bent NO triatomic molecules.2 2

This approximation can be also adapted for highly
symmetric polyatomic molecules with light satellite
atoms. As a case study we have calculated s forM

CH with the formula:4

s s4s k q 4k y3 s 23Ž . Ž .CH 1 1 2 24

where 1 stays for H atom and 2 for the central C
atom. Similarly as in the case of triatomic molecules,
we disregard mutual shadowing effects.

3. Choice of the data

We have used the inversion algorithm described
in the previous paragraph to determine the atomic
cross sections for H, N and O starting from the
measured TCS of diatomic homonuclear molecules.

Ž .Then, with use of the direct algorithm 21 the
atomic carbon TCS has been derived from measured
data for CO. In the successive steps, these atomic
cross sections were used in calculation f other
molecular TCS.

Molecular bond lengths were taken from CRC
w xHandbook 17 . As input values of the molecular

TCS we have used the data from our laboratory
w x18–20 in the range from less than 100 eV to a few
keV, and from the collaborating Gdansk laboratory
for energies from 50 eV to more than 100 eV. These
data, at overlapping energies agree well with other

w xrecent experiments 21,22 . The lower limit of the
energy range for the application of our calculation
has been chosen as 50 eV. This reflects the limits of
applicability of any AR method. At energies below a
few tens of eV, quantum effects in scattering become

dominant so it is conceptually impossible to consider
the molecular TCS as a superposition of the atomic
ones.

As a final remark, note that the input TCS values
actually used in our calculation, have been obtained

Ž .by fitting Eq. 1 to the quoted experimental data.
We use the fitted values since the experimental data
are subject to statistical spread and are only available
at selected energies.

4. Results and discussion

We report in Table 1 the present results for C, H,
N and O targets. The results for H and O targets, at
selected collision energies, are compared in Fig. 3
with some earlier calculations and available experi-
mental data. The comparison shows a relatively good
agreement with the optical potential calculations
Ž w xJoshipura and Patel for the C, N, O targets 6 and

w x.Jiang et al. for the hydrogen atom 4 . When com-
pared with the experimental determinations, the pre-
sent results for O merge well with the beam-recoil

w xexperiment of Sunshine et al. 24 , while they give
the hydrogen TCS about 20% lower than the one

w xmeasured recently by Zhou et al. 25 . However, a
discrepancy for the hydrogen results is expected –
measurements for atomic hydrogen are difficult and
the data can be subject to large uncertainties. On the

w xother side, the molecular TCS for H 20 are possi-2

bly subject to an angular resolution error at high
energies. Note, that at 300 eV the present result is
closer to the experimental TCS than the optical-model

w xcalculation of Jiang et al. 4 .

Table 1
TCS for C, N, O, H as obtained by the present inversion proce-
dure method applied to experimental data. TCS for NO, NO ,2

N O, CO , CH , as obtained by the present geometrical AR2 2 4

method

Ž .E eV C N O H NO NO N O CO CH2 2 2 4

50 6.61 7.51 6.28 2.20 9.70 12.12 13.35 14.72 10.16
100 5.37 5.94 5.09 1.47 8.00 10.26 11.11 12.55 8.23
200 3.84 4.11 3.64 0.86 5.93 7.90 8.38 9.69 6.13
500 1.99 2.05 1.93 0.39 3.39 4.84 4.95 5.51 3.33
1000 1.11 1.13 1.10 0.21 2.07 3.04 3.07 3.21 1.88
2000 0.6 0.60 0.59 0.11 1.15 1.71 1.71 1.75 1.00
5000 0.25 0.25 0.25 0.043 0.49 0.73 0.73 0.74 0.42
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w xFig. 3. Present results for H and O atoms compared to other calculations: Joshipura and Patel 6 , complex optical potential for AR; the same
w x w x w xmethod by Jiang et al. 4 . Experimental data: upper and lower limits for H from 25 ; recoil-beam method for O 24 .

In Fig. 4 the present results for NO, are compared
with the AR and modified AR models of Joshipura

w xand Patel 6,12 , and with the recent experimental
Ž .data from our laboratory unpublished and previous

w xFig. 4. Present results, solid line, for NO, CO and N O molecules compared with other AR models: dashed-dot-dot line, simple AR 6 ,;2 2
w x Ž .dashed-dot line, AR with molecular polarizability 12 . For NO medium broken line, semiempirical model using formula 1 by Liu and Sun

w x w x w x5 ; for CO long broken line, semiemperical model 15 , AR model of Ref. 12 coincides with geometrical shielding AR of Jiang et al.2
w x w x w x14 , not shown. Experimental data: open circles, Gdansk laboratory 23,27,30 ; full circles, Trento laboratory 26,27 ; for NO, squares,

w x w x w xTrento laboratory, unpublished; inverted triangles, Detroit laboratory 29,31 ; rhombuses 28 ; open squares 32 .
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w xmeasurements 23,26 . Different AR formulations
agree well at high energies but the present model is
much closer to the experimental data than the results

w xof Ref. 6,12 . In the same figure we report results of
w xa semiempirical model of Liu and Sun 5 in which

Ž .parameters b and s in Eq. 1 have been correlatedz

to the molecular bond length. This model overesti-
mates the experimental cross section by 10% at 100
eV and underestimates it by a similar amount at
3000 eV.

Similar discrepancies are visible for the CO2

molecule, see Fig. 4. The present model agrees well
w xwith experimental data 27–29 in the whole 50–5000

eV range. Previous modified ARs, both with geomet-
w x w xrical shielding 14 and molecular polarizability 12

overestimate the experiments at low energies, by
more than 20% at 50 eV. Fig. 4 shows also the
results obtained with our previous semiempirical for-

w xmulation 15 – the two results practically overlap.
For N O molecule, in Fig. 4 some discrepancy is2

observable between two existing low-energy mea-
w xsurements 30,31 . The present result, based on in-

w xversion of the low-energy Gdansk data 23 , agrees

better with the determination from the same labora-
w x w xtory 30 . The geometrical-shielding AR 14 agrees

w xbetter with the experiment of Kwan et al. 31 . The
w xsimple AR 6 is higher than the experimental data in

the whole 100–1000 eV, with a relative difference
diminishing with the energy. The present model
reproduces well the recent high-energy experiment
w x32 up to 3000 eV.

For the triatomic bent molecule, NO previous2
w xAR models 6,12 overestimate the experimental data

at 100 eV by a 30% and 20%, respectively. The
present model is lower by 10% at 100 eV and

w xmerges with the experiments 33,34 at higher ener-
gies, see Fig. 5.

Present results for CH fall between two existing4
w xexperimental 35,36 determinations at high energies,

Žwhile below 200 eV are somewhat up to 20% at 50
. w xeV lower than the existing measurements 21,35 .

w xThe previous semiempirical result 15 performs bet-
ter for energies lower then 200 eV. This difference
can be attributed to the fact that in this paper we
have used some simplifications to extend the formal-
ism for triatomic molecules to polyatomic ones. On

w xFig. 5. Present results, solid line for NO and CH . For NO AR model captions see Fig. 4. For CH , medium broken line, simple AR 4 ;2 4 2 4
w x w x w x w xshort broken line, ab initio optical model 8 . Experiment: open circles, Gdansk 33,35 ; full circles, Trento 34,35 ; rhombuses 36 ; open

w xsquares 21 .
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w xthe other side, our previous formulation 15 includes
explicitly the relation between TCS and polarizabil-
ity.

We have to stress now that the accuracy of the
present result depends on the experimental errors
present in the starting data base of measured molecu-
lar cross section. Discrepancies between the experi-
mental data set used in this paper and measurements
from other laboratories are as big as 15–20% for

Ž w x w xsome targets N O 29,30 at 100 eV or CO 27,282 2
.at 3000 eV . In the future, a self-consistent applica-

tion of the additivity rule could help to assess the
quality of experimental data.
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