

Developer's Guide to
Microsoft Prism
Library 5.0 for WPF

Microsoft patterns & practices

April 2014

2

Copyright

This document is provided “as-is”. Information and views expressed in this document, including URL and

other Internet Web site references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association

or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes. You may modify

this document for your internal, reference purposes.

© 2014 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, Windows Vista, Silverlight, Expression Blend, MSDN, IntelliSense,

Visual C#, Visual C++, and Visual Studio are trademarks of the Microsoft group of companies. All other

trademarks are property of their respective owners.

3

Contents
Download and Setup Prism ... 8

Documentation ... 8

NuGet Packages .. 8

Download and Setup the Prism Source Code ... 9

Adding Prism Library Source Projects to Solutions ... 13

Related Downloads ... 13

What's New in Prism Library 5.0 for WPF ... 14

New Guidance ... 14

Changes in the Prism Library... 14

CodePlex Issues Resolved ... 16

Example Code Changes ... 17

NuGet Packages Now Available .. 18

The Team Who Brought You This Guide ... 19

1: Introduction .. 20

Why Use Prism? .. 20

Prerequisites ... 23

An Overview of Prism .. 24

2: Initializing Applications ... 37

What Is a Bootstrapper? ... 37

Key Decisions .. 38

Core Scenarios .. 38

3: Managing Dependencies Between Components .. 45

Key Decision: Choosing a Dependency Injection Container ... 46

Core Scenarios .. 47

Using Dependency Injection Containers and Services in Prism .. 51

IServiceLocator .. 52

Considerations for Using IServiceLocator ... 54

4: Modular Application Development .. 55

Benefits of Building Modular Applications ... 55

4

Core Concepts ... 56

Key Decisions .. 60

Core Scenarios .. 65

5: Implementing the MVVM Pattern .. 77

Class Responsibilities and Characteristics ... 77

Class Interactions .. 82

Construction and Wire-Up .. 93

Key Decisions .. 96

6: Advanced MVVM Scenarios .. 98

Commands .. 98

Interaction Triggers and Commands ... 104

Handling Asynchronous Interactions .. 106

User Interaction Patterns .. 108

Advanced Construction and Wire-Up ... 114

Testing MVVM Applications .. 117

7: Composing the User Interface .. 123

UI Layout Concepts ... 124

UI Layout Scenarios ... 133

UI Design Guidance ... 150

UI Layout Key Decisions .. 165

8: Navigation ... 167

Navigation in Prism ... 167

9: Communicating Between Loosely Coupled Components ... 190

Solution Commanding ... 190

Region Context .. 193

Shared Services ... 194

Event Aggregation ... 195

10: Deploying Applications ... 202

Deploying WPF Prism Applications ... 202

11: Glossary ... 207

12: Patterns in the Prism Library .. 210

5

Adapter ... 210

Application Controller Pattern .. 211

Command Pattern ... 211

Composite and Composite View ... 211

Dependency Injection Pattern .. 212

Event Aggregator Pattern ... 212

Façade Pattern .. 212

Inversion of Control Pattern ... 213

Observer Pattern ... 213

Model-View-ViewModel Pattern .. 213

Registry Pattern .. 214

Repository Pattern .. 214

Separated Interface and Plug-In ... 214

Service Locator Pattern ... 214

13: Prism Library ... 217

Add Reference using NuGet and Accessing the Library Source Code ... 218

Organization of the Prism Library ... 218

The Prism Library Source .. 219

Modifying the Library .. 219

Running the Tests.. 220

14: Upgrading from Prism Library 4.1 ... 221

15: Extending the Prism Library .. 224

Guidelines for Extensibility ... 224

Recommendations for Modifying the Prism Library ... 225

Extensibility Points in the Prism Library .. 226

Container and Bootstrapper ... 227

Logging .. 231

Modules .. 232

Regions .. 235

Region Navigation ... 240

View Model Locator .. 242

6

16: Code Samples .. 244

Installing Prism .. 244

Stock Trader Reference Implementation .. 248

Building and Running the Reference Implementation ... 249

The Scenario .. 251

Stock Trader RI Features ... 255

Logical Architecture .. 256

Implementation View ... 257

How the Stock Trader RI Works .. 257

Technical Challenges ... 265

Modularity QuickStarts ... 268

Building and Running the QuickStarts .. 270

Walkthrough ... 271

Implementation Details .. 275

Key Modularity Classes ... 280

Acceptance Tests .. 280

Interactivity QuickStart ... 281

Building and Running the QuickStart .. 282

Implementation Details .. 282

Key Interactivity Classes .. 292

Acceptance Tests .. 293

MVVM QuickStart ... 294

Building and Running the QuickStart .. 295

Implementation Details .. 295

Commanding QuickStart ... 302

Building and Running the QuickStart .. 302

Implementation Details .. 303

Acceptance Tests .. 307

UI Composition QuickStart .. 308

Building and Running the QuickStart .. 308

Implementation Notes .. 309

7

Acceptance Tests .. 314

State-Based Navigation QuickStart ... 315

Building and Running the QuickStart .. 316

Implementation Details .. 316

Acceptance Tests .. 325

View-Switching Navigation QuickStart ... 326

Building and Running the QuickStart .. 327

Implementation Details .. 327

Navigation Support in the Prism Library ... 328

Using the Prism Library for Navigation ... 331

Unit and Acceptance Tests .. 338

Event Aggregation QuickStart ... 340

Building and Running the QuickStart .. 340

Implementation Details .. 341

Unit and Acceptance Tests .. 344

17: Getting Started Using the Prism Library Hands-on Lab .. 345

System Requirements ... 345

Procedures .. 346

Task 1: Creating a Solution Using the Prism Library ... 346

Task 2: Adding a Module ... 353

Task 3: Adding a View ... 357

18: Publishing and Updating Applications Using the Prism Library Hands-on Lab 361

System Requirements ... 361

Preparation ... 361

Procedures .. 362

Task 1: Publishing an Initial Version of the Shell Application ... 362

Task 2: Updating the Manifests to Include Dynamically Loaded Module Assemblies 369

Task 3: Deploying the Initial Version to a Client Computer .. 373

Task 4: Publishing an Updated Version of the Application and Updating the Manifests 375

Task 5: Deploying the Updated Version to a Client Computer ... 377

Bibliography .. 378

8

Download and Setup Prism
Learn what’s included in Prism 5.0 including the documentation, WPF code samples, and libraries.

Additionally find out where to get the library and sample source code and the library NuGet packages.

For a list of the new features, assets, and API changes, see What's New in Prism 5.0.

Documentation

Prism includes the following documentation:

 Developer's Guide to Microsoft Prism 5.0 on MSDN.

 Prism Reference Documentation on MSDN.

 Developer's Guide to Microsoft Prism 5.0 in .pdf format.

 Prism Reference Documentation in chm format.

NuGet Packages

 Prism: Downloads NuGet dependency packages—Prism.Composition, Prism.Interactivity,

Prism.Mvvm, and Prism.PubSubEvents NuGet Packages.

 Prism.Composition: Modularity, UI Composition, Bootstrapping, Interactivity, IActiveAware,

Navigation, and deprecated NotificationObject and PropertySupport.

 Prism.Interactivity: Interactivity.

 Prism.Mvvm: The Portable Class Library for MVVM and the associated platform specific code

to support MVVM. Includes Commanding, BindableBase, ErrorsContainer, IView, and

ViewModelLocationProvider.

 Prism.PubSubEvents: The Portable Class Library for PubSubEvents.

 Prism.UnityExtensions: Use these extensions to Prism to build Prism applications based on

Unity.

 Prism.MefExtensions: Use these extensions to Prism to build Prism applications based on

Managed Extensibility Framework (MEF).

http://aka.ms/prism-wpf-doc
http://aka.ms/prism-wpf-prism50refdoc
http://aka.ms/prism-wpf-pdf
http://aka.ms/prism-wpf-Prism50RefDocChm
http://aka.ms/prism-wpf-Prism50Nuget
http://aka.ms/prism-wpf-Prism50CompositionNuget
http://aka.ms/prism-wpf-Prism50InteractivityNuget
http://aka.ms/prism-wpf-Prism50MvvmNuget
http://aka.ms/prism-wpf-Prism50PubSubEventsNuget
http://aka.ms/prism-wpf-Prism50UnityExtensionsNuget
http://aka.ms/prism-wpf-Prism50MefExtensionsNuget

9

The following table shows common Prism namespaces and in which assemblies and NuGet packages

they can be found.

Namespace Assembly NuGet Package

Microsoft.Practices.Prism.Logging

Microsoft.Practices.Prism.Modularity

Microsoft.Practices.Prism.Regions

Microsoft.Practices.Prism.Composition Prism.Composition

Microsoft.Practices.Prism.Interactivity Microsoft.Practices.Prism.Interactivity Prism.Interactivity

Microsoft.Practices.Prism.Commands

Microsoft.Practices.Prism.Mvvm

Microsoft.Practices.Prism.ViewModel

Microsoft.Practices.Prism.Mvvm Prism.Mvvm

Microsoft.Practices.Prism.PubSubEvents Microsoft.Practices.Prism.PubSubEvents Prism.PubSubEvents

Download and Setup the Prism Source Code

This section describes how to install Prism. It involves the following three steps:

1. Install system requirements.

2. Download and extract the Prism source code and documentation.

3. Compile and run the QuickStarts, Reference Implementation, or Prism Library source code.

Step 1: Install System Requirements

Prism was designed to run on the Microsoft Windows 8 desktop, Microsoft Windows 7, Windows Vista,

or Windows Server 2008 operating system. WPF applications built using this guidance require the .NET

Framework 4.5.

Before you can use the Prism Library, the following must be installed:

 Microsoft .NET Framework 4.5 (installed with Visual Studio 2012) or Microsoft .NET

Framework 4.51.

 Microsoft Visual Studio 2012 or 2013 Professional, Premium, or Ultimate editions.

Note: Visual Studio 2013 Express Edition can be used to develop Prism applications using the

Prism Library.

Optionally, you should consider also installing the following:

 Microsoft Blend for Visual Studio 2013. A professional design tool for creating compelling

user experiences and applications for WPF.

http://www.microsoft.com/expression/products/Blend_Overview.aspx

10

Step 2: Download and Extract the Prism Source Code and Documentation

You can download the source code for the Prism library, the reference implementation and the

QuickStarts from the following link:

 Prism 5.0

To install the Prism assets, right-click the exe file or zip file, and then click Run as administrator. This will

extract the source code into the folder of your choice.

Note: The Stock Trader Reference Implementation and the QuickStarts can also be downloaded

separately. The table below provides links to the source code for each.

Sample Category Description

Stock Trader Reference
Implementation

Prism The Stock Trader RI application is a

reference implementation that

illustrates the baseline architecture.

Within the application, you will see

solutions for common, and recurrent,

challenges that developers face

when creating composite WPF

applications.

The Stock Trader RI illustrates a

fictitious, but realistic financial

investments scenario. Contoso

Financial Investments (CFI) is a

fictional financial organization that is

modeled after real financial

organizations. CFI is building a new

composite application to be used by

their stock traders.

Hello World Hands-on Lab Get Started The Hello World Hands-on Lab

demonstrates the end solution for the

hands-on lab "Getting Started Using

the Prism Library 5.0 for WPF

Hands-on Lab." In this lab, you will

learn the basic concepts of Prism

and apply them to create a Prism

Library solution that you can use as

the starting point for building a

composite WPF.

http://aka.ms/prism-wpf-code
http://aka.ms/prism-wpf-RICode
http://aka.ms/prism-wpf-RICode
http://aka.ms/prism-wpf-QSHelloWorldCode

11

 Modularity
QuickStarts for Unity

 Modularity
QuickStarts for MEF

Modularity The Modularity QuickStarts

demonstrate how to code, discover,

and initialize modules using Prism.

These QuickStarts represent an

application composed of several

modules that are discovered and

loaded in the different ways

supported by the Prism Library using

MEF and Unity as the composition

containers.

MVVM QuickStart MVVM The MVVM QuickStart demonstrates

how to build an application that

implements the MVVM presentation

pattern, showing some of the more

common challenges that developers

can face, such as wiring a view and

view model using the

ViewModelLocator, validation, UI

interactions, and data templates.

Commanding QuickStart Commanding The Commanding QuickStart

demonstrates how to build a WPF UI

that uses commands provided by the

Prism Library to handle UI actions in

a decoupled way.

UI Composition QuickStart UI Composition This QuickStart demonstrates how to

build WPF UIs composed of different

views that are dynamically loaded

into regions and that interact with

each other in a decoupled way. It

illustrates how to use both the view

discovery and view injection

approaches for UI composition.

State-Based Navigation
QuickStart

Navigation This QuickStart demonstrates an

approach to define the navigation of

a simple application. The approach

used in this QuickStart uses the

WPF Visual State Manager (VSM) to

define the different states that the

application has and defines

animations for both the states and

the transitions between states.

http://aka.ms/prism-wpf-QSModularityUnityCode
http://aka.ms/prism-wpf-QSModularityUnityCode
http://aka.ms/prism-wpf-QSModularityMEFCode
http://aka.ms/prism-wpf-QSModularityMEFCode
http://aka.ms/prism-wpf-QSMVVMCode
http://aka.ms/prism-wpf-QSCommandingCode
http://aka.ms/prism-wpf-QSUICompositionCode
http://aka.ms/prism-wpf-QSStateBasedNavCode
http://aka.ms/prism-wpf-QSStateBasedNavCode

12

View-Switching Navigation
QuickStart

Navigation This QuickStart demonstrates how to

use the Prism Region Navigation

API. The QuickStart shows multiple

navigation scenarios, including

navigating to a view in a region,

navigating to a view in a region

contained in another view (nested

navigation), navigation journal

support, just-in-time view creation,

passing contextual information when

navigating to a view, views and view

models participating in navigation,

and using navigation as part of an

application built through modularity

and UI composition.

Event Aggregation QuickStart Event Aggregation This QuickStart demonstrates how to

build a WPF application that uses the

Event Aggregator service. This

service enables you to establish

loosely coupled communications

between components in your

application.

Interactivity QuickStart Interactivity This QuickStart demonstrates how to

create a view and view model that

work together when the view model

needs to interact with the user or

user gesture needs to raise an event

that invokes a command. In each of

these scenarios the view model

should not need to know about the

view. The first scenario is handled by

using InteractionRequests and

InteractionRequestTriggers. The

second scenario is handled by

InvokeCommandAction.

Step 3: Compile and Run QuickStarts, Reference Implementation, or Prism Library Source

Code

In order to build and run the reference implementation and the QuickStarts, select the appropriate

shortcut file and press F5 to build and run.

The reference implementation and QuickStarts use NuGet references to the Prism library assemblies so

you can compile and run each solution directly.

http://aka.ms/prism-wpf-QSViewSwitchNavCode
http://aka.ms/prism-wpf-QSViewSwitchNavCode
http://aka.ms/prism-wpf-QSEACode
http://aka.ms/prism-wpf-QSInteractivityCode

13

Adding Prism Library Source Projects to Solutions

As part of shipping the Prism Library as NuGet packages, the Prism Library projects were removed from

the solutions of all QuickStarts and reference implementation projects. If you are a developer

accustomed to stepping through the Prism Library code as you build your application, there are a couple

of options:

 Add the Prism Library Projects back in. To do this, right-click the solution, point to Add, and

then click Existing project. Select the Prism Library projects. Then, to prevent inadvertently

building these, click Configuration Manager on the Build menu, and then clear the Build

check box for all Prism Library projects in both the debug and release configurations.

 Set a breakpoint and step in. Set a break point in your application's bootstrapper, and then

step in to a method within the base class (F11 is the typical C# keyboard shortcut for this).

You may be asked to locate the Prism Library source code, but often, the full program

database (PDB) file is available and the file will simply open. You may set breakpoints in any

Prism Library project by opening the file and setting the breakpoint.

Related Downloads

 ManifestManagerUtility for ClickOnce

 Getting Started Using the Prism Library Hands-on Lab

 MVVM Training

http://compositewpf.codeplex.com/releases/view/14771
http://visualstudiogallery.msdn.microsoft.com/3ab5f02f-0c54-453c-b437-8e8d57eb9942

14

What's New in Prism Library 5.0 for

WPF
Prism 5.0 includes guidance in several new areas, resulting in new code in the Prism Library for WPF,

new and updated QuickStarts, and updated documentation. Parts of the Prism Library changed between

Prism 4.1 and Prism 5.0 to support the new guidance, fix existing issues, and respond to community

requests.

Note: For Silverlight applications use Prism 4.1.

New Guidance

Prism 5.0 contains several areas of new guidance as follows:

 Prism.Mvvm is a portable class library that encapsulates Prism’s MVVM support. This library

includes ViewModelLocationProvider. Views and view models can be wired up together using

the new ViewModelLocationProvider’s convention-based approach as explained in

Implementing the MVVM Pattern. View model construction can be accomplished using a

dependency injection container. The ViewModel Locator’s extensibility points are discussed in

Extending the Prism Library. DelegateCommands are now extendable and provide Async

support. A new implementation of the INotifyPropertyChanged interface, the BindabaleBase

class, was added.

 The PopupWindowAction class was added to the Prism.Interactivity assembly to open a

custom window in response to an interaction request being raised.

The InvokeCommandAction action provided by Prism now passes trigger parameters to the

associated command.

For more information see Advanced MVVM Scenarios.

 The EventAggregator classes have been moved to the Prism.PubSubEvents portable class

library.

 The NavigationParameters class can now be used to pass object parameters during navigation,

using the overloads of the RequestNavigate method of a Region or RegionManager instance.

Changes in the Prism Library

Prism Library 5.0 includes changes related to new functionality, code organization, and APIs.

Code Organization

The following organizational changes were made to the library:

 The Microsoft.Practices.Prism.PubSubEvents portable class library contains PubSubEvents,

EventAggregator and related classes.

15

 The Microsoft.Practices.Prism.Mvvm portable class library contains

ViewModelLocationProvider, BindableBase, ErrorsContainer, PropertySupport,

CompositeCommand, DelegateCommand, DelegateCommandBase, and

WeakEventHandlerManager.

 The Microsoft.Practices.Prism.Mvvm.Desktop assembly contains the WPF ViewModelLocator

attach property.

 The EventAggregator classes are marked obsolete in the Prism assembly.

 The Silverlight and phone versions of the Prism Library were taken out. If you need these

libraries download the Prism 4.1 assemblies from NuGet.

 Prism and Prism.Mvvm are independent of each other but share IActiveAware. Therefore

IActiveAware has been moved to Prism.SharedInterfaces.

In version 5.0 of Prism, Pub Sub Eventing functionality was moved into a separate assembly

(Prism.PubSubEvents). DelegateCommand, CompositeCommand, and ViewModel support were moved

into another assembly (Prism.Mvvm). There are many advantages to separating PubSubEvents and

Mvvm from the core Prism assembly.

 You can select only the functionality that you need. If you want Regions and Modularity, you

use the core Prism assembly. If you want only ViewModel and commanding support, you use

Prism.Mvvm. If you only want Pub Sub Eventing, you use Prism.PubSubEvents. Each assembly is

smaller and easier to understand.

 You can now build your ViewModel code in a portable class library that leverages Prism.Mvvm

and/or Prism.PubSubEvents since both are PCLs. By putting your ViewModel code in a PCL,

your ViewModel code is constrained to using dependent libraries that are platform agnostic

and thus can target multiple platforms.

 Updates to these smaller libraries can be made more easily and quickly.

API Changes

The Prism Library API changed in several key areas. The bootstrapper was heavily modified and reusable

code was added to support the new areas of guidance provided in Prism.

MVVM and Event Aggregator Changes.

Moving ViewModel and EventAggregator to a PCL causes several changes to the Prism Library. These

changes include the following:

 The BindableBase class in Prism.Mvvm should be used instead of NotifcationObject. The

NotificationObject and PropertySupport classes are marked obsolete in the Prism assembly.

16

 When inheriting from the BindableBase class, use the SetProperty method to update the

property's backing field and raise the corresponding property change event. A new

OnPropertyChanged method that takes a lambda expression as a parameter has been added.

 Use the PubSubEvents class in the Microsoft.Practices.PubSubEvents portable class library

instead of CompositePresentationEvents. The classes from the Events solution folder in the

Prism assembly are marked obsolete.

 The UriQuery class was renamed to NavigationParameters, it keeps the same functionality as

before, and adds support for passing object parameters.

 DelegateCommand includes support for async handlers and has been moved to the

Prism.Mvvm portable class library. DelegateCommand and CompositeCommand both use the

WeakEventHandlerManager to raise the CanExecuteChanged event. The

WeakEventHandlerManager must be first constructed on the UI thread to properly acquire a

reference to the UI thread’s SynchronizationContext.

 EventAggregator now must be constructed on the UI thread to properly acquire a reference to

the UI thread’s SynchronizationContext.

 The WeakEventHandlerManager is now public.

 The Execute and CanExecute methods on DelegateCommand are now marked as virtual.

Additions to the Prism Library Core API

The following namespaces were added to the Prism Library to support the new areas of guidance added

in Prism 5.0:

 Microsoft.Practices.Prism.PubSubEvents was added to help you send loosely coupled message

using a portable class library.

 Microsoft.Practices.Prism.Mvvm was added to assist you in implementing MVVM using a

portable class library and several platform specific libraries.

 Microsoft.Practices.Prism.SharedInterfaces has been added to share the IActiveAware

interface between Prism and Prism.Mvvm assemblies, therefore the IActiveAware interface

has been moved to this assembly. It is also intended for future use.

CodePlex Issues Resolved

 8532: InteractionRequestTrigger can cause memory leaks with some implementations.

 9153: 'Notification' really should be an interface.

 9438: Navigation to an existing view.

 5495: Event to Command.

17

 8101: DelegateCommand is not extendable.

 5623: Make WeakEventHandlerManager public.

 9906: A bug when using XAML module catalog in WPF.

 7215: Issue with ModuleCatalog.CreateFromXaml for WPF application with MEF Bootstrapper.

 8703: RegionManager::IsInDesignMode.

 4349: Default Region Behavior Order Problem.

 3552: Region manager in V2 fails to recognize non-WPF applications.

Example Code Changes

Prism 5.0 contains eleven separate code samples that demonstrate portions of the provided guidance.

Several samples from Prism 4.1 were removed or replaced, and new samples added.

The following samples were added for Prism 5.0:

 Basic MVVM QuickStart. This QuickStart shows a very simple MVVM application that uses the

ViewModel Locator and show a parent and child ViewModels. For more information, see the

MVVM QuickStart.

 MVVM QuickStart. This QuickStart was removed for this version.

 MVVM Reference Implementation. This reference implementation was removed for this

version.

 View-Switching Navigation QuickStart. This QuickStart now supports WPF. It demonstrates

how to use the Prism region navigation API. For more information, see View-Switching

Navigation QuickStart.

 State-Based Navigation QuickStart. This QuickStart now supports WPF. It shows an approach

that uses the Visual State Manager to define the views (states) and the allowed transitions. For

more information, see State-Based Navigation QuickStart.

 UI Composition QuickStart. This QuickStart now supports WPF. It replaced the View Injection

QuickStart and the View Discovery QuickStart from Prism 2.0. In the current versions, both

concepts are shown in one example application. For more information, see UI Composition

QuickStart.

 Interactivity QuickStart. This new QuickStart demonstrates how to exposes an interaction

request to the view through the view model. The interactions can be a popup, confirmation,

custom popup, and a more complex case where the popup needs a custom view model. It also

shows Prism’s InvokeCommandAction action that passes the EventArgs from the trigger, as a

command parameter. For more infromation, see Interactivity QuickStart.

18

NuGet Packages Now Available

In your application, you can now use NuGet to add references to the Prism assemblies. These packages

include:

 Prism

 Prism.Composition

 Prism.Interactivity

 Prism.Mvvm

 Prism.PubSubEvents

 Prism.UnityExtensions

 Prism.MEFExtensions

The Prism NuGet package will download the Prism.Composition, Prism.Interactivity, Prism.Mvvm, and

Prism.PubSubEvents packages. You only need to add references to the Prism.Interactivity,

Prism.Mvvm, and Prism.PubSubEvents if you need finer granularity.

More Information

For more information about how to upgrade a solution from version 4.1 to version 5.0 of the Prism

Library, see Upgrading from Prism Library 4.1.

http://aka.ms/prism-wpf-Prism50Nuget
http://aka.ms/prism-wpf-Prism50Nuget
http://aka.ms/prism-wpf-Prism50CompositionNuget
http://aka.ms/prism-wpf-Prism50InteractivityNuget
http://aka.ms/prism-wpf-Prism50InteractivityNuget
http://aka.ms/prism-wpf-Prism50MvvmNuget
http://aka.ms/prism-wpf-Prism50PubSubEventsNuget
http://aka.ms/prism-wpf-Prism50UnityExtensionsNuget
http://aka.ms/prism-wpf-Prism50MefExtensionsNuget

19

The Team Who Brought You This

Guide
Prism was produced by the following individuals:

patterns & practices Team:

Microsoft Corporation Blaine Wastell, Francis Cheung, Nelly Delgado, Rohit Sharma, RoAnn Corbisier

Southworks SRL Diego Poza

Icertis Inc. Poornimma Kaliappan

Contributors to the previous release of this guidance:

Microsoft Corporation Blaine Wastell, Bob Brumfield, David Hill, Karl Shifflett, Larry Brader, Michael Puleio, Nelly

Delgado

Clarius Consulting Fernando Simonazzi

Infosys Technologies

Ltd

Mani Krishnaswami, Meenakshi Krishnamoorthi, Rathi Velusamy, Ravindra Varman,

Sangeetha Manickam, Sanghamitra Chilla

Software Insight Brian Noyes

Southworks SRL Diego Poza, Fernando Antivero, Geoff Cox, Matias Bonaventura

TinaTech, Inc. Tina Burden

Modeled Computation Sharon Smith, Katie Niemer

Many thanks to the following advisors who provided invaluable assistance:

Bill Wilder of Fidelity Investments, Brian Noyes of Solliance, Brian Lagunas of Infragistics, Clifford Tiltman

of Morgan Stanley, Rob Eisenberg of Blue Spire, Norman Headlam, Ward Bell of IdeaBlade, Paul Jackson

of CM Group Ltd., John Papa of Microsoft, Julian Dominguez of Clarius Consulting, Ted Neveln of Ballard

Indexing Services, Glenn Block of Microsoft, Michael Kenyon of IHS, Inc., Terry Young of PEER Group,

Jason Beres of Infragistics, Peter Lindes of The Church of Jesus Christ of Latter-day Saints, Mark Tucker of

Neudesic, LLC, David Platt of Rolling Thunder Computing, Steve Gentile of Strategic Data Systems,

Markus Egger of EPS Software Corp. and CODE Magazine, Ryan Cromwell of Strategic Data Systems,

Todd Neal of McKesson Corp, Dipesh Patel of Fidelity Investments, and David Poll of Microsoft.

20

1: Introduction
Prism provides guidance designed to help you more easily design and build rich, flexible, and easy-to-

maintain Windows Presentation Foundation (WPF) desktop applications. Using design patterns such as

Model-View-ViewModel (MVVM), Composite View, and Event Aggregator that embody important

architectural design principles helps you create a modular application—using loosely coupled

components that can evolve independently. These types of applications are known as composite

applications.

Composite applications typically feature multiple screens, rich user interaction and data visualization,

and that embody significant presentation and business logic. These applications typically interact with

multiple back-end systems and services and, using a layered architecture, may be physically deployed

across multiple tiers. It is expected that the application will evolve significantly over its lifetime in

response to new requirements and business opportunities. In short, these applications are "built to last"

and "built for change." Applications that do not demand these characteristics may not benefit from

using Prism.

Prism includes reference implementations, QuickStarts, reusable library code (the Prism Library), and

extensive documentation. This version of Prism targets the Microsoft .NET Framework 4.5 and includes

new guidance around the Model-View-ViewModel (MVVM) pattern, navigation, and the Managed

Extensibility Framework (MEF). Because Prism is built on the .NET Framework 4.5 (which includes WPF) ,

familiarity with these technologies is useful for evaluating and adopting Prism.

It should be noted that while Prism is not difficult to learn, developers must be ready and willing to

embrace patterns and practices that may be new to them. Management understanding and

commitment is crucial, and the project deadline must accommodate an investment of time up front for

learning these patterns and practices.

Why Use Prism?

Designing and building rich WPF client applications that are flexible and easy to maintain can be

challenging. This section describes some of the common challenges you might encounter when building

WPF client applications, and describes how Prism helps you to address those challenges.

Client Application Development Challenges

Typically, developers of client applications face quite a few challenges. Application requirements can

change over time. New business opportunities and challenges may present themselves, new

technologies may become available, or even ongoing customer feedback during the development cycle

may significantly affect the requirements of the application. Therefore, it is important to build the

application so that it is flexible and can be easily modified or extended over time. Designing for this type

of flexibility can be hard to accomplish. It requires an architecture that allows individual parts of the

application to be independently developed and tested and that can be modified or updated later, in

isolation, without affecting the rest of the application.

21

Most enterprise applications are sufficiently complex that they require more than one developer, maybe

even a large team of developers that includes user interface (UI) designers and localizers in addition to

developers. It can be a significant challenge to decide how to design the application so that multiple

developers or subteams can work effectively on different pieces of the application independently, yet

ensuring that the pieces come together seamlessly when integrated into the application.

Designing and building applications in a monolithic style can lead to an application that is very difficult

and inefficient to maintain. In this case, "monolithic" refers to an application in which the components

are very tightly coupled and there is no clear separation between them. Typically, applications designed

and built this way suffer from problems that make the developer's life hard. It is difficult to add new

features to the system or replace existing features, it is difficult to resolve bugs without breaking other

portions of the system, and it is difficult to test and deploy. Also, it impacts the ability of developers and

designers to work efficiently together.

The Composite Approach

An effective remedy for these challenges is to partition the application into a number of discrete, loosely

coupled, semi-independent components that can then be easily integrated together into an application

"shell" to form a coherent solution. Applications designed and built this way are often known as

composite applications.

Composite applications provide many benefits, including the following:

 They allow modules to be individually developed, tested, and deployed by different

individuals or subteams; they also allow them to be modified or extended with new

functionality more easily, thereby allowing the application to be more easily extended and

maintained. Note that even single-person projects experience benefits in creating more

testable and maintainable applications using the composite approach.

 They provide a common shell composed of UI components contributed from various

modules that interact in a loosely coupled way. This reduces the contention that arises from

multiple developers adding new functionality to the UI, and it promotes a common

appearance.

 They promote reuse and a clean separation of concerns between the application's horizontal

capabilities, such as logging and authentication, and the vertical capabilities, such as

business functionality that is specific to your application. This also allows you to more easily

manage the dependencies and interactions between application components.

 They help maintain a separation of roles by allowing different individuals or subteams to

focus on a specific task or piece of functionality according to their focus or expertise. In

particular, it provides a cleaner separation between the UI and the business logic of the

application—this means the UI designer can focus on creating a richer user experience.

22

Composite applications are highly suited to a range of client application scenarios. For example, a

composite application is ideal for creating a rich end-user experience over disparate back-end systems.

The following illustration shows an example of this type of a composite application.

Composite application with multiple back-end systems

In this type of application, the user can be presented with a rich and flexible user experience that

provides a task-oriented focus over functionality that spans multiple back-end systems, services, and

data stores, where each is represented by one or more dedicated modules. The clean separation

between the application logic and the UI allows the application to provide a consistent and

differentiated appearance across all constituent modules.

Additionally, a composite application can be useful when there are independently evolving components

in the UI that heavily integrate with each other and that are often maintained by separate teams. The

following illustration shows a screen shot of this type of application. Each of the areas highlighted

represent independent components that are composed into the UI.

Stock Trader Reference Implementation composite application

23

In this case, the composite application allows the UI to be dynamic composed. This delivers a flexible

user experience. For example, it can allow new functionality to be dynamically added to the application

at run time, which enables rich end-user customization and extensibility.

Challenges Not Addressed by Prism

Although Prism helps you to address many of the challenges you might face when building WPF

applications, there are many other challenges that you might face, depending on your application

scenario and requirements. For example, Prism does not directly address the following topics:

 Occasional connectivity and data synchronization

 Service and messaging infrastructure design

 Authentication and authorization

 Application performance

 Application versioning

 Error handling and fault tolerance

Prerequisites

Prism assumes you have hands-on experience with WPF . There are a few important concepts that Prism

uses heavily, and you should become familiar with them. They include the following:

 XAML (Extensible Application Markup Language). The language to declaratively define and

initialize the user interface in WPF applications.

24

 Data binding. This is how UI elements are connected to components and data in WPF.

 Resources. These are how styles, data templates, and control templates are created and

managed in WPF.

 Commands. These are how user gestures and input are connected to controls.

 User controls. These are components that provide custom behavior or custom appearance.

 Dependency properties. These are extensions to the common language runtime (CLR)

property system to enable property setting and monitoring in support of data binding,

routed commands, and events.

 Behaviors. Behaviors are objects that encapsulate interactive functionality that can be easily

applied to controls in the user interface.

An Overview of Prism

Architectural Goals

The guidance is designed to help architects and developers achieve the following objectives:

 Create an application from modules that can be built, assembled and, optionally, deployed by

independent teams using WPF.

 Minimize cross-team dependencies and allow teams to specialize in different areas, such as user

interface (UI) design, business logic implementation, and infrastructure code development.

 Use an architecture that promotes reusability across independent teams.

 Increase the quality of applications by abstracting common services that are available to all the

teams.

 Incrementally integrate new capabilities.

Prism Design Goals

Prism was designed to help you design and build rich, flexible, and easy-to-maintain WPF applications.

The Prism Library implements design patterns that embody important architectural design principles,

such as separation of concerns and loose coupling. Using the design patterns and capabilities provided

by the Prism Library, you can design and build applications using loosely coupled components that can

evolve independently but that can be easily and seamlessly integrated into the overall application.

Prism is designed around the core architectural design principles of separation of concerns and loose

coupling. This allows Prism to provide many benefits, including the following:

 Reuse. Prism promotes reuse by allowing components and services to be easily developed,

tested and integrated into one or more applications. Reuse can be achieved at the component

level through the reuse of unit-tested components that can be easily discovered and integrated

25

at run time through dependency injection, and at the application level through the use of

modules that encapsulate application-level capabilities that can be reused across applications.

 Extensibility. Prism helps to create applications that are easy to extend by managing

component dependencies, allowing components to be more easily integrated or replaced with

alternative implementations at run time, and by providing the ability to decompose an

application into modules that can be independently updated and deployed. Many of the

components in the Prism Library itself can also be extended or replaced.

 Flexibility. Prism helps to create flexible applications by allowing them to be more easily

updated as new capabilities are developed and integrated. Prism also allows WPF applications

to be developed using common services and components, allowing the application to be

deployed and consumed in the most appropriate way. It also allows applications to provide

different experiences based on role or configuration.

 Team Development. Prism promotes team development by allowing separate teams to develop

and even deploy different parts of the application independently. Prism helps to minimize cross-

team dependencies and allows teams to focus on different functional areas (such as UI design,

business logic implementation, and infrastructure code development), or on different business-

level functional areas (such as profile, sales, inventory, or logistics).

 Quality. Prism can help to increase the quality of applications by allowing common services and

components to be fully tested and made available to the development teams. In addition, by

providing fully tested implementations of common design patterns, and the guidance needed to

fully leverage them, Prism allows development teams to focus on their application

requirements instead of implementing and testing infrastructure code.

It is important to note that Prism was designed so that you can use any of Prism's capabilities and design

patterns individually, or all together, depending on your requirements and your application scenario.

Prism was designed so that it could be incrementally adopted, allowing you to use the capabilities and

design patterns that make sense for your particular application without requiring major structural

changes.

Finally, because software testing should be considered a first-class development activity and tightly

integrated into the development process, Prism provides extensive support for various types of software

testing, thereby allowing you to design and build applications that are easy to test. Prism itself was

developed with testing in mind. It was developed to meet multiple strict quality gates to ensure that it

meets Microsoft security standards and that it will function correctly on multiple operating systems,

with multiple versions of Visual Studio, and with multiple programming languages. Unit tests were run

after each check-in. In addition, the Prism library was tested against several additional quality gates, as

listed in the following table.

26

Test Description

Acceptance Testing Validates the application functionality using user

scenarios to drive the test requirements. Tests can be

executed manually or automated.

Application Building Exercises Team members build applications consuming the

deliverable software.

Black Box Testing Manual acceptance tests perform from the user point of

view.

Cross Platform Testing All automated tests are run on multiple platforms.

Globalization Testing All automated tests are run on multiple languages.

Performance Testing Measures how fast a particular aspect of a system

performs under-load.

Security Review Internal Microsoft security audit standards that cover

thread models, identifying attack factors and running the

code though security analysis tools.

Stress Testing Measures stability of the system under extreme loads;

specifically looking to drive out issues like memory leaks

and threading issues.

White Box Testing In-depth source code analysis validating the coding

standards, structure and how it maps to the overall

architecture.

The Prism Library source code includes unit and UI automation tests, as shown in the following table.

You can use these as an educational resource, or you can run the tests against the Prism Library itself.

This allows you to customize, re-compile, test and deploy a modified version of the Prism Library using

similar quality gates as the Prism team.

Test Description

UI Automation Tests Limited range of acceptance testing; driving the

application from the user perspective

Unit Tests Validates the implementation of a class

Prism Key Concepts

Prism provides capabilities and design patterns that may be unfamiliar to you, especially if you're new to

design patterns and composite application development. This section provides a brief overview of the

main concepts behind Prism and defines some of the terminology that you will see used throughout the

documentation and code.

 Modules. Modules are packages of functionality that can be independently developed, tested,

and (optionally) deployed. In many situations, modules are developed and maintained by

separate teams. A typical Prism application is built from multiple modules. Modules can be used

to represent specific business-related functionality (for example, profile management) and

27

encapsulate all the views, services, and data models required to implement that functionality.

Modules can also be used to encapsulate common application infrastructure or services (for

example, logging and exception management services) that can be reused across multiple

applications.

 Module catalog. In a composite application, modules must be discovered and loaded at run

time by the host application. In Prism, a module catalog is used to specify which modules to are

to be loaded, when they are loaded, and in what order. The module catalog is used by the

ModuleManager and ModuleLoader components, which are responsible for downloading the

modules if they are remote, loading the module's assemblies into the application domain, and

for initializing the module. Prism allows the module catalog to be specified in different ways,

including programmatically using code, declaratively using XAML, or using a configuration file.

You can also implement a custom module catalog if you need to.

 Shell. The shell is the host application into which modules are loaded. The shell defines the

overall layout and structure of the application, but it is typically unaware of the exact modules

that it will host. It usually implements common application services and infrastructure, but most

of the application's functionality and content is implemented within the modules. The shell also

provides the top-level window or visual element that will then host the different UI components

provided by the loaded modules.

 Views. Views are UI controls that encapsulate the UI for a particular feature or functional area

of the application. Views are used in conjunction with the MVVM pattern, which is used to

provide a clean separation of concerns between the UI and the application's presentation logic

and data. Views are used to encapsulate the UI and define user interaction behavior, thereby

allowing the view to be updated or replaced independently of the underlying application

functionality. Views use data binding to interact with view model classes.

 View models. View models are classes that encapsulate the application's presentation logic and

state. They are part of the MVVM pattern. View models encapsulate much of the application's

functionality.. View models define properties, commands, and events, to which controls in the

view can data-bind.

 Models. Model classes encapsulate the application data and business logic. They are used as

part of the MVVM pattern. Models encapsulate data and any associated validation and business

rules to ensure data consistency and integrity.

 Commands. Commands are used to encapsulate application functionality in a way that allows

them to be defined and tested independently of the application's UI. They can be defined as

command objects or as command methods in the view model. Prism provides the

DelegateCommand class and the CompositeCommand class. The latter is used to represent a

collection of commands which are all invoked together.

 Regions. Regions are logical placeholders defined within the application's UI (in the shell or

within views) into which views are displayed. Regions allow the layout of the application's UI to

28

be updated without requiring changes to the application logic. Many common controls can be

used as a region, allowing views to be automatically displayed within controls, such as a

ContentControl, ItemsControl, ListBox, or TabControl. Views can be displayed within a region

programmatically or automatically. Prism also provides support for implementing navigation

with regions. Regions can be located by other components through the RegionManager

component, which uses RegionAdapter and RegionBehavior components to coordinate the

display of views within specific regions.

 Navigation. Navigation is defined as the process by which the application coordinates changes

to its UI as a result of the user's interaction with the application or internal application state

changes. Prism supports two styles of navigation: state-based navigation, where the state of an

existing view is updated to implement simple navigation scenarios, and view-switching

navigation, where new views are created and old views replaced within the application's UI.

View-switching navigation uses a Uniform Resource Identifier (URI)–based navigation

mechanism in conjunction with Prism regions to allow flexible navigation schemes to be

implemented.

 EventAggregator. Components in a composite application often need to communicate with

other components and services in the application in a loosely coupled way. To support this,

Prism provides the EventAggregator component, which implements a pub-sub event

mechanism, thereby allowing components to publish events and other components to

subscribe to those events without either of them requiring a reference to the other. The

EventAggregator is often used to allow components defined in different modules to

communicate with each other.

 Dependency injection container. The Dependency Injection (DI) pattern is used throughout

Prism to allow the dependencies between components to be managed. Dependency injection

allows component dependencies to be fulfilled at run time, and it supports extensibility and

testability. Prism is designed to work with Unity or MEF, or with any other dependency injection

containers via the ServiceLocator.

 Services. Services are components that encapsulate non-UI related functionality, such as

logging, exception management, and data access. Services can be defined by the application or

within a module. Services are often registered with the dependency injection container so that

they can be located or constructed as required and used by other components that depend on

them.

 Controllers. Controllers are classes that are used to coordinate the construction and

initialization of views that are to be displayed in a region within the application's UI. Controllers

encapsulate the presentation logic that determines which views are to be displayed. The

controller will use Prism's view-switching navigation mechanism, which provides an extensible

URI-based navigation mechanism to coordinate the construction and placement of views within

regions. The Application Controller pattern defines an abstraction that maps to this

responsibility.

29

 Bootstrapper. The Bootstrapper component is used by the application to initialize the various

Prism components and services. It is used to initialize the dependency injection container to

register any application-level components and services with it. It is also used to configure and

initialize the module catalog and the shell's view and view model or presenter.

Prism is designed so that you can use any of the preceding capabilities and design patterns individually,

or all together, depending on your requirements and your application scenario. You can use the MVVM

pattern, modularity, regions, commands, or events in any combination without having to adopt all of

them. Of course, if you want to take full advantage of the benefits that separation of concerns and loose

coupling offers, you will typically use many of Prism's capabilities and design patterns in conjunction

with each other. The following illustration shows a typical Prism application architecture and shows how

all the various capabilities of Prism can work together within a multi-module composite application.

Typical composite application architecture with the Prism Library

Most Prism applications consist of a shell application that defines regions for displaying top-level views

and shared services that can be accessed by the loaded modules. The shell defines a suitable catalog to

specify which modules are to be loaded at startup time , as appropriate. A dependency injection

container is also defined, which allows component dependencies to be fulfilled at run time. Shared

services and components are registered with the container by the Bootstrapper when the application

starts.

Individual modules encapsulate a portion of the overall application's functionality and, using a separated

presentation pattern such as MVVM, define views, view models, models, and service components.

When the modules are loaded, views defined within the modules are displayed within the regions

defined by the shell. After initialization completes, the user then navigates within the application using

30

state-based or view-switching navigation to coordinate the visual update or display of new views within

the application's regions.

Using Prism

Now that you've seen the major capabilities and design patterns that Prism supports, it's time to see

how easily you can start to use Prism when developing a new application. This section provides an

overview of the first few steps required to create a basic Prism application. You can extend this basic

application to leverage the additional capabilities and design patterns provided by Prism, as required by

your scenario.

Note: Although the Prism Library can be easily used to build new composite WPF applications, you can

also use Prism with existing applications that want to take advantage of one or more Prism capabilities

or design patterns.

A Prism application typically consists of a shell project and multiple module projects. The following

illustration shows common activities needed when developing a composite application using the Prism

Library.

Activities for creating a composite application

A typical Prism application leverages most or all of the Prism capabilities and design patterns described

earlier to be able to fully realize the benefits of the loose coupling and separation of concerns

31

architectural design principles. However, for this example, the steps required to create a basic Prism

application that consists of a single module that defines a single view are described.

Prism Library References

Most of your projects will need to reference the Prism Library assemblies. Prism provides signed

binaries through NuGet packages so that you can use the Visual Studio Manage NuGet Packages dialog

box to add references to them. You can also include the Prism Library projects in your solution and

then use project references to them. The latter has the advantage of being able to use features like Go

To Definition to step down into the Prism types, as well as being able to build and sign the Prism

Library assemblies with your own strong name or certificate as part of your build process.

Define the Shell

The application shell provides the basic layout for the application. This layout is defined using regions

that modules can use to place views. Views, like shells, can use regions to define discoverable areas that

content can be added to, as shown in the following illustration. Shells typically set the appearance for

the entire application and contain the styles that are used throughout the application.

Shells, views, and regions

Create the Bootstrapper

The bootstrapper is the glue that connects the application with the Prism Library services and the Unity

or MEF containers. Each application creates an application-specific bootstrapper, which typically inherits

from either UnityBootstrapper or MefBootstrapper, as shown in the following illustration. You will need

to decide the approach you want to use to populate the module catalog. Minimally, each application will

provide a module catalog and a shell.

By default, the bootstrapper logs events using the .NET Framework Trace class. Most applications will

want to supply their own logging services, such as Enterprise Library logging. Applications can supply

their logging service in their bootstrapper.

32

By default, the UnityBootstrapper and MefBootstrapper enable the Prism Library services. These can be

disabled or replaced in your application-specific bootstrapper.

Diagram demonstrating connecting to the Prism Library

Create the Module

The module contains the views and services specific to a piece of the application's functionality.

Frequently, these are contained in separate assemblies and developed by separate teams. A module is

denoted by a class that implements the IModule interface. These modules, during initialization, register

their views and services and may add one or more views to the shell. Depending on your module

discovery approach, you may need to apply attributes to your module classes or define dependencies

between your modules.

Add a Module View to the Shell

Modules take advantage of the shell's regions for placing content. During initialization, modules use the

RegionManager to locate regions in the shell and add one or more views to those regions or register

one or more view types to be created within those regions. The RegionManager is responsible for

keeping track of regions throughout the application and is a core service initialized from the

bootstrapper.

The remaining topics in this guide provide details about Prism key concepts.

33

Exploring Prism

Prism consists of the following:

 Prism Library source code. The source code for the Prism Library assemblies, including the

core Prism functionality, plus Unity and MEF extensions, which provide additional

components for using Prism with the Unity Application Block (Unity) and the Managed

Extensibility Framework. The source code also includes Prism.PubSubEvents and

Prism.Mvvm assemblies.

 Prism binary assemblies. Signed binary versions of the Prism Library assemblies. These

assemblies can be downloaded from NuGet by searching for Prism, Prism.Composition,

Prism.PubSubEvents, and Prism.Mvvm, Prism.Interactivity, Prism.UnityExtensions, and

Prism.MefExtensions. These NuGet packages will load dependencies such as the Unity

Application Block and the Service Locator.

The Prism NuGet package will download the Prism.Composition, Prism.PubSubEvents,

Prism.Mvvm, Prism.Interactivity, Prism.PubSubEvents, and Prism.Mvvm NuGet

packages.

 Code samples. Prism includes a reference implementation sample and QuickStart samples.

The Stock Trader Reference Implementation is a comprehensive sample application that

illustrates how Prism can be used to implement real-world application scenarios. The

reference implementation is intentionally incomplete, but they illustrate how many of the

patterns in Prism can work together within a single application. The QuickStart samples

include several small, focused sample applications that illustrate the MVVM pattern,

navigation, UI composition, modularity, commanding, event aggregation, and interactivity.

 Documentation. The Prism 5.0 documentation provides an overview of the goals and

concepts behind Prism and detailed guidance on using each of the capabilities and design

patterns provided by Prism. The next section provides an overview of the topics covered.

Exploring the Documentation

The Prism documentation spans a wide range of topics, including an overview of common development

challenges and the composite application approach, an overview of the Prism Library and the design

patterns that it implements, as well as step-by-step instructions for using the Prism Library during

development. The documentation is intended to appeal to a broad technical audience to help the reader

to understand and use Prism within their own applications. The documentation includes the following:

 Initializing Applications. This topic discusses what needs to happen to get a modular Prism

application up and running.

 Managing Dependencies Between Components. Applications based on the Prism Library rely

on a dependency injection container. Although Prism has the ability to work with nearly any

dependency injection container, the Prism Library provides two default options for

http://aka.ms/prism-wpf-code
http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://aka.ms/prism-wpf-nuget
http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://commonservicelocator.codeplex.com/
http://aka.ms/prism-wpf-code
http://aka.ms/prism-wpf-doc

34

dependency injection containers: Unity or MEF. This topic discusses the different capabilities

and what you need to think about when working with a dependency injection container.

 Modular Application Development. This topic discusses the core concepts, key decisions, and

core scenarios when you create a modular client application with Prism.

 Implementing the MVVM Pattern. Using the MVVM pattern, you separate the UI of your

application and the underlying presentation and business logic into three separate classes:

the view, model, and view model. This topic discusses the core concepts behind the MVVM

pattern and describes how to implement it in your application using Prism.

 Advanced MVVM Scenarios. This topic provides guidance on implementing more advanced

scenarios using the MVVM pattern, including how to implement composite commands

(commands that represent a group of commands), and how to handle asynchronous web

service and user interactions. This topic also provides guidance on using a dependency

injection container, such as Unity or MEF, to handle the construction and wire-up of the

MVVM classes.

 Composing the User Interface. Regions are placeholders that allow a developer to specify

where views will be displayed in the application's UI. In Prism, there are two approaches to

displaying views in a region: view discovery and view injection. This topic describes how to

work with regions and the UI. It also includes information for UI designers to understand

composite applications.

 Navigation. Navigation is the process by which the application coordinates changes to its UI

as a result of the user's interaction with the application or internal application state changes.

This topic provides guidance on implementing state-based navigation, where the state of the

UI in a view is updated to reflect navigation, and view-switching navigation, where a new

view is created and displayed in a region.

 Communicating Between Loosely Coupled Components. This topic discusses the various

options for communicating between components in different modules, using commanding,

the EventAggregator, region context, and shared services.

 Deploying Applications. This topic addresses deployment considerations for Prism WPF

applications.

 Glossary. This appendix provides a concise summary of the terms, concepts, design patterns

and capabilities provided by Prism.

 Patterns in the Prism Library. This appendix describes the software design patterns applied in

the Prism Library and the Stock Trader RI. This topic primarily targets architects and

developers wanting to familiarize themselves with the patterns used to address the

challenges in building composite applications.

 Prism Library. This appendix provides an overview of the Prism Library for WPF.

35

 Upgrading from Prism Library 4.1. This appendix discusses what you need to know if you are

upgrading from previous versions of Prism.

 Extending the Prism Library. This appendix discusses how you can extend Prism modularity,

behaviors, and navigation.

 Code Samples. Prism includes the source code for several samples that demonstrate key

concepts. For more information, see the next section, "Code Samples Using the Prism Library

for WPF."

 Getting Started Using the Prism Library Hands-On Lab. This hands-on labs demonstrates

building a simple composite application, step-by-step, in WPF. It primarily targets developers

who want to understand the basic concepts of the Prism Library.

 Publishing and Updating Aplications Using the Prism Library Hands-On Lab. This hands-on lab

walks you through the process of for publishing and updating a Prism WPF application with

ClickOnce.

Exploring the Code Samples

The code samples illustrate specific Prism-related concepts. The samples are an ideal starting point if

you want to gain an understanding of a key concept and you are comfortable learning new techniques

by examining source code. Prism includes the following:

 Stock Trader Reference Implementation. The Stock Trader RI is a composite application that

demonstrates an implementation of the baseline architecture using the Prism Library.

 Modularity QuickStarts. These QuickStarts demonstrate how to build WPF applications

composed of modules. The modules can be statically loaded, when the shell contains a

reference to the module's assembly, or dynamically loaded, when modules are dynamically

discovered and loaded at run time. The QuickStarts also demonstrate using the Unity

container and MEF.

 Interactivity QuickStart. This QuickStart demonstrates how to create a view and view model

that work together when the view model needs to interact with the user or a user gesture

needs to raise an event that invokes a command. In each of these scenarios the view model

should not need to know about the view. The first scenario is handled by using

InteractionRequests and InteractionRequestTriggers. The second scenario is handled by

InvokeCommandAction.

 MVVM QuickStart. This QuickStart demonstrates how to build an application that

implements the MVVM presentation pattern, showing some of the more common

challenges that developers can face, such as validation, UI interactions, and data templates.

 Commanding QuickStart. This QuickStart demonstrates how to build a WPF UI that uses

commands provided by the Prism.Mvvm Library to handle UI actions in a decoupled way.

36

 UI Composition QuickStart. This QuickStart demonstrates how to build WPF UIs composed of

different views that are dynamically loaded into regions and that interact with each other in

a decoupled way. It illustrates how to use both the view discovery and view injection

approaches for UI composition.

 State-Based Navigation QuickStart. This QuickStart demonstrates an approach to define the

navigation of a simple application. The approach used in this QuickStart uses the WPF Visual

State Manager (VSM) to define the different states that the application has and defines

animations for both the states and the transitions between states.

 View-Switching Navigation QuickStart. This QuickStart demonstrates how to use the Prism

Region Navigation API. The QuickStart shows multiple navigation scenarios, including

navigating to a view in a region, navigating to a view in a region contained in another view

(nested navigation), navigation journal support, just-in-time view creation, passing

contextual information when navigating to a view, views and view models participating in

navigation, and using navigation as part of an application built through modularity and UI

composition.

 Event Aggregation QuickStart. This QuickStart demonstrates how to build a WPF application

that uses the Event Aggregator service. This service enables you to establish loosely coupled

communications between components in your application.

More Information

Prism assumes you have hands-on experience with WPF. If you need general information about WPF ,

see the following resources:

 Windows Presentation Foundation on MSDN.

 MacDonald, Matthew. Pro WPF in C# 2010: Windows Presentation Foundation in .NET 4,

Apress, 2010.

 Nathan, Adam. WPF 4 Unleashed. Sams Publishing, 2010.

Community

Prism's community sites are:

 Prism: http://www.codeplex.com/Prism

 PubSubEvents (Event Aggregator): http://www.codeplex.com/pnpPubSub

 MVVM (Model-View-ViewModel): http://www.codeplex.com/pnpMvvm

On this these community sites, you can post questions, provide feedback, or connect with other users

for sharing ideas. Community members can also help Microsoft plan and test future offerings and

download additional content, such as extensions and training material.

http://msdn2.microsoft.com/en-us/library/ms754130.aspx
http://www.codeplex.com/Prism
http://www.codeplex.com/pnpPubSub
http://www.codeplex.com/pnpMvvm

37

2: Initializing Applications
This topic addresses what needs to happen to get a Prism for WPF application up and running. A Prism

application requires registration and configuration during the application startup process—this is known

as bootstrapping the application. The Prism bootstrapping process includes creating and configuring a

module catalog, creating a dependency injection container such as Unity, configuring default region

adapter for UI composition, creating and initializing the shell view, and initializing modules.

What Is a Bootstrapper?

A bootstrapper is a class that is responsible for the initialization of an application built using the Prism

Library. By using a bootstrapper, you have more control of how the Prism Library components are wired

up to your application.

The Prism Library includes a default abstract Bootstrapper base class that can be specialized for use with

any container. Many of the methods on the bootstrapper classes are virtual methods. You can override

these methods as appropriate in your own custom bootstrapper implementation.

Basic stages of the bootstrapping process

The Prism Library provides some additional base classes, derived from Bootstrapper, that have default

implementations that are appropriate for most applications. The only stages left for your application

bootstrapper to implement are creating and initializing the shell.

Dependency Injection

Applications built with the Prism Library rely on dependency injection provided by a container. The

library provides assemblies that work with the Unity Application Block (Unity) or Managed Extensibility

38

Framework (MEF), and it allows you to use other dependency injection containers. Part of the

bootstrapping process is to configure this container and register types with the container.

The Prism Library includes the UnityBootstrapper and MefBootstrapper classes, which implement most

of the functionality necessary to use either Unity or MEF as the dependency injection container in your

application. In addition to the stages shown in the previous illustration, each bootstrapper adds some

steps specific to its container.

Creating the Shell

In a traditional Windows Presentation Foundation (WPF) application, a startup Uniform Resource

Identifier (URI) is specified in the App.xaml file that launches the main window.

In an application created with the Prism Library, it is the bootstrapper's responsibility to create the shell

or the main window. This is because the shell relies on services, such as the Region Manager, that need

to be registered before the shell can be displayed.

Key Decisions

After you decide to use the Prism Library in your application, there are a number of additional decisions

that need to be made:

 You will need to decide whether you are using MEF, Unity, or another container for your

dependency injection container. This will determine which provided bootstrapper class you

should use and whether you need to create a bootstrapper for another container.

 You should think about the application-specific services you want in your application. These will

need to be registered with the container.

 Determine whether the built-in logging service is adequate for your needs or if you need to

create another logging service.

 Determine how modules will be discovered by the application: via explicit code declarations,

code attributes on the modules discovered via directory scanning, configuration, or XAML.

The rest of this topic provides more details.

Core Scenarios

Creating a startup sequence is an important part of building your Prism application. This section

describes how to create a bootstrapper and customize it to create the shell, configure the dependency

injection container, register application level services, and how to load and initialize the modules.

Creating a Bootstrapper for Your Application

If you choose to use either Unity or MEF as your dependency injection container, creating a simple

bootstrapper for your application is easy. You will need to create a new class that derives from either

MefBootstrapper or UnityBootstrapper. Then, implement the CreateShell method. Optionally, you may

override the InitializeShell method for shell specific initialization.

39

Implementing the CreateShell Method

The CreateShell method allows a developer to specify the top-level window for a Prism application. The

shell is usually the MainWindow or MainPage. Implement this method by returning an instance of your

application's shell class. In a Prism application, you can create the shell object, or resolve it from the

container, depending on your application's requirements.

An example of using the ServiceLocator to resolve the shell object is shown in the following code

example.

C#

protected override DependencyObject CreateShell()

{

 return ServiceLocator.Current.GetInstance<Shell>();

}

Note: You will often see the ServiceLocator being used to resolve instances of types instead of the

specific dependency injection container. The ServiceLocator is implemented by calling the container,

so it makes a good choice for container agnostic code. You can also directly reference and use the

container instead of the ServiceLocator.

Implementing the InitializeShell Method

After you create a shell, you may need to run initialization steps to ensure that the shell is ready to be

displayed. For WPF applications, you will create the shell application object and set it as the application's

main window, as shown here (from the Modularity QuickStarts for WPF).

C#

protected override void InitializeShell()

{

 Application.Current.MainWindow = Shell;

 Application.Current.MainWindow.Show();

}

The base implementation of InitializeShell does nothing. It is safe to not call the base class

implementation.

Creating and Configuring the Module Catalog

If you are building a module application, you will need to create and configure a module catalog. Prism

uses a concrete IModuleCatalog instance to keep track of what modules are available to the application,

which modules may need to be downloaded, and where the modules reside.

The Bootstrapper provides a protected ModuleCatalog property to reference the catalog as well as a

base implementation of the virtual CreateModuleCatalog method. The base implementation returns a

new ModuleCatalog; however, this method can be overridden to provide a different IModuleCatalog

instance instead, as shown in the following code from the QuickStartBootstrapper in the Modularity

with MEF for WPF QuickStart.

40

C#

protected override IModuleCatalog CreateModuleCatalog()

{

 // When using MEF, the existing Prism ModuleCatalog is still

 // the place to configure modules via configuration files.

 return new ConfigurationModuleCatalog()

}

In both the UnityBootstrapper and MefBootstrapper classes, the Run method calls the

CreateModuleCatalog method and then sets the class's ModuleCatalog property using the returned

value. If you override this method, it is not necessary to call the base class's implementation because

you will replace the provided functionality. For more information about modularity, see "Modular

Application Development."

Creating and Configuring the Container

Containers play a key role in an application created with the Prism Library. Both the Prism Library and

the applications built on top of it depend on a container for injecting required dependencies and

services. During the container configuration phase, several core services are registered. In addition to

these core services, you may have application-specific services that provide additional functionality as it

relates to composition.

Core Services

The following table lists the core non-application specific services in the Prism Library.

Service interface Description

IModuleManager Defines the interface for the service that will retrieve and initialize the application's

modules.

IModuleCatalog Contains the metadata about the modules in the application. The Prism Library provides

several different catalogs.

IModuleInitializer Initializes the modules.

IRegionManager Registers and retrieves regions, which are visual containers for layout.

IEventAggregator A collection of events that is loosely coupled between the publisher and the subscriber.

ILoggerFacade A wrapper for a logging mechanism, so you can choose your own logging mechanism.

The Stock Trader Reference Implementation (Stock Trader RI) uses the Enterprise

Library Logging Application Block, via the EnterpriseLibraryLoggerAdapter class, as

an example of how you can use your own logger. The logging service is registered with

the container by the bootstrapper's Run method, using the value returned by the

CreateLogger method. Registering another logger with the container will not work;

instead override the CreateLogger method on the bootstrapper.

IServiceLocator Allows the Prism Library to access the container. If you want to customize or extend the

library, this may be useful.

41

Application-Specific Services

The following table lists the application-specific services used in the Stock Trader RI. This can be used as

an example to understand the types of services your application may provide.

Services in the Stock Trader RI Description

IMarketFeedService Provides real-time (mocked) market data. The PositionSummaryViewModel

updates the position screen based on notifications it receives from this service.

IMarketHistoryService Provides historical market data used for displaying the trend line for the selected

fund.

IAccountPositionService Provides the list of funds in the portfolio.

IOrdersService Persists submitted buy/sell orders.

INewsFeedService Provides a list of news items for the selected fund.

IWatchListService Handles when new watch items are added to the watch list.

There are two Bootstrapper-derived classes available in Prism, the UnityBootstrapper and the

MefBootstrapper. Creating and configuring the different containers involve similar concepts that are

implemented differently.

Creating and Configuring the Container in the UnityBootstrapper

The UnityBootstrapper class's CreateContainer method simply creates and returns a new instance of a

UnityContainer. In most cases, you will not need to change this functionality; however, the method is

virtual, thereby allowing that flexibility.

After the container is created, it probably needs to be configured for your application. The

ConfigureContainer implementation in the UnityBootstrapper registers a number of core Prism services

by default, as shown here.

Note: An example of this is when a module registers module-level services in its Initialize method.

C#

// UnityBootstrapper.cs

protected virtual void ConfigureContainer()

{

 ...

 if (useDefaultConfiguration)

 {

 RegisterTypeIfMissing(typeof(IServiceLocator),

typeof(UnityServiceLocatorAdapter), true);

 RegisterTypeIfMissing(typeof(IModuleInitializer), typeof(ModuleInitializer),

true);

 RegisterTypeIfMissing(typeof(IModuleManager), typeof(ModuleManager), true);

 RegisterTypeIfMissing(typeof(RegionAdapterMappings),

typeof(RegionAdapterMappings), true);

 RegisterTypeIfMissing(typeof(IRegionManager), typeof(RegionManager), true);

42

 RegisterTypeIfMissing(typeof(IEventAggregator), typeof(EventAggregator), true);

 RegisterTypeIfMissing(typeof(IRegionViewRegistry), typeof(RegionViewRegistry),

true);

 RegisterTypeIfMissing(typeof(IRegionBehaviorFactory),

typeof(RegionBehaviorFactory), true);

 RegisterTypeIfMissing(typeof(IRegionNavigationJournalEntry),

typeof(RegionNavigationJournalEntry), false);

 RegisterTypeIfMissing(typeof(IRegionNavigationJournal),

typeof(RegionNavigationJournal), false);

 RegisterTypeIfMissing(typeof(IRegionNavigationService),

typeof(RegionNavigationService), false);

 RegisterTypeIfMissing(typeof(IRegionNavigationContentLoader),

typeof(UnityRegionNavigationContentLoader), true);

 }

}

The bootstrapper's RegisterTypeIfMissing method determines whether a service has already been

registered—it will not register it twice. This allows you to override the default registration through

configuration. You can also turn off registering any services by default; to do this, use the overloaded

Bootstrapper.Run method passing in false. You can also override the ConfigureContainer method and

disable services that you do not want to use, such as the event aggregator.

Note: If you turn off the default registration, you will need to manually register required services.

To extend the default behavior of ConfigureContainer, simply add an override to your application's

bootstrapper and optionally call the base implementation, as shown in the following code from the

QuickStartBootstrapper from the Modularity for WPF (with Unity) QuickStart. This implementation calls

the base class's implementation, registers the ModuleTracker type as the concrete implementation of

IModuleTracker, and registers the callbackLogger as a singleton instance of CallbackLogger with Unity.

C#

protected override void ConfigureContainer()

{

 base.ConfigureContainer();

 this.RegisterTypeIfMissing(typeof(IModuleTracker), typeof(ModuleTracker), true);

 this.Container.RegisterInstance<CallbackLogger>(this.callbackLogger);

}

Creating and Configuring the Container in the MefBootstrapper

The MefBootstrapper class's CreateContainer method does several things. First, it creates an

AssemblyCatalog and a CatalogExportProvider. The CatalogExportProvider allows the MefExtensions

assembly to provide default exports for a number of Prism types and still allows you to override the

default type registration. Then CreateContainer creates and returns a new instance of a

CompositionContainer using the CatalogExportProvider. In most cases, you will not need to change this

functionality; however, the method is virtual, thereby allowing that flexibility.

43

After the container is created, it needs to be configured for your application. The ConfigureContainer

implementation in the MefBootstrapper registers a number of core Prism services by default, as shown

in the following code example. If you override this method, consider carefully whether you should

invoke the base class's implementation to register the core Prism services, or if you will provide these

services in your implementation.

C#

protected virtual void ConfigureContainer()

{

 this.RegisterBootstrapperProvidedTypes();

}

protected virtual void RegisterBootstrapperProvidedTypes()

{

 this.Container.ComposeExportedValue<ILoggerFacade>(this.Logger);

 this.Container.ComposeExportedValue<IModuleCatalog>(this.ModuleCatalog);

 this.Container.ComposeExportedValue<IServiceLocator>(new

MefServiceLocatorAdapter(this.Container));

 this.Container.ComposeExportedValue<AggregateCatalog>(this.AggregateCatalog);

}

Note: In the MefBootstrapper, the core services of Prism are added to the container as singletons so

they can be located through the container throughout the application.

In addition to providing the CreateContainer and ConfigureContainer methods, the MefBootstrapper

also provides two methods to create and configure the AggregateCatalog used by MEF. The

CreateAggregateCatalog method simply creates and returns an AggregateCatalog object. Like the other

methods in the MefBootstrapper, CreateAggregateCatalog is virtual and can be overridden if necessary.

The ConfigureAggregateCatalog method allows you to add type registrations to the AggregateCatalog

imperatively. For example, the QuickStartBootstrapper from the Modularity with MEF QuickStart

explicitly adds ModuleA and ModuleC to the AggregateCatalog, as shown here.

C#

protected override void ConfigureAggregateCatalog()

{

 base.ConfigureAggregateCatalog();

 // Add this assembly to export ModuleTracker

 this.AggregateCatalog.Catalogs.Add(

 new AssemblyCatalog(typeof(QuickStartBootstrapper).Assembly));

 // Module A is referenced in in the project and directly in code.

 this.AggregateCatalog.Catalogs.Add(

 new AssemblyCatalog(typeof(ModuleA.ModuleA).Assembly));

 this.AggregateCatalog.Catalogs.Add(

 new AssemblyCatalog(typeof(ModuleC.ModuleC).Assembly));

 // Module B and Module D are copied to a directory as part of a post-build step.

44

 // These modules are not referenced in the project and are discovered by

inspecting a directory.

 // Both projects have a post-build step to copy themselves into that directory.

 DirectoryCatalog catalog = new DirectoryCatalog("DirectoryModules");

 this.AggregateCatalog.Catalogs.Add(catalog);

}

More Information

For more information about MEF, AggregateCatalog, and AssemblyCatalog, see Managed Extensibility

Framework Overview on MSDN.

http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx

45

3: Managing Dependencies Between

Components
Applications based on the Prism Library are composite applications that potentially consist of many

loosely coupled types and services. They need to interact to contribute content and receive notifications

based on user actions. Because they are loosely coupled, they need a way to interact and communicate

with one another to deliver the required business functionality. To tie together these various pieces,

applications based on the Prism Library rely on a dependency injection container.

Dependency injection containers reduce the dependency coupling between objects by providing a

facility to instantiate instances of classes and manage their lifetime based on the configuration of the

container. During the objects creation, the container injects any dependencies that the object requires

into it. If those dependencies have not yet been created, the container creates and resolves their

dependencies first. In some cases, the container itself is resolved as a dependency. For example, when

using the Unity Application Block (Unity) as the container, modules have the container injected, so they

can register their views and services with that container.

There are several advantages of using a container:

 A container removes the need for a component to locate its dependencies or manage their

lifetimes.

 A container allows swapping of implemented dependencies without affecting the component.

 A container facilitates testability by allowing dependencies to be mocked.

 A container increases maintainability by allowing new components to be easily added to the

system.

In the context of an application based on the Prism Library, there are specific advantages to a container:

 A container injects module dependencies into the module when it is loaded.

 A container is used for registering and resolving view models and views.

 A container can create the view models and injects the view.

 A container injects the composition services, such as the region manager and the event

aggregator.

 A container is used for registering module-specific services, which are services that have

module-specific functionality.

Note: Some samples in the Prism guidance rely on the Unity Application Block (Unity) as the container.

Other code samples, for example the Modularity QuickStarts, use Managed Extensibility Framework

46

(MEF). The Prism Library itself is not container-specific, and you can use its services and patterns with

other containers, such as Castle Windsor, StructureMap, and Spring.NET.

Key Decision: Choosing a Dependency Injection Container

The Prism Library provides two options for dependency injection containers: Unity or MEF. Prism is

extensible, thereby allowing other containers to be used instead with a little bit of work. Both Unity and

MEF provide the same basic functionality for dependency injection, even though they work very

differently. Some of the capabilities provided by both containers include the following:

 They both register types with the container.

 They both register instances with the container.

 They both imperatively create instances of registered types.

 They both inject instances of registered types into constructors.

 They both inject instances of registered types into properties.

 They both have declarative attributes for marking types and dependencies that need to be

managed.

 They both resolve dependencies in an object graph.

Unity provides several capabilities that MEF does not:

 It resolves concrete types without registration.

 It resolves open generics.

 It uses interception to capture calls to objects and add additional functionality to the target

object.

MEF provides several capabilities that Unity does not:

 It discovers assemblies in a directory.

 It uses XAP file download and assembly discovery.

 It recomposes properties and collections as new types are discovered.

 It automatically exports derived types.

 It is deployed with the .NET Framework.

The containers have differences in capabilities and work differently, but the Prism Library will work with

either container and provide similar functionality. When considering which container to use, keep in

mind the preceding capabilities and determine which fits your scenario better.

47

Considerations for Using the Container

You should consider the following before using containers:

 Consider whether it is appropriate to register and resolve components using the container:

◦ Consider whether the performance impact of registering with the container and

resolving instances from it is acceptable in your scenario. For example, if you need to

create 10,000 polygons to draw a surface within the local scope of a rendering method,

the cost of resolving all of those polygon instances through the container might have a

significant performance cost because of the container's use of reflection for creating

each entity.

◦ If there are many or deep dependencies, the cost of creation can increase significantly.

◦ If the component does not have any dependencies or is not a dependency for other

types, it may not make sense to put it in the container.

◦ If the component has a single set of dependencies that are integral to the type and will

never change, it may not make sense to put it in the container.

 Consider whether a component's lifetime should be registered as a singleton or instance:

◦ If the component is a global service that acts as a resource manager for a single

resource, such as a logging service, you may want to register it as a singleton.

◦ If the component provides shared state to multiple consumers, you may want to register

it as a singleton.

◦ If the object that is being injected needs to have a new instance of it injected each time

a dependent object needs one, register it as a non-singleton. For example, each view

probably needs a new instance of a view model.

 Consider whether you want to configure the container through code or configuration:

◦ If you want to centrally manage all the different services, configure the container

through configuration.

◦ If you want to conditionally register specific services, configure the container through

code.

◦ If you have module-level services, consider configuring the container through code so

that those services are registered only if the module is loaded.

Note: Some containers, such as MEF, cannot be configured via a configuration file and must be

configured via code.

Core Scenarios

Containers are used for two primary purposes, namely registering and resolving.

48

Registering

Before you can inject dependencies into an object, the types of the dependencies need to be registered

with the container. Registering a type typically involves passing the container an interface and a

concrete type that implements that interface. There are primarily two means for registering types and

objects: through code or through configuration. The specific means vary from container to container.

Typically, there are two ways of registering types and objects in the container through code:

 You can register a type or a mapping with the container. At the appropriate time, the container

will build an instance of the type you specify.

 You can register an existing object instance in the container as a singleton. The container will

return a reference to the existing object.

Registering Types with the Unity Container

During initialization, a type can register other types, such as views and services. Registration allows their

dependencies to be provided through the container and allows them to be accessed from other types.

To do this, the type will need to have the container injected into the module constructor. The following

code shows how the OrderModule type in the Commanding QuickStart registers a type.

C#

// OrderModule.cs

public class OrderModule : IModule

{

 public void Initialize()

 {

 this.container.RegisterType<IOrdersRepository, OrdersRepository>(new

ContainerControlledLifetimeManager());

 ...

 }

 ...

}

Depending on which container you use, registration can also be performed outside the code through

configuration. For an example of this, see Registering Modules using a Configuration File in Modular

Application Development.

Note: The advantage of registering in code, compared to configuration, is that the registration

happens only if the module loads.

Registering Types with MEF

MEF uses an attribute-based system for registering types with the container. As a result, adding type

registration to the container is simple: it requires the addition of the [Export] attribute to a type as

shown in the following code example.

49

C#

[Export(typeof(ILoggerFacade))]

public class CallbackLogger: ILoggerFacade

{

}

Another option when using MEF is to create an instance of a class and register that particular instance

with the container. The QuickStartBootstrapper in the Modularity with MEF QuickStart shows an

example of this in the ConfigureContainer method, as shown here.

C#

protected override void ConfigureContainer()

{

 base.ConfigureContainer();

 // Because we created the CallbackLogger and it needs to

 // be used immediately, we compose it to satisfy any imports it has.

 this.Container.ComposeExportedValue<CallbackLogger>(this.callbackLogger);

}

Note: When using MEF as your container, it is recommended that you use attributes to register types.

Resolving

After a type is registered, it can be resolved or injected as a dependency. When a type is being resolved,

and the container needs to create a new instance, it injects the dependencies into these instances.

In general, when a type is resolved, one of three things happens:

 If the type has not been registered, the container throws an exception.

Note: Some containers, including Unity, allow you to resolve a concrete type that has not been

registered.

 If the type has been registered as a singleton, the container returns the singleton instance. If

this is the first time the type was called for, the container creates it and holds on to it for future

calls.

 If the type has not been registered as a singleton, the container returns a new instance.

Note: By default, types registered with MEF are singletons and the container holds a reference

to the object. In Unity, new instances of objects are returned by default, and the container

does not maintain a reference to the object.

Resolving Instances with Unity

The following code example from the Commanding QuickStart shows where the OrdersEditorView and

OrdersToolBar views are resolved from the container to associate them to the corresponding regions.

50

C#

// OrderModule.cs

public class OrderModule : IModule

{

 public void Initialize()

 {

 this.container.RegisterType<IOrdersRepository, OrdersRepository>(new

ContainerControlledLifetimeManager());

 // Show the Orders Editor view in the shell's main region.

 this.regionManager.RegisterViewWithRegion("MainRegion",

 () => this.container.Resolve<OrdersEditorView>());

 // Show the Orders Toolbar view in the shell's toolbar region.

 this.regionManager.RegisterViewWithRegion("GlobalCommandsRegion",

 () => this.container.Resolve<OrdersToolBar>());

 }

 ...

}

The OrdersEditorViewModel constructor contains the following dependencies (the orders repository

and the orders command proxy), which are injected when it is resolved.

C#

// OrdersEditorViewModel.cs

public OrdersEditorViewModel(IOrdersRepository ordersRepository, OrdersCommandProxy

commandProxy)

{

 this.ordersRepository = ordersRepository;

 this.commandProxy = commandProxy;

 // Create dummy order data.

 this.PopulateOrders();

 // Initialize a CollectionView for the underlying Orders collection.

 this.Orders = new ListCollectionView(_orders);

 // Track the current selection.

 this.Orders.CurrentChanged += SelectedOrderChanged;

 this.Orders.MoveCurrentTo(null);

}

In addition to the constructor injection shown in the preceding code, Unity also allows for property

injection. Any properties that have a [Dependency] attribute applied are automatically resolved and

injected when the object is resolved.

51

Resolving Instances with MEF

The following code example shows how the Bootstrapper in the Modularity with MEF QuickStart

obtains an instance of the shell. Instead of requesting a concrete type, the code could request an

instance of an interface.

C#

protected override DependencyObject CreateShell()

{

 return this.Container.GetExportedValue<Shell>();

}

In any class that is resolved by MEF, you can also use constructor injection, as shown in the following

code example from ModuleA in the Modularity with MEF QuickStart, which has an ILoggerFacade and

an IModuleTracker injected.

C#

[ImportingConstructor]

public ModuleA(ILoggerFacade logger, IModuleTracker moduleTracker)

{

 if (logger == null)

 {

 throw new ArgumentNullException("logger");

 }

 if (moduleTracker == null)

 {

 throw new ArgumentNullException("moduleTracker");

 }

 this.logger = logger;

 this.moduleTracker = moduleTracker;

 this.moduleTracker.RecordModuleConstructed(WellKnownModuleNames.ModuleA);

}

Another option is to use property injection, as shown in the ModuleTracker class from the Modularity

with MEF QuickStart, which has an instance of the ILoggerFacade injected.

C#

[Export(typeof(IModuleTracker))]

public class ModuleTracker : IModuleTracker

{

 [Import] private ILoggerFacade Logger;

}

Using Dependency Injection Containers and Services in Prism

Dependency injection containers, often referred to as just "containers," are used to satisfy

dependencies between components; satisfying these dependencies typically involves registration and

resolution. The Prism Library provides support for the Unity container and for MEF, but it is not

container-specific. Because the library accesses the container through the IServiceLocator interface, the

52

container can be replaced. To do this, your container must implement the IServiceLocator interface.

Usually, if you are replacing the container, you will also need to provide your own container-specific

bootstrapper. The IServiceLocator interface is defined in the Common Service Locator Library. This is an

open source effort to provide an abstraction over IoC (Inversion of Control) containers, such as

dependency injection containers, and service locators. The objective of using this library is to leverage

IoC and Service Location without tying to a specific implementation.

The Prism Library provides the UnityServiceLocatorAdapter and the MefServiceLocatorAdapter. Both

adapters implement the ISeviceLocator interface by extending the ServiceLocatorImplBase type. The

following illustration shows the class hierarchy.

The Common Service Locator implementations in Prism

Although the Prism Library does not reference or rely on a specific container, it is typical for an

application to rely on a specific container. This means that it is reasonable for a specific application to

refer to the container, but the Prism Library does not refer to the container directly. For example, the

Stock Trader RI and several of the QuickStarts included with Prism rely on Unity as the container. Other

samples and QuickStarts rely on MEF.

IServiceLocator

The following code shows the IServiceLocator interface.

C#

public interface IServiceLocator : IServiceProvider

{

 object GetInstance(Type serviceType);

 object GetInstance(Type serviceType, string key);

53

 IEnumerable<object> GetAllInstances(Type serviceType);

 TService GetInstance<TService>();

 TService GetInstance<TService>(string key);

 IEnumerable<TService> GetAllInstances<TService>();

}

The Service Locator is extended in the Prism Library with the extension methods shown in the following

code. You can see that IServiceLocator is used only for resolving, meaning it is used to obtain an

instance; it is not used for registration.

C#

// ServiceLocatorExtensions

public static class ServiceLocatorExtensions

{

 public static object TryResolve(this IServiceLocator locator, Type type)

 {

 try

 {

 return locator.GetInstance(type);

 }

 catch (ActivationException)

 {

 return null;

 }

 }

 public static T TryResolve<T>(this IServiceLocator locator) where T: class

 {

 return locator.TryResolve(typeof(T)) as T;

 }

}

The TryResolve extension method—which the Unity container does not support—returns an instance of

the type to be resolved if it has been registered; otherwise, it returns null.

The ModuleInitializer uses IServiceLocator for resolving the module during module loading, as shown in

the following code examples.

C#

// ModuleInitializer.cs - Initialize()

IModule moduleInstance = null;

try

{

 moduleInstance = this.CreateModule(moduleInfo);

 moduleInstance.Initialize();

}

...

C#

54

// ModuleInitializer.cs - CreateModule()

protected virtual IModule CreateModule(string typeName)

{

 Type moduleType = Type.GetType(typeName);

 if (moduleType == null)

 {

 throw new ModuleInitializeException(string.Format(CultureInfo.CurrentCulture,

Properties.Resources.FailedToGetType, typeName));

 }

 return (IModule)this.serviceLocator.GetInstance(moduleType);

}

Considerations for Using IServiceLocator

IServiceLocator is not meant to be the general-purpose container. Containers have different semantics

of usage, which often drives the decision for why that container is chosen. Bearing this in mind, the

Stock Trader RI uses the dependency injection container directly instead of using the IServiceLocator.

This is the recommend approach for your application development.

In the following situations, it may be appropriate for you to use the IServiceLocator:

 You are an independent software vendor (ISV) designing a third-party service that needs to

support multiple containers.

 You are designing a service to be used in an organization where they use multiple containers.

More Information

For information related to containers, see the following:

 Unity Application Block on MSDN.

 Unity community site on CodePlex.

 Managed Extensibility Framework Overview on MSDN.

 MEF community site on CodePlex.

 Inversion of Control containers and the Dependency Injection pattern on Martin Fowler's

website.

 Design Patterns: Dependency Injection in MSDN Magazine.

 Loosen Up: Tame Your Software Dependencies for More Flexible Apps in MSDN Magazine.

 Castle Project

 StructureMap

 Spring.NET

http://www.msdn.com/unity
http://www.codeplex.com/unity
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://mef.codeplex.com/
http://www.martinfowler.com/articles/injection.html
http://msdn.microsoft.com/en-us/magazine/cc163739.aspx
http://msdn.microsoft.com/en-us/magazine/cc337885.aspx
http://www.castleproject.org/container/index.html
http://structuremap.sourceforge.net/Default.htm
http://www.springframework.net/

55

4: Modular Application Development
A modular application is an application that is divided into a set of loosely coupled functional units

(named modules) that can be integrated into a larger application. A client module encapsulates a

portion of the application's overall functionality and typically represents a set of related concerns. It can

include a collection of related components, such as application features, including user interface and

business logic, or pieces of application infrastructure, such as application-level services for logging or

authenticating users. Modules are independent of one another but can communicate with each other in

a loosely coupled fashion. Using a modular application design makes it easier for you to develop, test,

deploy, and maintain your application.

For example, consider a personal banking application. The user can access a variety of functions, such as

transferring money between accounts, paying bills, and updating personal information from a single

user interface (UI). However, behind the scenes, each of these functions is encapsulated within a

discrete module. These modules communicate with each other and with back-end systems such as

database servers and web services. Application services integrate the various components within each

of the different modules and handle the communication with the user. The user sees an integrated view

that looks like a single application.

The following illustration shows a design of a modular application with multiple modules.

Module composition

Benefits of Building Modular Applications

You are probably already building a well-architected application using assemblies, interfaces, and

classes, and employing good object-oriented design principles. Even so, unless great care is taken, your

56

application design may still be "monolithic" (where all the functionality is implemented in a tightly

coupled way within the application), which can make the application difficult to develop, test, extend,

and maintain.

The modular application approach, on the other hand, can help you to identify the large scale functional

areas of your application and allow you to develop and test that functionality independently. This can

make development and testing easier, but it can also make your application more flexible and easier to

extend in the future. The benefit of the modular approach is that it can make your overall application

architecture more flexible and maintainable because it allows you to break your application into

manageable pieces. Each piece encapsulates specific functionality, and each piece is integrated through

clear but loosely coupled communication channels.

Prism's Support for Modular Application Development

Prism provides support for modular application development and for run-time module management

within your application. Using Prism's modular development functionality can save you time because

you don't have to implement and test your own modularity framework. Prism supports the following

modular application development features:

 A module catalog for registering named modules and each module's location; you can create

the module catalog in the following ways:

◦ By defining modules in code or Extensible Application Markup Language (XAML)

◦ By discovering modules in a directory so you can load all your modules without explicitly

defining in a centralized catalog

◦ By defining modules in a configuration file

 Declarative metadata attributes for modules to support initialization mode and dependencies

 Integration with dependency injection containers to support loose coupling between modules

 For module loading:

◦ Dependency management, including duplicate and cycle detection to ensure modules

are loaded in the correct order and only loaded and initialized once

◦ On-demand and background downloading of modules to minimize application start-up

time; the rest of the modules can be loaded and initialized in the background or when

they are required

Core Concepts

This section introduces the core concepts related to modularity in Prism, including the IModule

interface, the module loading process, the module catalog, communicating between modules, and

dependency injection containers.

57

IModule: The Building Block of Modular Applications

A module is a logical collection of functionality and resources that is packaged in a way that can be

separately developed, tested, deployed, and integrated into an application. A package can be one or

more assemblies. Each module has a central class that is responsible for initializing the module and

integrating its functionality into the application. That class implements the IModule interface.

Note: The presence of a class that implements the IModule interface is enough to identify the package

as a module.

The IModule interface has a single method, named Initialize, within which you can implement whatever

logic is required to initialize and integrate the module's functionality into the application. Depending on

the purpose of the module, it can register views into composite user interfaces, make additional services

available to the application, or extend the application's functionality. The following code shows the

minimum implementation for a module.

C#

public class MyModule : IModule

{

 public void Initialize()

 {

 // Do something here.

 }

}

Note: Instead of using the initialization mechanism provided by the IModule interface, the Stock

Trader RI uses a declarative, attribute-based approach for registering views, services, and types.

Module Lifetime

The module loading process in Prism includes the following:

1. Registering/discovering modules. The modules to be loaded at run-time for a particular

application are defined in a Module catalog. The catalog contains information about the

modules to be loaded, their location, and the order in which they are to be loaded.

2. Loading modules. The assemblies that contain the modules are loaded into memory. This

phase may require the module to be retrieved from some remote location or local directory.

3. Initializing modules. The modules are then initialized. This means creating instances of the

module class and calling the Initialize method on them via the IModule interface.

The following figure shows the module loading process.

58

Module loading process

Module Catalog

The ModuleCatalog holds information about the modules that can be used by the application. The

catalog is essentially a collection of ModuleInfo classes. Each module is described in a ModuleInfo class

that records the name, type, and location, among other attributes of the module. There are several

typical approaches to filling the ModuleCatalog with ModuleInfo instances:

 Registering modules in code

 Registering modules in XAML

 Registering modules in a configuration file

 Discovering modules in a local directory on disk

The registration and discovery mechanism you should use depends on what your application needs.

Using a configuration file or XAML file allows your application to not require references to the modules.

Using a directory can allow an application to discover modules without having to specify them in a file.

Controlling When to Load a Module

Prism applications can initialize modules as soon as possible, known as "when available," or when the

application needs them, known as "on-demand." Consider the following guidelines for loading modules:

 Modules required for the application to run must be loaded with the application and initialized

when the application runs.

59

 Modules containing features that are almost always used in typical usage of the application can

be loaded in the background and initialized when they become available.

 Modules containing features that are rarely used (or are support modules that other modules

optionally depend upon) can be loaded and initialized on-demand.

Consider how you are partitioning your application, common usage scenarios, application start-up time,

and the number and size of downloads to determine how to configure your module for downloading

and initialization.

Integrate Modules with the Application

Prism provides the following classes to bootstrap your application: the UnityBootstrapper or the

MefBootstrapper. These classes can be used to create and configure the module manager to discover

and load modules. You can override a configuration method to register modules specified in a XAML file,

a configuration file, or a directory location in a few lines of code.

Use the module Initialize method to integrate the module with the rest of the application. The way you

do this varies, depending on the structure of your application and the content of the module. The

following are common things to do to integrate your module into your application:

 Add the module's views to the application's navigation structure. This is common when building

composite UI applications using view discovery or view injection.

 Subscribe to application level events or services.

 Register shared services with the application's dependency injection container.

Communicate Between Modules

Even though modules should have low coupling between each other, it is common for modules to

communicate with each other. There are several loosely coupled communication patterns, each with

their own strengths. Typically, combinations of these patterns are used to create the resulting solution.

The following are some of these patterns:

 Loosely coupled events. A module can broadcast that a certain event has occurred. Other

modules can subscribe to those events so they will be notified when the event occurs. Loosely

coupled events are a lightweight manner of setting up communication between two modules;

therefore, they are easily implemented. However, a design that relies too heavily on events can

become hard to maintain, especially if many events have to be orchestrated together to fulfill a

single task. In that case, it might be better to consider a shared service.

 Shared services. A shared service is a class that can be accessed through a common interface.

Typically, shared services are found in a shared assembly and provide system-wide services,

such as authentication, logging, or configuration.

60

 Shared resources. If you do not want modules to directly communicate with each other, you

can also have them communicate indirectly through a shared resource, such as a database or a

set of web services.

Dependency Injection and Modular Applications

Containers like the Unity Application Block (Unity) and Managed Extensibility Framework (MEF) allow

you to easily use Inversion of Control (IoC) and Dependency Injection, which are powerful design

patterns that help to compose components in a loosely-coupled fashion. It allows components to obtain

references to the other components that they depend on without having to hard code those references,

thereby promoting better code re-use and improved flexibility. Dependency injection is very useful

when building a loosely coupled, modular application. Prism is designed to be agnostic about the

dependency injection container used to compose components within an application. The choice of

container is up to you and will largely depend on your application requirements and preferences.

However, there are two principal dependency injection frameworks from Microsoft to consider – Unity

and MEF.

The patterns & practices Unity Application Block provides a fully-featured dependency injection

container. It supports property-based and constructor-based injection and policy injection, which allows

you to transparently inject behavior and policy between components; it also supports a host of other

features that are typical of dependency injection containers.

MEF (which is part of .NET Framework 4.5) provides support for building extensible .NET applications by

supporting dependency injection–based component composition and provides other features that

support modular application development. It allows an application to discover components at run time

and then to integrate those components into the application in a loosely-coupled way. MEF is a great

extensibility and composition framework. It includes assembly and type discovery, type dependency

resolution, dependency injection, and some nice assembly download capabilities. Prism supports taking

advantage of MEF features, as well as the following:

 Module registration through XAML and code attributes

 Module registration through configuration files and directory scans

 State tracking as the module is loaded

 Custom declarative metadata for modules when using MEF

Both the Unity and MEF dependency injection containers work seamlessly with Prism.

Key Decisions

The first decision you will make is whether you want to develop a modular solution. There are numerous

benefits of building modular applications as discussed in the previous section, but there is a

commitment in terms of time and effort that you need to make to reap these benefits. If you decide to

develop a modular solution, there are several more things to consider:

61

 Determine the framework you will use. You can create your own modularity framework, use

Prism, MEF, or another framework.

 Determine how to organize your solution. Approach a modular architecture by defining the

boundaries of each module, including what assemblies are part of each module. You can decide

to use modularity to ease the development, as well as to have control over how the application

will be deployed or if it will support a plug-in or extensible architecture.

 Determine how to partition your modules. Modules can be partitioned differently based on

requirements, for example, by functional areas, provider modules, development teams and

deployment requirements.

 Determine the core services that the application will provide to all modules. An example is

that core services could be an error reporting service or an authentication and authorization

service.

 If you are using Prism, determine what approach you are using to register modules in the

module catalog. For WPF, you can register modules in code, XAML, in a configuration file, or

discovering modules in a local directory on disk. Determine your module communication and

dependency strategy. Modules will need to communicate with each other, and you will need to

deal with dependencies between modules.

 Determine your dependency injection container. Typically, modular systems require

dependency injection, inversion of control, or service locator to allow the loose coupling and

dynamic loading and creating of modules. Prism allows a choice between using the Unity, MEF,

or another container and provides libraries for Unity or MEF-based applications.

 Minimize application startup time. Think about on-demand and background downloading of

modules to minimize application startup time.

 Determine deployment requirements. You will need to think about how you intend to deploy

your application.

The next sections provide details about some of these decisions.

Partition Your Application into Modules

When you develop your application in a modularized fashion, you structure the application into separate

client modules that can be individually developed, tested, and deployed. Each module will encapsulate a

portion of your application's overall functionality. One of the first design decisions you will have to make

is to decide how to partition your application's functionality into discrete modules.

A module should encapsulate a set of related concerns and have a distinct set of responsibilities. A

module can represent a vertical slice of the application or a horizontal service layer. Large applications

will likely have both types of modules.

62

An application with modules organized around vertical slices

An application with modules organized around horizontal layers

A larger application may have modules organized with vertical slices and horizontal layers. Some

examples of modules include the following:

 A module that contains a specific application feature, such as the News module in the Stock

Trader Reference Implementation (Stock Trader RI)

 A module that contains a specific sub-system or functionality for a set of related use cases, such

as purchasing, invoicing, or general ledger

 A module that contains infrastructure services, such as logging, caching, and authorization

services, or web services

 A module that contains services that invoke line-of-business (LOB) systems, such as Siebel CRM

and SAP, in addition to other internal systems

63

A module should have a minimal set of dependencies on other modules. When a module has a

dependency on another module, it should be loosely coupled by using interfaces defined in a shared

library instead of concrete types, or by using the EventAggregator to communicate with other modules

via EventAggregator event types.

The goal of modularity is to partition the application in such a way that it remains flexible, maintainable,

and stable even as features and technologies are added and removed. The best way to accomplish this is

to design your application so that modules are as independent as possible, have well defined interfaces,

and are as isolated as possible.

Determine Ratio of Projects to Modules

There are several ways to create and package modules. The recommended and most common way is to

create a single assembly per module. This helps keep logical modules separate and promotes proper

encapsulation. It also makes it easier to talk about the assembly as the module boundary as well as the

packaging of how you deploy the module. However, nothing prevents a single assembly from containing

multiple modules, and in some cases this may be preferred to minimize the number of projects in your

solution. For a large application, it is not uncommon to have 10–50 modules. Separating each module

into its own project adds a lot of complexity to the solution and can slow down Visual Studio

performance. Sometimes it makes sense to break a module or set of modules into their own solution to

manage this if you choose to stick to one module per assembly/Visual Studio project.

Use Dependency Injection for Loose Coupling

A module may depend on components and services provided by the host application or by other

modules. Prism supports the ability to register dependencies between modules so that they are loaded

and initialized in the right order. Prism also supports the initialization of modules when they are loaded

into the application. During module initialization, the module can retrieve references to the additional

components and services it requires, and/or register any components and services that it contains in

order to make them available to other modules.

A module should use an independent mechanism to get instances of external interfaces instead of

directly instantiating a concrete type, for example by using a dependency injection container or factory

service. Dependency injection containers such as Unity or MEF allow a type to automatically acquire

instances of the interfaces and types it needs through dependency injection. Prism integrates with both

Unity and MEF to allow a module to easily use dependency injection.

The following diagram shows the typical sequence of operations when modules are loaded that need to

acquire or register references to the components and services.

64

Example of dependency injection

In this example, the OrdersModule assembly defines an OrdersRepository class (along with other views

and classes that implement order functionality). The CustomerModule assembly defines a

CustomersViewModel class which depends on the OrdersRepository, typically based on an interface

exposed by the service. The application startup and bootstrapping process contains the following steps:

1. The bootstrapper starts the module initialization process, and the module loader loads and

initializes the OrdersModule.

2. In the initialization of the OrdersModule, it registers the OrdersRepository with the container.

3. The module loader then loads the CustomersModule. The order of module loading can be

specified by the dependencies in the module metadata.

4. The CustomersModule constructs an instance of the CustomerViewModel by resolving it

through the container. The CustomerViewModel has a dependency on the OrdersRepository

(typically based on its interface) and indicates it through constructor or property injection. The

container injects that dependency in the construction of the view model based on the type

registered by the OrdersModule. The net result is an interface reference from the

CustomerViewModel to the OrderRepository without tight coupling between those classes.

65

Note: The interface used to expose the OrderRespository (IOrderRepository) could reside in a

separate "shared services" assembly or an "orders services" assembly that only contains the

service interfaces and types required to expose those services. This way, there is no hard

dependency between the CustomersModule and the OrdersModule.

Note that both modules have an implicit dependency on the dependency injection container.

This dependency is injected during module construction in the module loader.

Core Scenarios

This section describes the common scenarios you will encounter when working with modules in your

application. These scenarios include defining a module, registering and discovering modules, loading

modules, initializing modules, specifying module dependencies, loading modules on demand,

downloading remote modules in the background, and detecting when a module has already been

loaded. You can register and discover modules in code, in a XAML or application configuration file, or by

scanning a local directory.

Defining a Module

A module is a logical collection of functionality and resources that is packaged in a way that can be

separately developed, tested, deployed, and integrated into an application. Each module has a central

class that is responsible for initializing the module and integrating its functionality into the application.

That class implements the IModule interface, as shown here.

C#

public class MyModule : IModule

{

 public void Initialize()

 {

 // Initialize module

 }

}

The way you implement the Initialize method will depend on the requirements of your application. The

module class type, initialization mode, and any module dependencies are defined in the module catalog.

For each module in the catalog, the module loader creates an instance of the module class, and then it

calls the Initialize method. Modules are processed in the order specified in the module catalog. The

runtime initialization order is based on when the modules are downloaded, available, and the

dependencies are satisfied.

Depending on the type of module catalog that your application is using, module dependencies can be

set either by declarative attributes on the module class itself or within the module catalog file. The

following sections provide more details.

66

Registering and Discovering Modules

The modules that an application can load are defined in a module catalog. The Prism Module Loader

uses the module catalog to determine which modules are available to be loaded into the application,

when to load them, and in which order they are to be loaded.

The module catalog is represented by a class that implements the IModuleCatalog interface. The

module catalog class is created by the application bootstrapper class during application initialization.

Prism provides different implementations of module catalog for you to choose from. You can also

populate a module catalog from another data source by calling the AddModule method or by deriving

from ModuleCatalog to create a module catalog with customized behavior.

Note: Typically, modules in Prism use a dependency injection container and the Common Service

Locator to retrieve instances of types that are required for module initialization. Both the Unity and

the MEF containers are supported by Prism. Although the overall process of registering, discovering,

downloading, and initializing modules is the same, the details can vary based on whether Unity or MEF

is being used. The container-specific differences between approaches are explained throughout this

topic.

Registering Modules in Code

The most basic module catalog is provided by the ModuleCatalog class. You can use this module catalog

to programmatically register modules by specifying the module class type. You can also

programmatically specify the module name and initialization mode. To register the module directly with

the ModuleCatalog class, call the AddModule method in your application's Bootstrapper class. An

example is shown in the following code.

C#

protected override void ConfigureModuleCatalog()

{

 Type moduleCType = typeof(ModuleC);

 ModuleCatalog.AddModule(

 new ModuleInfo()

 {

 ModuleName = moduleCType.Name,

 ModuleType = moduleCType.AssemblyQualifiedName,

 });

}

In the preceding example, the modules are directly referenced by the shell, so the module class types

are defined and can be used in the call to AddModule. That is why this example uses typeof(Module) to

add modules to the catalog.

Note: If your application has a direct reference to the module type, you can add it by type as shown

above; otherwise you need to provide the fully qualified type name and the location of the assembly.

To see another example of defining the module catalog in code, see StockTraderRIBootstrapper.cs in the

Stock Trader Reference Implementation (Stock Trader RI).

67

Note: The Bootstrapper base class provides the CreateModuleCatalog method to assist in the creation

of the ModuleCatalog. By default, this method creates a ModuleCatalog instance, but this method can

be overridden in a derived class in order to create different types of module catalog.

Registering Modules Using a XAML File

You can define a module catalog declaratively by specifying it in a XAML file. The XAML file specifies

what kind of module catalog class to create and which modules to add to it. Usually, the .xaml file is

added as a resource to your shell project. The module catalog is created by the bootstrapper with a call

to the CreateFromXaml method. From a technical perspective, this approach is very similar to defining

the ModuleCatalog in code because the XAML file simply defines a hierarchy of objects to be

instantiated.

The following code example shows a XAML file specifying a module catalog.

XAML

<!-- ModulesCatalog.xaml -->

<Modularity:ModuleCatalog

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:sys="clr-namespace:System;assembly=mscorlib"

 xmlns:Modularity="clr-

namespace:Microsoft.Practices.Prism.Modularity;assembly=Microsoft.Practices.Prism">

 <Modularity:ModuleInfoGroup

Ref="file://DirectoryModules/ModularityWithMef.Desktop.ModuleB.dll"

InitializationMode="WhenAvailable">

 <Modularity:ModuleInfo ModuleName="ModuleB"

ModuleType="ModularityWithMef.Desktop.ModuleB, ModularityWithMef.Desktop.ModuleB,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />

 </Modularity:ModuleInfoGroup>

 <Modularity:ModuleInfoGroup InitializationMode="OnDemand">

 <Modularity:ModuleInfo Ref="file://ModularityWithMef.Desktop.ModuleE.dll"

ModuleName="ModuleE" ModuleType="ModularityWithMef.Desktop.ModuleE,

ModularityWithMef.Desktop.ModuleE, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=null" />

 <Modularity:ModuleInfo Ref="file://ModularityWithMef.Desktop.ModuleF.dll"

ModuleName="ModuleF" ModuleType="ModularityWithMef.Desktop.ModuleF,

ModularityWithMef.Desktop.ModuleF, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=null">

 <Modularity:ModuleInfo.DependsOn>

 <sys:String>ModuleE</sys:String>

 </Modularity:ModuleInfo.DependsOn>

 </Modularity:ModuleInfo>

 </Modularity:ModuleInfoGroup>

 <!-- Module info without a group -->

 <Modularity:ModuleInfo

Ref="file://DirectoryModules/ModularityWithMef.Desktop.ModuleD.dll"

68

ModuleName="ModuleD" ModuleType="ModularityWithMef.Desktop.ModuleD,

ModularityWithMef.Desktop.ModuleD, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=null" />

</Modularity:ModuleCatalog>

Note: ModuleInfoGroups provide a convenient way to group modules that are in the same assembly,

are initialized in the same way, or only have dependencies on modules in the same group.

Dependencies between modules can be defined within modules in the same ModuleInfoGroup;

however, you cannot define dependencies between modules in different ModuleInfoGroups.

Putting modules inside module groups is optional. The properties that are set for a group will be

applied to all its contained modules. Note that modules can also be registered without being inside a

group.

In your application's Bootstrapper class, you need to specify that the XAML file is the source for your

ModuleCatalog, as shown in the following code.

C#

protected override IModuleCatalog CreateModuleCatalog()

{

 return ModuleCatalog.CreateFromXaml(new

Uri("/MyProject;component/ModulesCatalog.xaml",

UriKind.Relative));

}

Registering Modules Using a Configuration File

In WPF, it is possible to specify the module information in the App.config file. The advantage of this

approach is that this file is not compiled into the application. This makes it very easy to add or remove

modules at run time without recompiling the application.

The following code example shows a configuration file specifying a module catalog. If you want the

module to automatically load, set startupLoaded="true".

XML

<!-- ModularityWithUnity.Desktop\app.config -->

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <configSections>

 <section name="modules"

type="Microsoft.Practices.Prism.Modularity.ModulesConfigurationSection,

Microsoft.Practices.Prism"/>

 </configSections>

 <modules>

 <module assemblyFile="ModularityWithUnity.Desktop.ModuleE.dll"

moduleType="ModularityWithUnity.Desktop.ModuleE, ModularityWithUnity.Desktop.ModuleE,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" moduleName="ModuleE"

startupLoaded="false" />

69

 <module assemblyFile="ModularityWithUnity.Desktop.ModuleF.dll"

moduleType="ModularityWithUnity.Desktop.ModuleF, ModularityWithUnity.Desktop.ModuleF,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" moduleName="ModuleF"

startupLoaded="false">

 <dependencies>

 <dependency moduleName="ModuleE"/>

 </dependencies>

 </module>

 </modules>

</configuration>

Note: Even if your assemblies are in the global assembly cache or in the same folder as the application,

the assemblyFile attribute is required. The attribute is used to map the moduleType to the correct

IModuleTypeLoader to use.

In your application's Bootstrapper class, you need to specify that the configuration file is the source for

your ModuleCatalog. To do this, you use the ConfigurationModuleCatalog class, as shown in the

following code.

C#

protected override IModuleCatalog CreateModuleCatalog()

{

 return new ConfigurationModuleCatalog();

}

Note: You can still add modules to a ConfigurationModuleCatalog in code. You can use this, for

example, to make sure that the modules that your application absolutely needs to function are defined

in the catalog.

Discovering Modules in a Directory

The Prism DirectoryModuleCatalog class allows you to specify a local directory as a module catalog in

WPF. This module catalog will scan the specified folder and search for assemblies that define the

modules for your application. To use this approach, you will need to use declarative attributes on your

module classes to specify the module name and any dependencies that they have. The following code

example shows a module catalog that is populated by discovering assemblies in a directory.

C#

protected override IModuleCatalog CreateModuleCatalog()

{

 return new DirectoryModuleCatalog() {ModulePath = @".\Modules"};

}

Loading Modules

After the ModuleCatalog is populated, the modules are ready to be loaded and initialized. Module

loading means that the module assembly is transferred from disk into memory. The ModuleManager is

responsible for coordinating the loading and initialization process.

70

Initializing Modules

After the modules load, they are initialized. This means an instance of the module class is created and its

Initialize method is called. Initialization is the place to integrate the module with the application.

Consider the following possibilities for module initialization:

 Register the module's views with the application. If your module is participating in user

interface (UI) composition using view discovery or view injection, your module will need to

associate its views or view models with the appropriate region name. This allows views to show

up dynamically on menus, toolbars, or other visual regions within the application.

 Subscribe to application level events or services. Often, applications expose application-

specific services and/or events that your module is interested in. Use the Initialize method to

add the module's functionality to those application-level events and services.

For example, the application might raise an event when it is shutting down and your module

wants to react to that event. It is also possible that your module must provide some data to an

application level service. For example, if you have created a MenuService (it is responsible for

adding and removing menu items), the module's Initialize method is where you would add the

correct menu items.

Note: Module instance lifetime is short-lived by default. After the Initialize method is called

during the loading process, the reference to the module instance is released. If you do not

establish a strong reference chain to the module instance, it will be garbage collected.

This behavior may be problematic to debug if you subscribe to events that hold a weak

reference to your module, because your module just "disappears" when the garbage collector

runs.

 Register types with a dependency injection container. If you are using a dependency injection

pattern such as Unity or MEF, the module may register types for the application or other

modules to use. It may also ask the container to resolve an instance of a type it needs.

Specifying Module Dependencies

Modules may depend on other modules. If Module A depends on Module B, Module B must be

initialized before Module A. The ModuleManager keeps track of these dependencies and initializes the

modules accordingly. Depending on how you defined your module catalog, you can define your module

dependencies in code, configuration, or XAML.

71

Specifying Dependencies in Code

For WPF applications that register modules in code or discover modules by directory, Prism provides

declarative attributes to use when creating a module as shown in the following code example.

C#

// (when using Unity)

[Module(ModuleName = "ModuleA")]

[ModuleDependency("ModuleD")]

public class ModuleA: IModule

{

 ...

}

Specify Dependencies in XAML

The following XAML shows where Module F depends on Module E.

XAML

<!-- ModulesCatalog.xaml -->

<Modularity:ModuleInfo Ref="file://ModularityWithMef.Desktop.ModuleE.dll"

moduleName="ModuleE" moduleType="ModularityWithMef.Desktop.ModuleE,

ModularityWithMef.Desktop.ModuleE, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=null">

<Modularity:ModuleInfo Ref="file://ModularityWithMef.Desktop.ModuleF.dll"

moduleName="ModuleF" moduleType="ModularityWithMef.Desktop.ModuleF,

ModularityWithMef.Desktop.ModuleF, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null"

>

<Modularity:ModuleInfo.DependsOn>

 <sys:String>ModuleE</sys:String>

</Modularity:ModuleInfo.DependsOn>

</Modularity:ModuleInfo>

. . .

Specify Dependencies in Configuration

The following example App.config file shows where Module F depends on Module E.

XML

<!-- App.config -->
<modules>
 <module assemblyFile="ModularityWithUnity.Desktop.ModuleE.dll"
moduleType="ModularityWithUnity.Desktop.ModuleE, ModularityWithUnity.Desktop.ModuleE,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" moduleName="ModuleE"
startupLoaded="false" />
 <module assemblyFile="ModularityWithUnity.Desktop.ModuleF.dll"
moduleType="ModularityWithUnity.Desktop.ModuleF, ModularityWithUnity.Desktop.ModuleF,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" moduleName="ModuleF"
startupLoaded="false">

72

 <dependencies>
 <dependency moduleName="ModuleE" />
 </dependencies>
 </module>
 </modules>

Loading Modules on Demand

To load modules on demand, you need to specify that they should be loaded into the module catalog

with the InitializationMode set to OnDemand. After you do that, you need to write the code in your

application that requests the module be loaded.

Specifying On-Demand Loading in Code

A module is specified as on-demand using attributes, as shown in the following code example.

C#

// Boostrapper.cs

protected override void ConfigureModuleCatalog()

{

 . . .

 Type moduleCType = typeof(ModuleC);

 this.ModuleCatalog.AddModule(new ModuleInfo()

 {

 ModuleName = moduleCType.Name,

 ModuleType = moduleCType.AssemblyQualifiedName,

 InitializationMode = InitializationMode.OnDemand

 });

 . . .

}

Specifying On-Demand Loading in XAML

You can specify the InitializationMode.OnDemand when you define your module catalog in XAML, as

shown in the following code example.

XAML

<!-- ModulesCatalog.xaml -->

...

<module assemblyFile="ModularityWithUnity.Desktop.ModuleE.dll"

moduleType="ModularityWithUnity.Desktop.ModuleE, ModularityWithUnity.Desktop.ModuleE,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" moduleName="ModuleE"

startupLoaded="false" />

...

Specifying On-Demand Loading in Configuration

You can specify the InitializationMode.OnDemand when you define your module catalog in the

App.config file, as shown in the following code example.

XML

73

<!-- App.config -->

<module assemblyFile="ModularityWithUnity.Desktop.ModuleC.dll"

moduleType="ModularityWithUnity.Desktop.ModuleC, ModularityWithUnity.Desktop.ModuleC,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" moduleName="ModuleC"

startupLoaded="false" />

Requesting On-Demand Loading of a Module

After a module is specified as on demand, the application can then ask the module to be loaded. The

code that wants to initiate the loading needs to obtain a reference to the IModuleManager service

registered with the container by the bootstrapper.

C#

private void OnLoadModuleCClick(object sender, RoutedEventArgs e)

{

 moduleManager.LoadModule("ModuleC");

}

Detecting When a Module Has Been Loaded

The ModuleManager service provides an event for applications to track when a module loads or fails to

load. You can get a reference to this service through dependency injection of the IModuleManager

interface.

C#

this.moduleManager.LoadModuleCompleted += this.ModuleManager_LoadModuleCompleted;

C#

void ModuleManager_LoadModuleCompleted(object sender, LoadModuleCompletedEventArgs e)

{

 ...

}

To keep the application and modules loosely coupled, the application should avoid using this event to

integrate the module with the application. Instead, the module's Initialize method should handle

integrating with the application.

The LoadModuleCompletedEventArgs contains an IsErrorHandled property. If a module fails to load

and the application wants to prevent the ModuleManager from logging the error and throwing an

exception, it can set this property to true.

Note: After a module is loaded and initialized, the module assembly cannot be unloaded. The module

instance reference will not be held by the Prism libraries, so the module class instance may be garbage

collected after initialization is complete.

Modules in MEF

This section only highlights the differences if you choose to use MEF as your dependency injection

container.

74

Note: When using MEF, the MefModuleManager is used by the MefBootstrapper. It extends the

ModuleManager and implements the IPartImportsSatisfiedNotification interface to ensure that the

ModuleCatalog is updated when new types are imported by MEF.

Registering Modules in Code Using MEF

When using MEF, you can apply the ModuleExport attribute to module classes to have MEF

automatically discover the types. The following is an example.

C#

[ModuleExport(typeof(ModuleB), InitializationMode = InitializationMode.OnDemand)]

 public class ModuleB : IModule

{

 ...

}

You can also use MEF to discover and load modules using the AssemblyCatalog class, which can be used

to discover all the exported module classes in an assembly, and the AggregateCatalog class, that allows

multiple catalogs to be combined into one logical catalog. By default, the Prism MefBootstrapper class

creates an AggregateCatalog instance. You can then override the ConfigureAggregateCatalog method

to register assemblies, as shown in the following code example.

C#

protected override void ConfigureAggregateCatalog()

{

 base.ConfigureAggregateCatalog();

 //Module A is referenced in in the project and directly in code.

 this.AggregateCatalog.Catalogs.Add(

 new AssemblyCatalog(typeof(ModuleA).Assembly));

 this.AggregateCatalog.Catalogs.Add(

 new AssemblyCatalog(typeof(ModuleC).Assembly));

 . . .

}

The Prism MefModuleManager implementation keeps the MEF AggregateCatalog and the Prism

ModuleCatalog synchronized, thereby allowing Prism to discover modules added via the ModuleCatalog

or the AggregateCatalog.

Note: MEF uses Lazy<T> extensively to prevent instantiation of exported and imported types until the

Value property is used.

75

Discovering Modules in a Directory Using MEF

MEF provides a DirectoryCatalog that can be used to inspect a directory for assemblies containing

modules (and other MEF exported types). In this case, you override the ConfigureAggregateCatalog

method to register the directory. This approach is only available in WPF.

To use this approach, you first need to apply the module names and dependencies to your modules

using the ModuleExport attribute, as shown in the following code example. This allows MEF to import

the modules and allows Prism to keep the ModuleCatalog updated.

C#

protected override void ConfigureAggregateCatalog()

{

 base.ConfigureAggregateCatalog();

 . . .

 DirectoryCatalog catalog = new DirectoryCatalog("DirectoryModules");

 this.AggregateCatalog.Catalogs.Add(catalog);

}

Specifying Dependencies in Code Using MEF

For WPF applications using MEF, use the ModuleExport attribute, as shown here.

C#

// (when using MEF)

[ModuleExport(typeof(ModuleA), DependsOnModuleNames = new string[] { "ModuleD" })]

public class ModuleA : IModule

{

 ...

}

Because MEF allows you to discover modules at run time, you may also discover new dependencies

between modules at run time. Although you can use MEF alongside the ModuleCatalog, it is important

to remember that the ModuleCatalog validates the dependency chain when it is loaded from XAML or

configuration (before any modules are loaded). If a module is listed in the ModuleCatalog and then

loaded using MEF, the ModuleCatalog dependencies will be used, and the DependsOnModuleNames

attribute will be ignored.

Specifying On-Demand Loading Using MEF

If you are using MEF and the ModuleExport attribute for specifying modules and module dependencies,

you can use the InitializationMode property to specify that a module should be loaded on demand, as

shown here.

C#

[ModuleExport(typeof(ModuleC), InitializationMode = InitializationMode.OnDemand)]

public class ModuleC : IModule

{

76

}

More Information

For more information about assembly caching, see "How to: Use Assembly Library Caching" on MSDN.

To learn more about modularity in Prism, see the Modularity with MEF for WPF QuickStart or the

Modularity with Unity for WPF QuickStart. For more information about the QuickStarts, see Modularity

QuickStarts.

For information about the modularity features that can be extended in the Prism Library, see Modules in

Extending the Prism Library.

http://msdn.microsoft.com/en-us/library/dd833069(VS.95).aspx

77

5: Implementing the MVVM Pattern
The Model-View-ViewModel (MVVM) pattern helps you to cleanly separate the business and

presentation logic of your application from its user interface (UI). Maintaining a clean separation

between application logic and UI helps to address numerous development and design issues and can

make your application much easier to test, maintain, and evolve. It can also greatly improve code re-use

opportunities and allows developers and UI designers to more easily collaborate when developing their

respective parts of the application.

Using the MVVM pattern, the UI of the application and the underlying presentation and business logic is

separated into three separate classes: the view, which encapsulates the UI and UI logic; the view model,

which encapsulates presentation logic and state; and the model, which encapsulates the application's

business logic and data.

Prism includes samples and reference implementations that show how to implement the MVVM pattern

in a Windows Presentation Foundation (WPF) application. The Prism Library also provides features that

can help you implement the pattern in your own applications. These features embody the most

common practices for implementing the MVVM pattern and are designed to support testability and to

work well with Expression Blend and Visual Studio.

This topic provides an overview of the MVVM pattern and describes how to implement its fundamental

characteristics. The topic Advanced MVVM Scenarios describes how to implement more advanced

MVVM scenarios using the Prism Library.

Class Responsibilities and Characteristics

The MVVM pattern is a close variant of the Presentation Model pattern, optimized to leverage some of

the core capabilities of WPF , such as data binding, data templates, commands, and behaviors.

In the MVVM pattern, the view encapsulates the UI and any UI logic, the view model encapsulates

presentation logic and state, and the model encapsulates business logic and data. The view interacts

with the view model through data binding, commands, and change notification events. The view model

queries, observes, and coordinates updates to the model, converting, validating, and aggregating data as

necessary for display in the view.

The following illustration shows the three MVVM classes and their interaction.

78

The MVVM classes and their interactions

Like with all separated presentation patterns, the key to using the MVVM pattern effectively lies in

understanding the appropriate way to factor your application's code into the correct classes, and in

understanding the ways in which these classes interact in various scenarios. The following sections

describe the responsibilities and characteristics of each of the classes in the MVVM pattern.

The View Class

The view's responsibility is to define the structure and appearance of what the user sees on the screen.

Ideally, the code-behind of a view contains only a constructor that calls the InitializeComponent

method. In some cases, the code-behind may contain UI logic code that implements visual behavior that

is difficult or inefficient to express in Extensible Application Markup Language (XAML), such as complex

animations, or when the code needs to directly manipulate visual elements that are part of the view.

You should not put any logic code in the view that you need to unit test. Typically, logic code in the

view's code-behind will be tested via a UI automation testing approach.

In WPF, data binding expressions in the view are evaluated against its data context. In MVVM, the view's

data context is set to the view model. The view model implements properties and commands to which

the view can bind and notifies the view of any changes in state through change notification events.

There is typically a one-to-one relationship between a view and its view model.

Typically, views are Control-derived or UserControl-derived classes. However, in some cases, the view

may be represented by a data template, which specifies the UI elements to be used to visually represent

an object when it is displayed. Using data templates, a visual designer can easily define how a view

model will be rendered or can modify its default visual representation without changing the underlying

object itself or the behavior of the control that is used to display it.

Data templates can be thought of as views that do not have any code-behind. They are designed to bind

to a specific view model type whenever one is required to be displayed in the UI. At run time, the view,

as defined by the data template, will be automatically instantiated and its data context set to the

corresponding view model.

In WPF, you can associate a data template with a view model type at the application level. WPF will then

automatically apply the data template to any view model objects of the specified type whenever they

are displayed in the UI. This is known as implicit data templating. The data template can be defined in-

line with the control that uses it or in a resource dictionary outside the parent view and declaratively

merged into the view's resource dictionary.

To summarize, the view has the following key characteristics:

 The view is a visual element, such as a window, page, user control, or data template. The view

defines the controls contained in the view and their visual layout and styling.

 The view references the view model through its DataContext property. The controls in the view

are data bound to the properties and commands exposed by the view model.

79

 The view may customize the data binding behavior between the view and the view model. For

example, the view may use value converters to format the data to be displayed in the UI, or it

may use validation rules to provide additional input data validation to the user.

 The view defines and handles UI visual behavior, such as animations or transitions that may be

triggered from a state change in the view model or via the user's interaction with the UI.

 The view's code-behind may define UI logic to implement visual behavior that is difficult to

express in XAML or that requires direct references to the specific UI controls defined in the

view.

The View Model Class

The view model in the MVVM pattern encapsulates the presentation logic and data for the view. It has

no direct reference to the view or any knowledge about the view's specific implementation or type. The

view model implements properties and commands to which the view can data bind and notifies the

view of any state changes through change notification events. The properties and commands that the

view model provides define the functionality to be offered by the UI, but the view determines how that

functionality is to be rendered.

The view model is responsible for coordinating the view's interaction with any model classes that are

required. Typically, there is a one-to many-relationship between the view model and the model classes.

The view model may choose to expose model classes directly to the view so that controls in the view can

data bind directly to them. In this case, the model classes will need to be designed to support data

binding and the relevant change notification events. For more information about this scenario, see the

section, Data Binding, later in this topic.

The view model may convert or manipulate model data so that it can be easily consumed by the view.

The view model may define additional properties to specifically support the view; these properties

would not normally be part of (or cannot be added to) the model. For example, the view model may

combine the value of two fields to make it easier for the view to present, or it may calculate the number

of characters remaining for input for fields with a maximum length. The view model may also implement

data validation logic to ensure data consistency.

The view model may also define logical states the view can use to provide visual changes in the UI. The

view may define layout or styling changes that reflect the state of the view model. For example, the

view model may define a state that indicates that data is being submitted asynchronously to a web

service. The view can display an animation during this state to provide visual feedback to the user.

Typically, the view model will define commands or actions that can be represented in the UI and that

the user can invoke. A common example is when the view model provides a Submit command that

allows the user submit data to a web service or to a data repository. The view may choose to represent

that command with a button so that the user can click the button to submit the data. Typically, when

the command becomes unavailable, its associated UI representation becomes disabled. Commands

80

provide a way to encapsulate user actions and to cleanly separate them from their visual representation

in the UI.

To summarize, the view model has the following key characteristics:

 The view model is a non-visual class and does not derive from any WPF base class. It

encapsulates the presentation logic required to support a use case or user task in the

application. The view model is testable independently of the view and the model.

 The view model typically does not directly reference the view. It implements properties and

commands to which the view can data bind. It notifies the view of any state changes via change

notification events via the INotifyPropertyChanged and INotifyCollectionChanged interfaces.

 The view model coordinates the view's interaction with the model. It may convert or

manipulate data so that it can be easily consumed by the view and may implement additional

properties that may not be present on the model. It may also implement data validation via the

IDataErrorInfo or INotifyDataErrorInfo interfaces.

 The view model may define logical states that the view can represent visually to the user.

View or View Model?

Many times, determining where certain functionality should be implemented is not obvious. The

general rule of thumb is: Anything concerned with the specific visual appearance of the UI on the

screen and that could be re-styled later (even if you are not currently planning to re-style it) should go

into the view; anything that is important to the logical behavior of the application should go into the

view model. In addition, because the view model should have no explicit knowledge of the specific

visual elements in the view, code to programmatically manipulate visual elements within the view

should reside in the view's code-behind or be encapsulated in a behavior. Similarly, code to retrieve or

manipulate data items that are to be displayed in the view through data binding should reside in the

view model.

For example, the highlight color of the selected item in a list box should be defined in the view, but the

list of items to display, and the reference to the selected item itself, should be defined by the view

model.

The Model Class

The model in the MVVM pattern encapsulates business logic and data. Business logic is defined as any

application logic that is concerned with the retrieval and management of application data and for

making sure that any business rules that ensure data consistency and validity are imposed. To maximize

re-use opportunities, models should not contain any use case–specific or user task–specific behavior or

application logic.

Typically, the model represents the client-side domain model for the application. It can define data

structures based on the application's data model and any supporting business and validation logic. The

model may also include the code to support data access and caching, though typically a separate data

81

repository or service is employed for this. Often, the model and data access layer are generated as part

of a data access or service strategy, such as the ADO.NET Entity Framework, WCF Data Services, or WCF

RIA Services.

Typically, the model implements the facilities that make it easy to bind to the view. This usually means it

supports property and collection changed notification through the INotifyPropertyChanged and

INotifyCollectionChanged interfaces. Models classes that represent collections of objects typically

derive from the ObservableCollection<T> class, which provides an implementation of the

INotifyCollectionChanged interface.

The model may also support data validation and error reporting through the IDataErrorInfo (or

INotifyDataErrorInfo) interfaces. The IDataErrorInfo and INotifyDataErrorInfo interfaces allow WPF

data binding to be notified when values change so that the UI can be updated. They also enable support

for data validation and error reporting in the UI layer.

What if your model classes do not implement the required interfaces?

Sometimes you will need to work with model objects that do not implement the

INotifyPropertyChanged, INotifyCollectionChanged, IDataErrorInfo, or INotifyDataErrorInfo

interfaces. In those cases, the view model may need to wrap the model objects and expose the

required properties to the view. The values for these properties will be provided directly by the model

objects. The view model will implement the required interfaces for the properties it exposes so that

the view can easily data bind to them.

The model has the following key characteristics:

 Model classes are non-visual classes that encapsulate the application's data and business logic.

They are responsible for managing the application's data and for ensuring its consistency and

validity by encapsulating the required business rules and data validation logic.

 The model classes do not directly reference the view or view model classes and have no

dependency on how they are implemented.

 The model classes typically provide property and collection change notification events through

the INotifyPropertyChanged and INotifyCollectionChanged interfaces. This allows them to be

easily data bound in the view. Model classes that represent collections of objects typically

derive from the ObservableCollection<T> class.

 The model classes typically provide data validation and error reporting through either the

IDataErrorInfo or INotifyDataErrorInfo interfaces.

 The model classes are typically used in conjunction with a service or repository that

encapsulates data access and caching.

82

Class Interactions

The MVVM pattern provides a clean separation between your application's user interface, its

presentation logic, and its business logic and data by separating each into separate classes. Therefore,

when you implement MVVM, it is important to factor in your application's code to the correct classes, as

described in the previous section.

Well-designed view, view model, and model classes will not only encapsulate the correct type of code

and behavior; they will also be designed so that they can easily interact with each other via data binding,

commands, and data validation interfaces.

The interactions between the view and its view model are perhaps the most important to consider, but

the interactions between the model classes and the view model are also important. The following

sections describe the various patterns for these interactions and describe how to design for them when

implementing the MVVM pattern in your applications.

Data Binding

Data binding plays a very important role in the MVVM pattern. WPF provides powerful data binding

capabilities. Your view model and (ideally) your model classes should be designed to support data

binding so that they can take advantage of these capabilities. Typically, this means that they must

implement the correct interfaces.

WPF data binding supports multiple data binding modes. With one-way data binding, UI controls can be

bound to a view model so that they reflect the value of the underlying data when the display is

rendered. Two-way data binding will also automatically update the underlying data when the user

modifies it in the UI.

To ensure that the UI is kept up to date when the data changes in the view model, it should implement

the appropriate change notification interface. If it defines properties that can be data bound, it should

implement the INotifyPropertyChanged interface. If the view model represents a collection, it should

implement the INotifyCollectionChanged interface or derive from the ObservableCollection<T> class

that provides an implementation of this interface. Both of these interfaces define an event that is raised

whenever the underlying data is changed. Any data bound controls will be automatically updated when

these events are raised.

In many cases, a view model will define properties that return objects (and which, in turn, may define

properties that return additional objects). WPF data binding supports binding to nested properties via

the Path property. Therefore, it is very common for a view's view model to return references to other

view model or model classes. All view model and model classes accessible to the view should implement

the INotifyPropertyChanged or INotifyCollectionChanged interfaces, as appropriate.

The following sections describe how to implement the required interfaces in order to support data

binding within the MVVM pattern.

83

Implementing INotifyPropertyChanged

Implementing the INotifyPropertyChanged interface in your view model or model classes allows them

to provide change notifications to any data-bound controls in the view when the underlying property

value changes. Implementing this interface is straightforward, as shown in the following code example.

C#

public class Questionnaire : INotifyPropertyChanged

{

 private string favoriteColor;

 public event PropertyChangedEventHandler PropertyChanged;

 ...

 public string FavoriteColor

 {

 get { return this.favoriteColor; }

 set

 {

 if (value != this.favoriteColor)

 {

 this.favoriteColor = value;

 var handler = this.PropertyChanged;

 if (handler != null)

 {

 handler(this,

 new PropertyChangedEventArgs("FavoriteColor"));

 }

 }

 }

 }

}

Implementing the INotifyPropertyChanged interface on many view model classes can be repetitive and

error-prone because of the need to specify the property name in the event argument. The Prism Library

provides the BindableBase base class from which you can derive your view model classes that

implements the INotifyPropertyChanged interface in a type-safe manner, as shown here.

C#

public abstract class BindableBase : INotifyPropertyChanged

{

 public event PropertyChangedEventHandler PropertyChanged;

 ...

 protected virtual bool SetProperty<T>(ref T storage, T value,

 [CallerMemberName] string propertyName = null)

 {...}

 protected void OnPropertyChanged<T>(

 Expression<Func<T>> propertyExpression)

 {...}

84

 protected void OnPropertyChanged(string propertyName)

 {...}

}

A derived view model class can raise the property change event in the setter by calling the SetProperty

method. The SetProperty method checks whether the backing field is different from the value being set.

If different, the backing field is updated and the PropertyChanged event is raised.

The following code example shows how to set the property and simultaneously signal the change of

another property by using a lambda expression in the OnPropertyChanged method. This example comes

from the Stock Trader RI. The TransactionInfo and TickerSymbol properties are related. If the

TransactionInfo property changes, the TickerSymbol will also likely be updated. By calling

OnPropertyChanged for the TickerSymbol property in the setter of the TransactionInfo property, two

PropertyChanged events will be raised, one for TransactionInfo and one for TickerSymbol.

C#

public TransactionInfo TransactionInfo

{

 get { return this.transactionInfo; }

 set

 {

 SetProperty(ref this.transactionInfo, value);

 this.OnPropertyChanged(() => this.TickerSymbol);

 }

}

Note: Using a lambda expression in this way involves a small performance cost because the lambda

expression has to be evaluated for each call. The benefit is that this approach provides compile-time

type safety and refactoring support if you rename a property. Although the performance cost is small

and would not normally impact your application, the costs can accrue if you have many change

notifications. In this case, you should consider using the non-lambda method overload.

Often, your model or view model will include properties whose values are calculated from other

properties in the model or view model. When handling changes to properties, be sure to also raise

notification events for any calculated properties.

Implementing INotifyCollectionChanged

Your view model or model class may represent a collection of items, or it may define one or more

properties that return a collection of items. In either case, it is likely that you will want to display the

collection in an ItemsControl, such as a ListBox, or in a DataGrid control in the view. These controls can

be data bound to a view model that represents a collection or to a property that returns a collection via

the ItemSource property.

XAML

<DataGrid ItemsSource="{Binding Path=LineItems}" />

85

To properly support change notification requests, the view model or model class, if it represents a

collection, should implement the INotifyCollectionChanged interface (in addition to the

INotifyPropertyChanged interface). If the view model or model class defines a property that returns a

reference to a collection, the collection class returned should implement the INotifyCollectionChanged

interface.

However, implementing the INotifyCollectionChanged interface can be challenging because it has to

provide notifications when items are added, removed, or changed within the collection. Instead of

directly implementing the interface, it is often easier to use or derive from a collection class that already

implements it. The ObservableCollection<T> class provides an implementation of this interface and is

commonly used as either a base class or to implement properties that represent a collection of items.

If you need to provide a collection to the view for data binding, and you do not need to track the user's

selection or to support filtering, sorting, or grouping of the items in the collection, you can simply define

a property on your view model that returns a reference to the ObservableCollection<T> instance.

C#

public class OrderViewModel : BindableBase

{

 public OrderViewModel(IOrderService orderService)

 {

 this.LineItems = new ObservableCollection<OrderLineItem>(

 orderService.GetLineItemList());

 }

 public ObservableCollection<OrderLineItem> LineItems { get; private set; }

}

If you obtain a reference to a collection class (for example, from another component or service that

does not implement INotifyCollectionChanged), you can often wrap that collection in an

ObservableCollection<T> instance using one of the constructors that take an IEnumerable<T> or List<T>

parameter.

Note: BindableBase can be found in the Microsoft.Practices.Prism.Mvvm namespace which is located

in the Prism.Mvvm NuGet package.

Implementing ICollectionView

The preceding code example shows how to implement a simple view model property that returns a

collection of items that can be displayed via data bound controls in the view. Because the

ObservableCollection<T> class implements the INotifyCollectionChanged interface, the controls in the

view will be automatically updated to reflect the current list of items in the collection as items are added

or removed.

However, you will often need to more finely control how the collection of items is displayed in the view,

or track the user's interaction with the displayed collection of items, from within the view model itself.

For example, you may need to allow the collection of items to be filtered or sorted according to

86

presentation logic implemented in the view model, or you may need to keep track of the currently

selected item in the view so that commands implemented in the view model can act on the currently

selected item.

WPF supports these scenarios by providing various classes that implement the ICollectionView

interface. This interface provides properties and methods to allow a collection to be filtered, sorted, or

grouped, and allow the currently selected item to be tracked or changed. WPF provides an

implementation of this interface using the ListCollectionView class.

Collection view classes work by wrapping an underlying collection of items so that they can provide

automatic selection tracking and sorting, filtering, and paging for them. An instance of these classes can

be created programmatically or declaratively in XAML using the CollectionViewSource class.

Note: In WPF, a default collection view will actually be automatically created whenever a control is

bound to a collection.

Collection view classes can be used by the view model to keep track of important state information for

the underlying collection, while maintaining a clean separation of concerns between the UI in the view

and the underlying data in the model. In effect, CollectionViews are view models that are designed

specifically to support collections.

Therefore, if you need to implement filtering, sorting, grouping, or selection tracking of items in the

collection from within your view model, your view model should create an instance of a collection view

class for each collection to be exposed to the view. You can then subscribe to selection changed events,

such as the CurrentChanged event, or control filtering, sorting, or grouping using the methods provided

by the collection view class from within your view model.

The view model should implement a read-only property that returns an ICollectionView reference so

that controls in the view can data bind to the collection view object and interact with it. All WPF controls

that derive from the ItemsControl base class can automatically interact with ICollectionView classes.

The following code example shows the use of the ListCollectionView in WPF to keep track of the

currently selected customer.

C#

public class MyViewModel : BindableBase

{

 public ICollectionView Customers { get; private set; }

 public MyViewModel(ObservableCollection<Customer> customers)

 {

 // Initialize the CollectionView for the underlying model

 // and track the current selection.

 Customers = new ListCollectionView(customers);

 Customers.CurrentChanged +=SelectedItemChanged;

 }

87

 private void SelectedItemChanged(object sender, EventArgs e)

 {

 Customer current = Customers.CurrentItem as Customer;

 ...

 }

 ...

}

In the view, you can then bind an ItemsControl, such as a ListBox, to the Customers property on the

view model via its ItemsSource property, as shown here.

XAML

<ListBox ItemsSource="{Binding Path=Customers}">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel>

 <TextBlock Text="{Binding Path=Name}"/>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

</ListBox>

When the user selects a customer in the UI, the view model will be informed so that it can apply the

commands that relate to the currently selected customer. The view model can also programmatically

change the current selection in the UI by calling methods on the collection view object, as shown in the

following code example.

C#

Customers.MoveCurrentToNext();

When the selection changes in the collection view, the UI automatically updates to visually represent

the selected state of the item.

Commands

In addition to providing access to the data to be displayed or edited in the view, the view model will

likely define one or more actions or operations that can be performed by the user. In WPF, actions or

operations that the user can perform through the UI are typically defined as commands. Commands

provide a convenient way to represent actions or operations that can be easily bound to controls in the

UI. They encapsulate the actual code that implements the action or operation and help to keep it

decoupled from its actual visual representation in the view.

Commands can be visually represented and invoked in many different ways by the user as they interact

with the view. In most cases, they are invoked as a result of a mouse click, but they can also be invoked

as a result of shortcut key presses, touch gestures, or any other input events. Controls in the view are

data bound to the view model's commands so that the user can invoke them using whatever input event

or gesture the control defines. Interaction between the UI controls in the view and the command can be

88

two-way. In this case, the command can be invoked as the user interacts with the UI, and the UI can be

automatically enabled or disabled as the underlying command becomes enabled or disabled.

The view model can implement commands as either a Command Method or as a Command Object (an

object that implements the ICommand interface). In either case, the view's interaction with the

command can be defined declaratively without requiring complex event handling code in the view's

code-behind file. For example, certain controls in WPF inherently support commands and provide a

Command property that can be data bound to an ICommand object provided by the view model. In

other cases, a command behavior can be used to associate a control with a command method or

command object provided by the view model.

Note: Behaviors are a powerful and flexible extensibility mechanism that can be used to encapsulate

interaction logic and behavior that can then be declaratively associated with controls in the view.

Command behaviors can be used to associate command objects or methods with controls that were

not specifically designed to interact with commands.

The following sections describe how to implement commands in your view, as command methods or as

command objects, and how to associate them with controls in the view.

Implementing a Task-Based Delegate Command

There are a number of scenarios where the command calls code with long running transactions that

cannot block the UI thread. For these scenarios you should use the FromAsyncHandler method of the

DelegateCommand class, which creates a new instance of the DelegateCommand from an async

handler method.

C#

// DelegateCommand.cs

public static DelegateCommand FromAsyncHandler(Func<Task> executeMethod, Func<bool>

canExecuteMethod)

{

 return new DelegateCommand(executeMethod, canExecuteMethod);

}

For example, the following code shows how a DelegateCommand instance, which represents a sign in

command, is constructed by specifying delegates to the SignInAsync and CanSignIn view model

methods. The command is then exposed to the view through a read-only property that returns a

reference to an ICommand.

C#

// SignInFlyoutViewModel.cs

public DelegateCommand SignInCommand { get; private set; }

...

SignInCommand = DelegateCommand.FromAsyncHandler(SignInAsync, CanSignIn);

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx

89

Implementing Command Objects

A command object is an object that implements the ICommand interface. This interface defines an

Execute method, which encapsulates the operation itself, and a CanExecute method, which indicates

whether the command can be invoked at a particular time. Both of these methods take a single

argument as the parameter for the command. The encapsulation of the implementation logic for an

operation in a command object means it can be more easily unit tested and maintained.

Implementing the ICommand interface is straightforward. However, there are a number of

implementations of this interface that you can readily use in your application. For example, you can use

the ActionCommand class from the Blend for Visual Studio SDK or the DelegateCommand class

provided by Prism.

Note: DelegateCommand can be found in the Microsoft.Practices.Prism.Mvvm namespace which is

located in the Prism.Mvvm NuGet package.

The Prism DelegateCommand class encapsulates two delegates that each reference a method

implemented within your view model class. It inherits from the DelegateCommandBase class, which

implements the ICommand interface's Execute and CanExecute methods by invoking these delegates.

You specify the delegates to your view model methods in the DelegateCommand class constructor,

which is defined as follows.

C#

// DelegateCommand.cs

public class DelegateCommand<T> : DelegateCommandBase

{

 public DelegateCommand(Action<T> executeMethod,Func<T,bool> canExecuteMethod):

base((o) => executeMethod((T)o), (o) => canExecuteMethod((T)o))

 {

 ...

 }

}

For example, the following code example shows how a DelegateCommand instance, which represents a

Submit command, is constructed by specifying delegates to the OnSubmit and CanSubmit view model

methods. The command is then exposed to the view via a read-only property that returns a reference to

an ICommand.

C#

public class QuestionnaireViewModel

{

 public QuestionnaireViewModel()

 {

 this.SubmitCommand = new DelegateCommand<object>(

 this.OnSubmit, this.CanSubmit);

 }

90

 public ICommand SubmitCommand { get; private set; }

 private void OnSubmit(object arg) {...}

 private bool CanSubmit(object arg) { return true; }

}

When the Execute method is called on the DelegateCommand object, it simply forwards the call to the

method in your view model class via the delegate that you specified in the constructor. Similarly, when

the CanExecute method is called, the corresponding method in your view model class is called. The

delegate to the CanExecute method in the constructor is optional. If a delegate is not specified,

DelegateCommand will always return true for CanExecute.

The DelegateCommand class is a generic type. The type argument specifies the type of the command

parameter passed to the Execute and CanExecute methods. In the preceding example, the command

parameter is of type object. A non-generic version of the DelegateCommand class is also provided by

Prism for use when a command parameter is not required.

The view model can indicate a change in the command's CanExecute status by calling the

RaiseCanExecuteChanged method on the DelegateCommand object. This causes the

CanExecuteChanged event to be raised. Any controls in the UI that are bound to the command will

update their enabled status to reflect the availability of the bound command.

Other implementations of the ICommand interface are available. The ActionCommand class provided by

the Expression Blend SDK is similar to Prism's DelegateCommand class described earlier, but it supports

only a single Execute method delegate. Prism also provides the CompositeCommand class, which allows

DelegateCommands to be grouped together for execution. For more information about using the

CompositeCommand class, see "Composite Commands" in "Advanced MVVM Scenarios."

Invoking Command Objects from the View

There are a number of ways in which a control in the view can be associated with a command object

proffered by the view model. Certain WPF controls, notably ButtonBase derived controls, such as

Button or RadioButton, and Hyperlink, or MenuItem derived controls, can be easily data bound to a

command object through the Command property. WPF also supports binding view model ICommand to

a KeyGesture.

XAML

<Button Command="{Binding Path=SubmitCommand}" CommandParameter="SubmitOrder"/>

A command parameter can also be optionally defined using the CommandParameter property. The type

of the expected argument is specified in the Execute and CanExecute target methods. The control will

automatically invoke the target command when the user interacts with that control, and the command

parameter, if provided, will be passed as the argument to the command's Execute method. In the

preceding example, the button will automatically invoke the SubmitCommand when it is clicked.

Additionally, if a CanExecute handler is specified, the button will be automatically disabled if

CanExecute returns false, and it will be enabled if it returns true.

91

An alternative approach is to use Blend for Visual Studio 2013 interaction triggers and

InvokeCommandAction behavior. For more information on InvokeCommandAction behavior and

associating commands to events see "Interaction Triggers and Commands" in "Advanced MVVM

Scenarios."

Data Validation and Error Reporting

Your view model or model will often be required to perform data validation and to signal any data

validation errors to the view so that the user can act to correct them.

WPF provides support for managing data validation errors that occur when changing individual

properties that are bound to controls in the view. For single properties that are data-bound to a control,

the view model or model can signal a data validation error within the property setter by rejecting an

incoming bad value and throwing an exception. If the ValidatesOnExceptions property on the data

binding is true, the data binding engine in WPF will handle the exception and display a visual cue to the

user that there is a data validation error.

However, throwing exceptions with properties in this way should be avoided where possible. An

alternative approach is to implement the IDataErrorInfo or INotifyDataErrorInfo interfaces on your view

model or model classes. These interfaces allow your view model or model to perform data validation for

one or more property values and to return an error message to the view so that the user can be notified

of the error.

Implementing IDataErrorInfo

The IDataErrorInfo interface provides basic support for property data validation and error reporting. It

defines two read-only properties: an indexer property, with the property name as the indexer argument,

and an Error property. Both properties return a string value.

The indexer property allows the view model or model class to provide an error message specific to the

named property. An empty string or null return value indicates to the view that the changed property

value is valid. The Error property allows the view model or model class to provide an error message for

the entire object. Note, however, that this property is not currently called by the WPF data binding

engine.

The IDataErrorInfo indexer property is accessed when a data-bound property is first displayed, and

whenever it is subsequently changed. Because the indexer property is called for all properties that

change, you should be careful to ensure that data validation is as fast and as efficient as possible.

When binding controls in the view to properties you want to validate through the IDataErrorInfo

interface, set the ValidatesOnDataErrors property on the data binding to true. This will ensure that the

data binding engine will request error information for the data-bound property.

XAML

<TextBox

Text="{Binding Path=CurrentEmployee.Name, Mode=TwoWay, ValidatesOnDataErrors=True,

NotifyOnValidationError=True }"

92

/>

Implementing INotifyDataErrorInfo

The INotifyDataErrorInfo interface is more flexible than the IDataErrorInfo interface. It supports

multiple errors for a property, asynchronous data validation, and the ability to notify the view if the

error state changes for an object.

The INotifyDataErrorInfo interface defines a HasErrors property, which allows the view model to

indicate whether an error (or multiple errors) for any properties exist, and a GetErrors method, which

allows the view model to return a list of error messages for a particular property.

The INotifyDataErrorInfo interface also defines an ErrorsChanged event. This supports asynchronous

validation scenarios by allowing the view or view model to signal a change in error state for a particular

property through the ErrorsChanged event. Property values can be changed in a number of ways, and

not just via data binding—for example, as a result of a web service call or background calculation. The

ErrorsChanged event allows the view model to inform the view of an error once a data validation error

has been identified.

To support INotifyDataErrorInfo, you will need to maintain a list of errors for each property. The Model-

View-ViewModel Reference Implementation (MVVM RI) demonstrates one way to do this using an

ErrorsContainer collection class that tracks all the validation errors in the object. It also raises

notification events if the error list changes. The following code example shows a DomainObject (a root

model object) and shows an example implementation of INotifyDataErrorInfo using the ErrorsContainer

class.

C#

public abstract class DomainObject : INotifyPropertyChanged,

 INotifyDataErrorInfo

{

 private ErrorsContainer<ValidationResult> errorsContainer =

 new ErrorsContainer<ValidationResult>(

 pn => this.RaiseErrorsChanged(pn));

 public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;

 public bool HasErrors

 {

 get { return this.ErrorsContainer.HasErrors; }

 }

 public IEnumerable GetErrors(string propertyName)

 {

 return this.errorsContainer.GetErrors(propertyName);

 }

 protected void RaiseErrorsChanged(string propertyName)

 {

93

 var handler = this.ErrorsChanged;

 if (handler != null)

 {

 handler(this, new DataErrorsChangedEventArgs(propertyName));

 }

 }

 ...

}

Construction and Wire-Up

The MVVM pattern helps you to cleanly separate your UI from your presentation and business logic and

data, so implementing the right code in the right class is an important first step in using the MVVM

pattern effectively. Managing the interactions between the view and view model classes through data

binding and commands are also important aspects to consider. The next step is to consider how the

view, view model, and model classes are instantiated and associated with each other at run time.

Note: Choosing an appropriate strategy to manage this step is especially important if you are using a

dependency injection container in your application. The Managed Extensibility Framework (MEF) and

the Unity Application Block (Unity) both provide the ability to specify dependencies between the view,

view model, and model classes and to have them fulfilled by the container. For more advanced

scenarios, see Advanced MVVM Scenarios.

Typically, there is a one-to-one relationship between a view and its view model. The view and view

model are loosely coupled via the view's data context property; this allows visual elements and

behaviors in the view to be data bound to properties, commands, and methods on the view model. You

will need to decide how to manage the instantiation of the view and view model classes and their

association via the DataContext property at run time.

Care must also be taken when constructing and connecting the view and view model to ensure that

loose coupling is maintained. As noted in the previous section, the view model should ideally not

depend on any specific implementation of a view. Similarly, the view should ideally not depend on any

specific implementation of a view model.

Note: However, it should be noted that the view will implicitly depend on specific properties,

commands, and methods on the view model because of the data bindings it defines. If the view model

does not implement the required property, command, or method, a run-time exception will be

generated by the data binding engine, which will be displayed in the Visual Studio output window

during debugging.

There are multiple ways the view and the view model can be constructed and associated at run time.

The most appropriate approach for your application will largely depend on whether you create the view

or the view model first, and whether you do this programmatically or declaratively. The following

sections describe common ways in which the view and view model classes can be created and

associated with each other at run time.

94

Creating the View Model Using XAML

Perhaps the simplest approach is for the view to declaratively instantiate its corresponding view model

in XAML. When the view is constructed, the corresponding view model object will also be constructed.

You can also specify in XAML that the view model be set as the view's data context.

XAML

<UserControl.DataContext>

 <my:MyViewModel/>

</UserControl.DataContext>

When this view is created, an instance of the MyViewModel is automatically constructed and set as the

view's data context. This approach requires your view model to have a default (parameter-less)

constructor.

The declarative construction and assignment of the view model by the view has the advantage that it is

simple and works well in design-time tools such as Microsoft Expression Blend or Microsoft Visual

Studio. The disadvantage of this approach is that the view has knowledge of the corresponding view

model type and that the view model type must have a default constructor.

Creating the View Model Programmatically

Another approach is for the view to instantiate its corresponding view model instance programmatically

in its constructor. It can then set it as its data context, as shown in the following code example.

C#

public MyView()

{

 InitializeComponent();

 this.DataContext = new MyViewModel();

}

The programmatic construction and assignment of the view model within the view's code-behind has

the advantage that it is simple and works well in design-time tools like Expression Blend or Visual Studio.

The disadvantage of this approach is that the view needs to have knowledge of the corresponding view

model type and that it requires code in the view's code-behind. Using a dependency injection container,

such as Unity or MEF, can help to maintain loose coupling between the view and view model. For more

information, see Managing Dependencies Between Components.

Creating the View Model Using a View Model Locator

Another way to create a view model instance and associate it with its view is by using a view model

locator.

The Prism view model locator has a AutoWireViewModel attached property that when set calls

AutoWireViewModelChanged method in the ViewModelLocationProvider class to resolve the view

model for the view. By default it uses a convention based approach.

In the Basic MVVM QuickStart, the MainWindow.xaml uses the view model locator to resolve the view

model.

95

XAML

...

 prism:ViewModelLocator.AutoWireViewModel="True">

Prism’s ViewModelLocator class has an attached property, AutoWireViewModel that when set to true

will try to locate the view model of the view, and then set the view’s data context to an instance of the

view model. To locate the corresponding view model, the ViewModelLocationProvider first attempts to

resolve the view model from any mappings that may have been registered by the Register method of

the ViewModelLocationProvider class. If the view model cannot be resolved using this approach, for

instance if the mapping wasn't created, the ViewModelLocationProvider falls back to a convention-

based approach to resolve the correct view model type. This convention assumes that view models are

in the same assembly as the view types, that view models are in a .ViewModels child namespace, that

views are in a .Views child namespace, and that view model names correspond with view names and

end with "ViewModel.". For instructions on how to change Prism’s View Model Locator convention, see

Extending the Prism Library.

Note: ViewModelLocationProvider can be found in the Microsoft.Practices.Prism.Mvvm assembly

and ViewModelLocator can be found in the Microsoft.Practices.Prism.Mvvm.Desktop assembly which

is located in the Prism.Mvvm NuGet package.

Creating a View Defined as a Data Template

A view can be defined as a data template and associated with a view model type. Data templates can be

defined as resources, or they can be defined inline within the control that will display the view model.

The "content" of the control is the view model instance, and the data template is used to visually

represent it. WPF will automatically instantiate the data template and set its data context to the view

model instance at run time. This technique is an example of a situation in which the view model is

instantiated first, followed by the creation of the view.

Data templates are flexible and lightweight. The UI designer can use them to easily define the visual

representation of a view model without requiring any complex code. Data templates are restricted to

views that do not require any UI logic (code-behind). Microsoft Blend for Visual Studio 2013 can be used

to visually design and edit data templates.

The following example shows an ItemsControl that is bound to a list of customers. Each customer object

in the underlying collection is a view model instance. The view for the customer is defined by an inline

data template. In the following example, the view for each customer view model consists of a

StackPanel with a label and text box control bound to the Name property on the view model.

XAML

<ItemsControl ItemsSource="{Binding Customers}">

 <ItemsControl.ItemTemplate>

 <DataTemplate>

 <StackPanel Orientation="Horizontal">

 <TextBlock VerticalAlignment="Center" Text="Customer Name: " />

 <TextBox Text="{Binding Name}" />

96

 </StackPanel>

 </DataTemplate>

 </ItemsControl.ItemTemplate>

</ItemsControl>

You can also define a data template as a resource. The following example shows the data template

defined a resource and applied to a content control via the StaticResource markup extension.

XAML

<UserControl ...>

 <UserControl.Resources>

 <DataTemplate x:Key="CustomerViewTemplate">

 <local:CustomerContactView />

 </DataTemplate>

 </UserControl.Resources>

 <Grid>

 <ContentControl Content="{Binding Customer}"

 ContentTemplate="{StaticResource CustomerViewTemplate}" />

 </Grid>

</UserControl>

Here, the data template wraps a concrete view type. This allows the view to define code-behind

behavior. In this way, the data template mechanism can be used to externally provide the association

between the view and the view model. Although the preceding example shows the template in the

UserControl resources, it would often be placed in application's resources for reuse.

Key Decisions

When you choose to use the MVVM pattern to construct your application, you will have to make certain

design decisions that will be difficult to change later on. Generally, these decisions are application-wide

and their consistent use throughout the application will improve developer and designer productivity.

The following summarizes the most important decisions when implementing the MVVM pattern:

 Decide on the approach to view and view model construction you will use. You need to decide if

your application constructs the views or the view models first and whether to use a dependency

injection container, such as Unity or MEF. You will usually want this to be consistent application-

wide. For more information, see the section, Construction and Wire-Up, in this topic and the

section Advanced Construction and Wire-Up, in Advanced MVVM Scenarios.

 Decide if you will expose commands from your view models as command methods or command

objects. Command methods are simple to expose and can be invoked through behaviors in the

view. Command objects can neatly encapsulate the command and enabled/disabled logic and

can be invoked through behaviors or via the Command property on ButtonBase-derived

controls. To make it easier on your developers and designers, it is a good idea to make this an

application-wide choice. For more information, see the section, Commands, in this topic.

97

 Decide how your view models and models will report errors to the view. Your models can either

support IDataErrorInfo or INotifyDataErrorInfo. Not all models may need to report error

information, but for those that do, it is preferable to have a consistent approach for your

developers. For more information, see the section, Data Validation and Error Reporting, in this

topic.

 Decide whether Microsoft Blend for Visual Studio 2013 design-time data support is important to

your team. If you will use Blend to design and maintain your UI and want to see design time

data, make sure that your views and view models offer constructors that do not have

parameters and that your views provide a design-time data context. Alternatively, consider

using the design-time features provided by Microsoft Blend for Visual Studio 2013 using design-

time attributes such as d:DataContext and d:DesignSource. For more information, see

Guidelines for Creating Designer Friendly Views in Composing the User Interface.

More Information

For more information about data binding in WPF, see Data Binding on MSDN.

For more information about binding to collections in WPF, see Binding to Collections in Data Binding

Overview on MSDN.

For more information about the Presentation Model pattern, see Presentation Model on Martin

Fowler's website.

For more information about data templates, see Data Templating Overview on MSDN.

For more information about MEF, see Managed Extensibility Framework Overview on MSDN.

For more information about Unity, see Unity Application Block on MSDN.

For more information about DelegateCommand and CompositeCommand, see Communicating

Between Loosely Coupled Components.

For more information about using MVVM in Windows Store Apps see Using the Model-View-ViewModel

(MVVM) pattern in a Windows Store business app using C#, XAML, and Prism.

http://msdn.microsoft.com/en-us/library/ms750612.aspx
http://msdn.microsoft.com/en-us/library/ms752347.aspx#binding_to_collections
http://msdn.microsoft.com/en-us/library/ms752347.aspx
http://msdn.microsoft.com/en-us/library/ms752347.aspx
http://www.martinfowler.com/eaaDev/PresentationModel.html
http://msdn.microsoft.com/en-us/library/ms742521.aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://www.msdn.com/unity
http://msdn.microsoft.com/en-us/library/windows/apps/xx130657.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130657.aspx

98

6: Advanced MVVM Scenarios
The previous topic described how to implement the basic elements of the Model-View-ViewModel

(MVVM) pattern by separating your application's user interface (UI), presentation logic, and business

logic into three separate classes (the view, view model, and model), implementing the interactions

between those classes (through data binding, commands, and data validation interfaces), and by

implementing a strategy to handle construction and wire-up. This topic describes some sophisticated

scenarios and describes how the MVVM pattern can support them. The next section describes how

commands can be chained together or associated with child views and how they can be extended to

support custom requirements. The following sections then describe how to handle asynchronous data

requests and subsequent UI interactions and how to handle interaction requests between the view and

the view model.

The section, Advanced Construction and Wire-Up, provides guidance on handling construction and wire-

up when using a dependency injection container, such as the Unity Application Block (Unity), or when

using the Managed Extensibility Framework (MEF). The final section describes how you can test MVVM

applications by providing guidance on unit testing your application's view model and model classes, and

on testing behaviors.

Commands

Commands provide a way to separate the command's implementation logic from its UI representation.

Data binding or behaviors provide a way to declaratively associate elements in the view with commands

proffered by the view model. The section, Commands in Implementing the MVVM Pattern, described

how commands can be implemented as command objects or command methods on the view model,

and how they can be invoked from controls in the view by using the built-in Command property

provided by certain controls.

WPF Routed Commands: It should be noted that commands implemented as command objects or

command methods in the MVVM pattern differ somewhat from WPF's built-in implementation of

commands named routed commands. WPF routed commands deliver command messages by routing

them through elements in the UI tree (specifically the logical tree). Therefore, command messages are

routed up or down the UI tree from the focused element or to an explicitly specified target element;

by default, they are not routed to components outside of the UI tree, such as the view model

associated with the view. However, WPF-routed commands can use a command handler defined in the

view's code-behind to forward the command call to the view model class.

Composite Commands

In many cases, a command defined by a view model will be bound to controls in the associated view so

that the user can directly invoke the command from within the view. However, in some cases, you may

want to be able to invoke commands on one or more view models from a control in a parent view in the

application's UI.

http://msdn.microsoft.com/en-us/library/ms753391.aspx

99

For example, if your application allows the user to edit multiple items at the same time, you may want

to allow the user to save all the items using a single command represented by a button in the

application's toolbar or ribbon. In this case, the Save All command will invoke each of the Save

commands implemented by the view model instance for each item as shown in the following

illustration.

Implementing the SaveAll composite command

Prism supports this scenario through the CompositeCommand class.

The CompositeCommand class represents a command that is composed from multiple child commands.

When the composite command is invoked, each of its child commands is invoked in turn. It is useful in

situations where you need to represent a group of commands as a single command in the UI or where

you want to invoke multiple commands to implement a logical command.

For example, the CompositeCommand class is used in the Stock Trader Reference Implementation

(Stock Trader RI) in order to implement the SubmitAllOrders command represented by the Submit All

button in the buy/sell view. When the user clicks the Submit All button, each SubmitCommand defined

by the individual buy/sell transactions is executed.

The CompositeCommand class maintains a list of child commands (DelegateCommand instances). The

Execute method of the CompositeCommand class simply calls the Execute method on each of the child

commands in turn. The CanExecute method similarly calls the CanExecute method of each child

command, but if any of the child commands cannot be executed, the CanExecute method will return

false. In other words, by default, a CompositeCommand can only be executed when all the child

commands can be executed.

Registering and Unregistering Child Commands

Child commands are registered or unregistered using the RegisterCommand and UnregisterCommand

methods. In the Stock Trader RI, for example, the Submit and Cancel commands for each buy/sell order

are registered with the SubmitAllOrders and CancelAllOrders composite commands, as shown in the

following code example (see the OrdersController class).

100

C#

// OrdersController.cs

commandProxy.SubmitAllOrdersCommand.RegisterCommand(

 orderCompositeViewModel.SubmitCommand);

commandProxy.CancelAllOrdersCommand.RegisterCommand(

 orderCompositeViewModel.CancelCommand);

Note: The preceding commandProxy object provides instance access to the Submit and Cancel

composite commands, which are defined statically. For more information, see the class file

StockTraderRICommands.cs.

Executing Commands on Active Child Views

Often, your application will need to display a collection of child views within the application's UI, where

each child view will have a corresponding view model that, in turn, may implement one or more

commands. Composite commands can be used to represent the commands implemented by child views

within the application's UI and help to coordinate how they are invoked from within the parent view. To

support these scenarios, the Prism CompositeCommand and DelegateCommand classes have been

designed to work with Prism regions.

Prism regions (described in section, Regions in Composing the User Interface) provide a way for child

views to be associated with logical placeholders in the application's UI. They are often used to decouple

the specific layout of child views from their logical placeholder and its position in the UI. Regions are

based on named placeholders that are attached to specific layout controls. The following illustration

shows an example where each child view has been added to the region named EditRegion, and the UI

designer has chosen to use a Tab control to lay out the views within that region.

101

Defining the EditRegion using a Tab control

Composite commands at the parent view level will often be used to coordinate how commands at the

child view level are invoked. In some cases, you will want the commands for all shown views to be

executed, as in the Save All command example described earlier. In other cases, you will want the

command to be executed only on the active view. In this case, the composite command will execute the

child commands only on views that are deemed to be active; it will not execute the child commands on

views that are not active. For example, you may want to implement a Zoom command on the

application's toolbar or ribbon that causes only the currently active item to be zoomed, as shown in the

following diagram.

102

Defining the EditRegion using a Tab control

To support this scenario, Prism provides the IActiveAware interface. The IActiveAware interface defines

an IsActive property that returns true when the implementer is active, and an IsActiveChanged event

that is raised whenever the active state is changed.

You can implement the IActiveAware interface on child views or view models. It is primarily used to

track the active state of a child view within a region. Whether or not a view is active is determined by

the region adapter that coordinates the views within the specific region control. For the Tab control

shown earlier, there is a region adapter that sets the view in the currently selected tab as active, for

example.

The DelegateCommand class also implements the IActiveAware interface. The CompositeCommand

can be configured to evaluate the active status of child DelegateCommands (in addition to the

CanExecute status) by specifying true for the monitorCommandActivity parameter in the constructor.

When this parameter is set to true, the CompositeCommand class will consider each child

DelegateCommand's active status when determining the return value for the CanExecute method and

when executing child commands within the Execute method.

When the monitorCommandActivity parameter is true, the CompositeCommand class exhibits the

following behavior:

 CanExecute. Returns true only when all active commands can be executed. Child commands

that are inactive will not be considered at all.

 Execute. Executes all active commands. Child commands that are inactive will not be

considered at all.

You can use this functionality to implement the example described earlier. By implementing the

IActiveAware interface on your child view models, you will be notified when your child view becomes

active or inactive with the region. When the child view's active status changes, you can update the

103

active status of the child commands. Then, when the user invokes the Zoom composite command, the

Zoom command on the active child view will be invoked.

Commands Within Collections

Another common scenario you will often encounter when displaying a collection of items in a view is

when you need the UI for each item in the collection to be associated with a command at the parent

view level (instead of the item level).

For example, in the application shown in the following illustration, the view displays a collection of items

in a ListBox control, and the data template used to display each item defines a Delete button that allows

the user to delete individual items from the collection.

Binding commands within collections

Because the view model implements the Delete command, the challenge is to wire up the Delete button

in the UI for each item, to the Delete command implemented by the view model. The difficulty arises

because the data context for each of the items in the ListBox references the item in the collection

instead of the parent view model that implements the Delete command.

One approach to this problem is to bind the button in the data template to the command in the parent

view using the ElementName binding property to ensure that the binding is relative to the parent

control and not relative to the data template. The following XAML illustrates this technique.

XAML

<Grid x:Name="root">

 <ListBox ItemsSource="{Binding Path=Items}">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <Button Content="{Binding Path=Name}"

 Command="{Binding ElementName=root, Path=DataContext.DeleteCommand}" />

 </DataTemplate>

 </ListBox.ItemTemplate>

104

 </ListBox>

</Grid>

The content of button control in the data template is bound to the Name property on the item in the

collection. However, the command for the button is bound via the root element's data context to the

Delete command. This allows the button to be bound to the command at the parent view level instead

of at the item level. You can use the CommandParameter property to specify the item to which the

command is to be applied, or you can implement the command to operate on the currently selected

item (via a CollectionView).

Interaction Triggers and Commands

An alternative approach to commands is to use Blend for Visual Studio 2013 interaction triggers and the

InvokeCommandAction action.

XAML

<Button Content="Submit" IsEnabled="{Binding CanSubmit}">

 <i:Interaction.Triggers>

 <i:EventTrigger EventName="Click">

 <i:InvokeCommandAction Command="{Binding SubmitCommand}"/>

 </i:EventTrigger>

 </i:Interaction.Triggers>

</Button>

This approach can be used for any control to which you can attach an interaction trigger. It is especially

useful if you want to attach a command to a control that does not implement the ICommandSource

interface, or when you want to invoke the command on an event other than the default event. Again, if

you need to supply parameters for your command, you can use the CommandParameter property.

The following shows how to use the Blend EventTrigger configured to listen to the ListBox’s

SelectionChanged event. When this event occurs, the SelectedCommand is invoked by the

InvokeCommandAction.

XAML

<ListBox ItemsSource="{Binding Items}" SelectionMode="Single">

 <i:Interaction.Triggers>

 <i:EventTrigger EventName="SelectionChanged">

 <i:InvokeCommandAction Command="{Binding SelectedCommand}" />

 </i:EventTrigger>

 </i:Interaction.Triggers>

</ListBox>

Command-Enabled Controls vs. Behaviors

WPF controls that support commands allow you to declaratively hook up a control to a command.

These controls will invoke the specified command when the user interacts with the control in a specific

way. For example, for a Button control, the command will be invoked when the user clicks the button.

This event associated with the command is fixed and cannot be changed.

105

Behaviors also allow you to hook up a control to a command in a declarative fashion. However,

behaviors can be associated with a range of events raised by the control, and they can be used to

conditionally invoke an associated command object or a command method in the view model. In other

words, behaviors can address many of the same scenarios as command-enabled controls, and they

may provide a greater degree of flexibility and control.

You will need to choose when to use command-enabled controls and when to use behaviors, as well as

which kind of behavior to use. If you prefer to use a single mechanism to associate controls in the view

with functionality in the view model or for consistency, you might consider using behaviors, even for

controls that inherently support commands.

If you only need to use command-enabled controls to invoke commands on the view model, and if you

are happy with the default events to invoke the command, behaviors may not be required. Similarly, if

your developers or UI designers will not be using Blend for Visual Studio 2013, you may favor

command-enabled controls (or custom attached behaviors) because of the additional syntax required

for Blend behaviors.

Passing EventArgs Parameters to the Command

When you need to invoke a command in response to an event raised by a control located in the view,

you can use Prism’s InvokeCommandAction. Prism’s InvokeCommandAction differs from the class of

the same name in the Blend SDK in two ways. First, the Prism InvokeCommandAction updates the

enabled state of the associated control based on the return value of the command’s CanExecute

method. Second, the Prism InvokeCommandAction uses the EventArgs parameter passed to it from the

parent trigger, passing it to the associated command if the CommandParameter is not set.

Sometimes you need to pass a parameter to the command that comes from the parent trigger, such as

the EventArgs from the EventTrigger. In that scenario you cannot use Blend’s InvokeCommandAction

action.

In the following code you can see that Prism’s InvokeCommandAction has a property called

TriggerParameterPath that is used to specify the member (possibly nested) of the parameter passed as

the command parameter. In the following example, the AddedItems property of the SelectionChanged

EventArgs will be passed to the SelectedCommand command.

XAML

<ListBox Grid.Row="1" Margin="5" ItemsSource="{Binding Items}"

SelectionMode="Single">

 <i:Interaction.Triggers>

 <i:EventTrigger EventName="SelectionChanged">

 <!-- This action will invoke the selected command in the view model and

pass the parameters of the event to it. -->

 <prism:InvokeCommandAction Command="{Binding SelectedCommand}"

TriggerParameterPath="AddedItems" />

 </i:EventTrigger>

 </i:Interaction.Triggers>

106

</ListBox>

Handling Asynchronous Interactions

Your view model will often need to interact with services and components within your application that

communicate asynchronously instead of synchronously. This is especially true if you interacting with

web services or other resources over the network, or if your application uses background tasks to

perform calculations or I/O. Performing these operations asynchronously ensures that your application

remains responsive which is essential for delivering a good user experience.

When the user initiates an asynchronous request or background task, it is difficult to predict when the

response will arrive (or even if it will arrive) and, very often, what thread it will return on. Because the UI

can be updated only in the UI thread, you will often need to update the UI by dispatching a request on

the UI thread.

Retrieving Data and Interacting with Web Services

When interacting with web services or other remote access technologies, you will often encounter the

IAsyncResult pattern. In this pattern, instead of invoking a method, such as GetQuestionnaire, you use

the pair of methods BeginGetQuestionnaire and EndGetQuestionnaire. To initiate the asynchronous

call, you call BeginGetQuestionnaire. To get the results or determine if there was an exception when

invoking the target method, you call EndGetQuestionnaire when the call is complete.

To determine when to call EndGetQuestionnaire, you can either poll for completion or (preferably)

specify a callback during the call to BeginGetQuestionnaire. With the callback approach, your callback

method will be called when the execution of the target method is complete, allowing you to call

EndGetQuestionnaire from there, as shown here.

C#

IAsyncResult asyncResult =

this.service.BeginGetQuestionnaire(GetQuestionnaireCompleted, null // object state,

not used in this example);

private void GetQuestionnaireCompleted(IAsyncResult result)

{

 try

 {

 questionnaire = this.service.EndGetQuestionnaire(ar);

 }

 catch (Exception ex)

 {

 // Do something to report the error.

 }

}

It is important to note that in the calls to the End method (in this case, EndGetQuestionnaire), any

exceptions that occurred during the execution of the request will be raised. Your application must

107

handle these and may need to report them in a thread-safe way via the UI. If you do not handle these,

the thread will end and you will not be able to process the results.

Because the response usually is not on the UI thread, if you plan to modify anything that will affect UI

state, you will need to dispatch the response to the UI thread using either the thread Dispatcher or the

SynchronizationContext objects. In WPF, you will commonly use the dispatcher.

In the following code example, the Questionnaire object is retrieved asynchronously, and then it is set

as the data context for the QuestionnaireView. You can use the CheckAccess method of the dispatcher

to see whether you are on the UI thread. If you are not, you will need to use the BeginInvoke method to

have the request carried out on the UI thread.

C#

var dispatcher = System.Windows.Deployment.Current.Dispatcher;

if (dispatcher.CheckAccess())

{

 QuestionnaireView.DataContext = questionnaire;

}

else

{

 dispatcher.BeginInvoke(

 () => { Questionnaire.DataContext = questionnaire; });

}

The Model-View-ViewModel Reference Implementation (MVVM RI) shows an example of how to

consume an IAsyncResult-based service interface similar to the preceding examples. It also wraps the

service to provide a simpler callback mechanism for the consumer and handles the dispatch of the

callback to the caller's thread. For example, the following code example shows retrieval of the

questionnaire.

C#

this.questionnaireRepository.GetQuestionnaireAsync(

 (result) =>

 {

 this.Questionnaire = result.Result;

 });

The result object returned wraps the result retrieved in addition to errors that may have occurred. The

following code example shows how the errors could be evaluated.

C#

this.questionnaireRepository.GetQuestionnaireAsync(

 (result) =>

 {

 if (result.Error == null) {

 this.Questionnaire = result.Result;

 ...

 }

108

 else

 {

 // Handle error.

 }

 })

User Interaction Patterns

Frequently, an application needs to notify the user of the occurrence of an event or ask for confirmation

before proceeding with an operation. These interactions are often brief interactions designed to simply

inform them of a change in the application or to obtain a simple response from them. Some of these

interactions may appear modal to the user, such as when displaying a dialog box or a message box, or

they may appear non-modal to the user, such as when displaying a toast notification or a pop-up

window.

There are multiple ways to interact with the user in these cases, but implementing them in an MVVM-

based application in a way that preserves a clean separation of concerns can be challenging. For

example, in a non-MVVM application, you would often use the MessageBox class in the UI's code-

behind file to simply prompt the user for a response. In an MVVM application, this would not be

appropriate because it would break the separation of concerns between the view and the view model.

In terms of the MVVM pattern, the view model is responsible for initiating an interaction with the user

and for consuming and processing any response, while the view is responsible for actually managing the

interaction with the user using whatever user experience is appropriate. Preserving the separation of

concerns between the presentation logic implemented in the view model, and the user experience

implemented by the view, helps to improve testability and flexibility.

There are two common approaches to implementing these kinds of user interactions in the MVVM

pattern. One approach is to implement a service that can be used by the view model to initiate

interaction with the user, thereby preserving its independence on the view's implementation. Another

approach uses events raised by the view model to express the intent to interact with the user, along

with components in the view that are bound to these events and that manage the visual aspects of the

interaction. Each of these approaches is described in the following sections.

Using an Interaction Service

In this approach, the view model relies on an interaction service component to initiate interaction with

the user via a message box. This approach supports a clean separation of concerns and testability by

encapsulating the visual implementation of the interaction in a separate service component. Typically,

the view model has a dependency on an interaction service interface. It frequently acquires a reference

to the interaction service's implementation via dependency injection or a service locator.

After the view model has a reference to the interaction service, it can programmatically request

interaction with the user whenever necessary. The interaction service implements the visual aspects of

the interaction, as shown in the following illustration. Using an interface reference in the view model

allows for different implementations to be used, according to the implementation requirements of the

109

user interface. For example, implementations of the interaction service for WPF could be provided,

allowing for greater re-use of the application's presentation logic.

Using an interaction service to interact with the user

Modal interactions, such as where the user is presented with a MessageBox or modal pop-up window to

obtain a specific response before execution can proceed, can be implemented in a synchronous way,

using a blocking method call, as shown in the following code example.

C#

var result =
 interactionService.ShowMessageBox(

 "Are you sure you want to cancel this operation?",

 "Confirm",

 MessageBoxButton.OK);
if (result == MessageBoxResult.Yes)
{
 CancelRequest();
}

However, one of the disadvantages of this approach is that it forces a synchronous programming model.

An alternative asynchronous implementation allows for the view model to provide a callback to execute

on completion of the interaction. The following code illustrates this approach.

C#

interactionService.ShowMessageBox(
 "Are you sure you want to cancel this operation?",
 "Confirm",
 MessageBoxButton.OK,
 result =>
 {
 if (result == MessageBoxResult.Yes)
 {

110

 CancelRequest();
 }
 });

The asynchronous approach provides greater flexibility when implementing the interaction service by

allowing modal and non-modal interactions to be implemented. For example, in WPF, the MessageBox

class can be used to implement a truly modal interaction with the user.

Using Interaction Request Objects

Another approach to implementing simple user interactions in the MVVM pattern is to allow the view

model to make interaction requests directly to the view itself via an interaction request object coupled

with a behavior in the view. The interaction request object encapsulates the details of the interaction

request, and its response, and communicates with the view via events. The view subscribes to these

events to initiate the user experience portion of the interaction. The view will typically encapsulate the

user experience of the interaction in a behavior that is data-bound to the interaction request object

provided by the view model, as shown in the following illustration.

Using an interaction request object to interact with the user

This approach provides a simple, yet flexible, mechanism that preserves a clean separation between the

view model and the view—it allows the view model to encapsulate the application's presentation logic,

including any required user interactions, while allowing the view to fully encapsulate the visual aspects

of the interaction. The view model's implementation, including its expected interactions with the user

through view, can be easily tested, and the UI designer has a lot of flexibility in choosing how to

implement the interaction within the view via the use of different behaviors that encapsulate the

different user experiences for the interaction.

This approach is consistent with the MVVM pattern, enabling the view to reflect state changes it

observes on the view model and using two-way data binding for communication of data between the

two. The encapsulation of the non-visual elements of the interaction in an interaction request object,

111

and the use of a corresponding behavior to manage the visual elements of the interaction, are very

similar to the way command objects and command behaviors are used.

This approach is the approached adopted by Prism. The Prism Library directly supports this pattern

through the IInteractionRequest interface and the InteractionRequest<T> class. The

IInteractionRequest interface defines an event to initiate the interaction. Behaviors in the view bind to

this interface and subscribe to the event that it exposes. The InteractionRequest<T> class implements

the IInteractionRequest interface and defines two Raise methods to allow the view model to initiate an

interaction and to specify the context for the request, and optionally, a callback delegate.

Initiating Interaction Requests from the View Model

The InteractionRequest<T> class coordinates the view model's interaction with the view during an

interaction request. The Raise method allows the view model to initiate the interaction and to specify a

context object (of type T) and a callback method that is called after the interaction completes. The

context object allows the view model to pass data and state to the view for it to be used during the

interaction with the user. If a callback method was specified, the context object will be passed back to

the view model; this allows any changes the user made during the interaction to be passed back to the

view model.

C#

public interface IInteractionRequest
{
 event EventHandler<InteractionRequestedEventArgs> Raised;
}

public class InteractionRequest<T> : IInteractionRequest
 where T : INotification

{
 public event EventHandler<InteractionRequestedEventArgs> Raised;

 public void Raise(T context)

 {

 this.Raise(context, c => { });

 }

 public void Raise(T context, Action<T> callback)
 {
 var handler = this.Raised;
 if (handler != null)
 {
 handler(
 this,
 new InteractionRequestedEventArgs(
 context,
 () => { if (callback != null) callback(context); }));
 }

112

 }
}

Prism provides pre-defined context classes that support common interaction request scenarios. The

INotification interface is used for all context objects. It is used when the interaction request is used to

notify the user of an important event in the application. It provides two properties—Title and Content—

which will be displayed to the user. Typically, notifications are one-way, so it is not expected that the

user will change these values during the interaction. The Notification class is the default implementation

of this interface.

The IConfirmation interface extends the INotification interface and adds a third property—Confirmed—

which is used to signify that the user has confirmed or denied the operation. The Confirmation class, the

provided IConfirmation implementation, is used to implement MessageBox style interactions where the

user wants to obtain a yes/no response from the user. You can define a custom context class that

implements the INotification interface to encapsulate whatever data and state you need to support the

interaction.

To use the InteractionRequest<T> class, the view model class will create an instance of the

InteractionRequest<T> class and define a read-only property to allow the view to data-bind against it.

When the view model wants to initiate the request, it will call the Raise method, passing in the context

object and, optionally, the callback delegate.

C#

public InteractionRequestViewModel()

{

 this.ConfirmationRequest = new InteractionRequest<IConfirmation>();

 …

 // Commands for each of the buttons. Each of these raise a different interaction

request.

 this.RaiseConfirmationCommand = new DelegateCommand(this.RaiseConfirmation);

 …

}

public InteractionRequest<IConfirmation> ConfirmationRequest { get; private set; }

private void RaiseConfirmation()

{

 this.ConfirmationRequest.Raise(

 new Confirmation { Content = "Confirmation Message", Title = "Confirmation"

},

 c => { InteractionResultMessage = c.Confirmed ? "The user accepted." : "The

user cancelled."; });

 }

}

113

The Interactivity QuickStart illustrates how the IInteractionRequest interface and the

InteractionRequest<T> class are used to implement user interactions between the view and view model

(see InteractionRequestViewModel.cs).

Using Behaviors to Implement the Interaction User Experience

Because the interaction request object represents a logical interaction, the exact user experience for the

interaction is defined in the view. Behaviors are often used to encapsulate the user experience for an

interaction; this allows the UI designer to choose an appropriate behavior and to bind it to the

interaction request object on the view model.

The view must be set up to detect an interaction request event, and then to present the appropriate

visual display for the request. Triggers are used to initiate actions whenever a specific event is raised.

The standard EventTrigger provided by Blend can be used to monitor an interaction request event by

binding to the interaction request objects exposed by the view model. However, the Prism Library

defines a custom EventTrigger, named InteractionRequestTrigger, which automatically connects to the

appropriate Raised event of the IInteractionRequest interface. This reduces the amount of Extensible

Application Markup Language (XAML) needed and reduces the chance of inadvertently entering an

incorrect event name.

After the event is raised, the InteractionRequestTrigger will invoke the specified action. For WPF, the

Prism Library provides the PopupWindowAction class, which displays a pop-up window to the user.

When the window is displayed, its data context is set to the context parameter of the interaction

request. Using the WindowContent property of the PopupWindowAction class, you can specify the

view that will be shown in the popup window. The title of the pop-up window is bound to the Title

property of the context object.

Note: By default, the specific type of pop-up window displayed by the PopupWindowAction class

depends on the type of the context object. For a Notification context object, a

DefaultNotificationWindow is displayed, while for a Confirmation context object, a

DefaultConfirmationWindow is displayed. The DefaultNotificationWindow displays a simple popup

window to display the notification, while the DefaultConfirmationWindow also contains Accept and

Cancel buttons to capture the user's response. You can override this behavior by specifying a custom

pop-up window using the WindowContent property of the PopupWindowAction class.

The following example shows how the InteractionRequestTrigger and the PopupWindowAction are

used to display a confirmation pop-up window to the user within the Interactivity QuickStart.

XAML

<i:Interaction.Triggers>

 <prism:InteractionRequestTrigger SourceObject="{Binding ConfirmationRequest,

Mode=OneWay}">

 <prism:PopupWindowAction IsModal="True" CenterOverAssociatedObject="True"/>

 </prism:InteractionRequestTrigger>

</i:Interaction.Triggers>

114

Note: The PopupWindowAction has three important properties, IsModal, which sets the popup to

modal when set to true; CenterOverAssociatedObject, which displays the popup centered to the

parent window when set to true. Finally, the WindowContent property, which is not specified,

therefore the DefaultConfirmationWindow will be shown.

The PopupWindowAction sets the Notification object as the data context of the

DefaultNotificationWindow, which displays the Content property of the Notification object. After the

user closes the pop-up window, the context object is passed back to the view model, along with any

updated values, via the callback method. In the confirmation example in the Interactivity QuickStart, the

DefaultConfirmationWindow is responsible for setting the Confirmed property on the supplied

Confirmation object to true when the OK button is clicked.

Different triggers and actions can be defined to support other interaction mechanisms. The

implementation of the Prism InteractionRequestTrigger and PopupWindowAction classes can be used

as a basis for the development of your own triggers and actions.

Advanced Construction and Wire-Up

To successfully implement the MVVM pattern, you will need to fully understand the responsibilities of

the view, model, and view model classes so that you can implement your application's code in the

correct classes. Implementing the correct patterns to allow these classes to interact (through data

binding, commands, interaction requests, and so on) is also an important requirement. The final step is

to consider how the view, view model, and model classes are instantiated and associated with each

other at run time.

Choosing an appropriate strategy to manage this step is especially important if you are using a

dependency injection container in your application. The Managed Extensibility Framework (MEF) and

the Unity Application Block (Unity) both provide the ability to specify dependencies between the view,

view model, and model classes and to have them fulfilled by the container at run time.

Typically, you define the view model as a dependency of the view, so that when the view is constructed

(using the container) it automatically instantiates the required view model. In turn, any components or

services that the view model depends on will also be instantiated by the container. After the view model

is successfully instantiated, the view then sets it as its data context.

Creating the View and View Model Using MEF

Using MEF, you can specify the view's dependency on a view model using the import attribute, and you

can specify the concrete view model type to be instantiated via an export attribute. You can either

import the view model into the view via a property or as a constructor argument.

For example, the Shell view in the StockTrader Reference Implementation declares a write-only property

for the view model, together with an import attribute. When the view is instantiated, MEF creates an

instance of the appropriate exported view model and sets the property value. The property setter

assigns the view model as the view's data context, as shown here.

115

C#

[Import]

ShellViewModel ViewModel

{

 set { this.DataContext = value; }

}

The view model is defined and exported, as shown here.

C#

[Export]

public class ShellViewModel : BindableBase

{

 ...

}

An alternative approach is to define an importing constructor on the view, as shown here.

C#

public Shell()

{

 InitializeComponent();

}

[ImportingConstructor]

public Shell(ShellViewModel viewModel) : this()

{

 this.DataContext = viewModel;

}

The view model will then be instantiated by MEF and passed as an argument to the view's constructor.

Note: You can use property injection or constructor injection in both MEF and Unity; however, you

may find property injection to be simpler because you do not have to maintain two constructors.

Design-time tools, such as Visual Studio and Expression Blend, require that controls have a default

parameter-less constructor in order to display them in the designer. Any additional constructors that

you define should ensure that the default constructor is called so that view can be properly initialized

via the InitializeComponent method.

Creating the View and View Model Using Unity

Using Unity as your dependency injection container is similar to using MEF, and both property-based

and constructor-based injection are supported. The principal difference is that the types are typically not

implicitly discovered at run time; instead, they have to be registered with the container.

Typically, you define an interface on the view model so the view model's specific concrete type can be

decoupled from the view. For example, the view can define its dependency on the view model via a

constructor argument, as shown here.

116

C#

public Shell()

{

 InitializeComponent();

}

public Shell(ShellViewModel viewModel)

: this()

{

 this.DataContext = viewModel;

}

Note: The default parameter-less constructor is necessary to allow the view to work in design-time

tools, such as Visual Studio and Blend for Visual Studio 2013.

Alternatively, you can define a write-only view model property on the view, as shown here. Unity will

instantiate the required view model and call the property setter after the view is instantiated.

C#

public Shell()

{

 InitializeComponent();

}

[Dependency]

public ShellViewModel ViewModel

{

 set { this.DataContext = value; }

}

The view model type is registered with the Unity container, as shown here.

C#

IUnityContainer container;

container.RegisterType<ShellViewModel>();

The view can then be instantiated through the container, as shown here.

C#

IUnityContainer container;

var view = container.Resolve<Shell>();

Creating the View and View Model Using an External Class

Often, you will find it useful to define a controller or service class to coordinate the instantiation of the

view and view model classes. This approach can be used with a dependency injection container, such as

MEF or Unity, or when the view explicitly creates its required view model.

117

This approach is particularly useful when implementing navigation in your application. In this case, the

controller is associated with a placeholder control or region in the UI, and it coordinates the

construction and placement of views into that placeholder or region.

For example, a service class can be used to build views using a container and show them in the main

page. In this example, views are specified by view names. Navigation is initiated via a call to the

ShowView method on the UI service, as shown in this simple example.

C#

private void NavigateToQuestionnaireList()

{

 // Ask the UI service to go to the "questionnaire list" view.

 this.uiService.ShowView(ViewNames.QuestionnaireTemplatesList);

}

The UI service is associated with a placeholder control in the UI of the application; it encapsulates the

creation of the required view and coordinates its appearance in the UI. The ShowView of the UIService

creates an instance of the view via the container (so that its view model and other dependencies can be

fulfilled) and then displays it in the proper location, as shown here.

C#

public void ShowView(string viewName)

{

 var view = this.ViewFactory.GetView(viewName);

 this.MainWindow.CurrentView = view;

}

Note: Prism provides extensive support for navigation within regions. Region navigation uses a

mechanism very similar to the preceding approach, except that the region manager is responsible for

coordinating the instantiation and placement of the view in the specific region. For more information,

see the section, View-Based Navigation in Navigation.

Testing MVVM Applications

Testing models and view models from MVVM applications is the same as testing any other classes, and

the same tools and techniques—such as unit testing and mocking frameworks—can be used. However,

there are some testing patterns that are typical to model and view model classes and can benefit from

standard testing techniques and test helper classes.

Testing INotifyPropertyChanged Implementations

Implementing the INotifyPropertyChanged interface allows views to react to changes originated in

models and view models. These changes are not limited to domain data shown in controls; they are also

used to control the view, such as view model states that cause animations to be started or controls to be

disabled.

118

Simple Cases

Properties that can be updated directly by the test code can be tested by attaching an event handler to

the PropertyChanged event and checking whether the event is raised after setting a new value for the

property. Helper classes, such as the PropertyChangeTracker class, can be used to attach a handler and

collect the results; this avoids repetitive tasks when writing tests. The following code example shows a

test using this type of helper class.

C#

var changeTracker = new PropertyChangeTracker(viewModel);

viewModel.CurrentState = "newState";

CollectionAssert.Contains(changeTracker.ChangedProperties, "CurrentState");

Properties that are the result of a code-generation process that guarantees the implementation of the

INotifyPropertyChanged interface, such as those in code generated by a model designer, typically do

not need to be tested.

Computed and Non-Settable Properties

When properties cannot be set by test code—such as properties with non-public setters or read-only,

calculated properties—the test code needs to stimulate the object under test cause the change in the

property and its corresponding notification. However, the structure of the test is the same as that of the

simpler cases, as shown in the following code example, where a change in a model objects causes a

property in a view model to change.

C#

var changeTracker = new PropertyChangeTracker(viewModel);

var question = viewModel.Questions.First() as OpenQuestionViewModel;

question.Question.Response = "some text";

CollectionAssert.Contains(changeTracker.ChangedProperties, "UnansweredQuestions");

Whole Object Notifications

When you implement the INotifyPropertyChanged interface, it is allowed for an object to raise the

PropertyChanged event with a null or empty string as the changed property name to indicate that all

properties in the object may have changed. These cases can be tested just like the cases that notify

individual property names.

Testing INotifyDataErrorInfo Implementations

There are several mechanisms available to enable bindings to perform input validation, such as throwing

exceptions when properties are set, implementing the IDataErrorInfo interface, and implementing the

INotifyDataErrorInfo interface. Implementing the INotifyDataErrorInfo interface allows for greater

119

sophistication because it supports indicating multiple errors per property and performing asynchronous

and cross-property validation; as such, it also requires the most testing.

There are two aspects to testing INotifyDataErrorInfo implementations: testing that the validation rules

are correctly implemented and testing that the requirements for implementations of the interface, such

as raising the ErrorsChanged event when the result for the GetErrors method would be different, are

met.

Testing Validation Rules

Validation logic is usually simple to test, because it is typically a self-contained process where the output

depends on the input. For each property with validation rules associated, there should be tests on the

results of invoking the GetErrors method with the validated property name for valid values, invalid

values, boundary values, and so on. If the validation logic is shared, like when expressing validation rules

declaratively using the data annotation's validation attribute, the more exhaustive tests can be

concentrated on the shared validation logic. On the other hand, custom validation rules must be

thoroughly tested.

C#

// Invalid case

var notifyErrorInfo = (INotifyDataErrorInfo)question;

question.Response = -15;

Assert.IsTrue(notifyErrorInfo.GetErrors("Response").Cast<ValidationResult>().Any());

// Valid case

var notifyErrorInfo = (INotifyDataErrorInfo)question;

question.Response = 15;

Assert.IsFalse(notifyErrorInfo.GetErrors("Response").Cast<ValidationResult>().Any());

Cross-property validation rules follow the same pattern, typically requiring more tests to accommodate

the combination of values for the different properties.

Testing the Requirements for INotifyDataErrorInfo Implementations

Besides producing the right values for the GetErrors method, implementations of the

INotifyDataErrorInfo interface must ensure the ErrorsChanged event is raised appropriately, such as

when the result for GetErrors would be different. Additionally, the HasErrors property must reflect the

overall error state of the object implementing the interface.

There is no mandatory approach for implementing the INotifyDataErrorInfo interface. However,

implementations that rely on objects that accumulate validation errors and perform the necessary

notifications are typically preferred because they are simpler to test. This is because it is not necessary

to verify that the requirements for all the members of the INotifyDataErrorInfo interface are met for

120

each validation rule on each validated property (as long, of course, as the error management object is

properly tested).

Testing the interface requirements should involve at least the following verifications:

 The HasErrors property reflects the overall error state of the object. Setting a valid value for a

previously invalid property does not result in a change for this property if other properties still

have invalid values.

 The ErrorsChanged event is raised when the error state for a property changes, as reflected by

a change in the result for the GetErrors method. The error state change could be going from a

valid state (that is, no errors) to an invalid state and vice versa, or it can go from an invalid state

to a different invalid state. The updated result for GetErrors is available for handlers of the

ErrorsChanged event.

When testing implementations for the INotifyPropertyChanged interface, helper classes, such as the

NotifyDataErrorInfoTestHelper class in the MVVM sample projects, usually make writing tests for

implementations of the INotifyDataErrorInfo interface easier by handling repetitive housekeeping

operations and standard checks. They are particularly useful when the interface is implemented without

relying on some kind of reusable errors manager. The following code example shows this type of helper

class.

C#

var helper =

 new NotifyDataErrorInfoTestHelper<NumericQuestion, int?>(

 question,

 q => q.Response);

helper.ValidatePropertyChange(

 6,

 NotifyDataErrorInfoBehavior.Nothing);

helper.ValidatePropertyChange(

 20,

 NotifyDataErrorInfoBehavior.FiresErrorsChanged

 | NotifyDataErrorInfoBehavior.HasErrors

 | NotifyDataErrorInfoBehavior.HasErrorsForProperty);

helper.ValidatePropertyChange(

 null,

 NotifyDataErrorInfoBehavior.FiresErrorsChanged

 | NotifyDataErrorInfoBehavior.HasErrors

 | NotifyDataErrorInfoBehavior.HasErrorsForProperty);

helper.ValidatePropertyChange(

 2,

 NotifyDataErrorInfoBehavior.FiresErrorsChanged);

121

Testing Asynchronous Service Calls

When implementing the MVVM pattern, view models usually invoke operations on services, often

asynchronously. Tests for code that invokes these operations typically use mocks or stubs as

replacements for the actual services

The standard patterns used to implement asynchronous operations provide different guarantees

regarding the thread in which notifications about the status of an operation occur. Although the Event-

based Asynchronous design pattern guarantees that handlers for the events are invoked on a thread

that is appropriate for the application, the IAsyncResult design pattern does not provide any such

guarantees forcing the view model code that originates the call to ensure any changes that would affect

the view are posted to the UI thread.

Dealing with threading concerns requires more complicated, and, therefore, usually harder to test, code.

It also usually requires the tests themselves to be asynchronous. When notifications are guaranteed to

occur in the UI thread, either because the standard event-based asynchronous pattern is used or

because view models rely on a service access layer to marshal notifications to the appropriate thread,

tests can be simplified and can essentially play the role of a "dispatcher for the UI thread."

The way services are mocked depends on the asynchronous event pattern used to implement their

operations. If a method-based based pattern is used, mocks for the service interface created using a

standard mocking framework are usually enough, but if the event-based pattern is used, mocks based

on a custom class that implements the methods to add and remove handlers for the service events are

usually preferred.

The following code example shows a test for the appropriate behavior on the successful completion of

an asynchronous operation notified in the UI thread using mocks for services. In this example, the test

code captures the callback supplied by the view model when it makes the asynchronous service call. The

test then simulates the completion of that call later in the test by invoking the callback. This approach

allows testing of a component that uses an asynchronous service without the complexity of making your

tests asynchronous.

C#

questionnaireRepositoryMock

 .Setup(

 r =>

 r.SubmitQuestionnaireAsync(

 It.IsAny<Questionnaire>(),

 It.IsAny<Action<IOperationResult>>()))

 .Callback<Questionnaire, Action<IOperationResult>>(

 (q, a) => callback = a);

uiServiceMock

 .Setup(svc => svc.ShowView(ViewNames.QuestionnaireTemplatesList))

 .Callback<string>(viewName => requestedViewName = viewName);

submitResultMock

http://msdn.microsoft.com/en-us/library/wewwczdw.aspx
http://msdn.microsoft.com/en-us/library/wewwczdw.aspx
http://msdn.microsoft.com/en-us/library/ms228963.aspx

122

 .Setup(sr => sr.Error)

 .Returns<Exception>(null);

CompleteQuestionnaire(viewModel);

viewModel.Submit();

// Simulate callback posted to the UI thread.

callback(submitResultMock.Object);

// Check expected behavior – request to navigate to the list view.

Assert.AreEqual(ViewNames.QuestionnaireTemplatesList, requestedViewName);

Note: Using this testing approach only exercises the functional capabilities of the objects under test; it

does not test that the code is thread safe.

More Information

For more information about the logical tree, see Trees in WPF on MSDN.

For more information about attached properties, see Attached Properties Overview on MSDN.

For more information about MEF, see Managed Extensibility Framework Overview on MSDN.

For more information about Unity, see Unity Application Block on MSDN.

For more information about DelegateCommand, see Implementing the MVVM Pattern.

For more information about using Microsoft Expression Blend behaviors, see Working with built-in

behaviors on MSDN.

For more information about creating custom behaviors with Microsoft Expression Blend, see Creating

Custom Behaviors on MSDN.

For more information about creating custom triggers and actions with Microsoft Expression Blend, see

Creating Custom Triggers and Actions on MSDN.

For more information about using the dispatcher in WPF , see Threading Model and The Dispatcher Class

on MSDN.

For more information about region navigation, see the section, View-Based Navigation in Navigation.

For more information about the Event-based Asynchronous pattern, see Event-based Asynchronous

Pattern Overview on MSDN.

For more information about the IAsyncResult design pattern, see Asynchronous Programming Overview

on MSDN.

http://msdn.microsoft.com/en-us/library/ms753391.aspx
http://msdn.microsoft.com/en-us/library/cc265152(VS.95).aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://www.msdn.com/unity
http://msdn.microsoft.com/en-us/library/ff724013(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ff724013(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ff724708(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ff724708(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ff724707(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ms741870.aspx
http://msdn.microsoft.com/en-us/library/ms615907(v=VS.95).aspx
http://msdn.microsoft.com/en-us/library/wewwczdw.aspx
http://msdn.microsoft.com/en-us/library/wewwczdw.aspx
http://msdn.microsoft.com/en-us/library/ms228963.aspx

123

7: Composing the User Interface
A composite application user interface (UI) is composed from loosely coupled visual components known

as views that are typically contained in the application modules, but they do not need to be. If you

divide your application into modules, you need some way to loosely compose the UI, but you might

choose to use this approach even if the views are not in modules. To the user, the application presents a

seamless user experience and delivers a fully integrated application.

To compose your UI, you need an architecture that allows you to create a layout composed of loosely

coupled visual elements generated at run time. Additionally, the architecture should provide strategies

for these visual elements to communicate in a loosely coupled fashion.

An application UI can be built by using one of the following paradigms:

 All required controls for a form are contained in a single Extensible Application Markup

Language (XAML) file, composing the form at design time.

 Logical areas of the form are separated into distinct parts, typically user controls. The parts are

referenced by the form, and the form is composed at design time.

 Logical areas of the form are separated into distinct parts, typically user controls. The parts are

unknown to the form and are dynamically added to the form at run time. Applications that use

this methodology are known as composite applications using UI composition patterns.

The Stock Trader Reference Implementation (Stock Trader RI) is composed by loading multiple views

that come from different modules into regions exposed by the shell, as shown in the following

illustration.

124

Stock Trader RI regions and views

UI Layout Concepts

The root object in a composite application is known as the shell. The shell acts as a master page for the

application. The shell contains one or more regions. Regions are place holders for content that will be

loaded at run time. Regions are attached to UI elements such as a ContentControl, ItemsControl,

TabControl or a custom control and manage the UI element's content. Region content can be loaded

automatically or on-demand, depending on the application requirements.

Typically, a region's content is a view. A view encapsulates a portion of your UI that you would like to

keep as decoupled as possible from other parts of the application. You can define a view as a user

control, data template, or even a custom control.

A region manages the display and layout of views. Regions can be accessed in a decoupled way by their

name and support dynamically adding or removing views. A region is attached to a hosting control.

Think of regions as containers into which views are dynamically loaded.

The following sections introduce the high-level core concepts for composite application development.

Shell

The shell is the application root object that contains the primary UI content. In a Windows Presentation

Foundation (WPF) application, the shell is the Window object.

The shell plays the role of a master page providing the layout structure for the application. The shell

contains one or more named regions where modules can specify the views that will appear. It can also

define certain top-level UI elements, such as the background, main menu, and toolbar.

125

The shell defines the overall appearance of the application. It might define styles and borders that are

present and visible in the shell layout itself, and it might also define styles, templates, and themes that

will be applied to the views that are plugged into the shell.

Typically, the shell is a part of the WPF application project. The assembly that contains the shell might or

might not reference the assemblies that contain the views to be loaded in the shell's regions.

Views

Views are the main unit of UI construction within a composite application. You can define a view as a

user control, page, data template, or custom control. A view encapsulates a portion of your UI that you

would like to keep as decoupled as possible from other parts of the application. You can choose what

goes in a view based on encapsulation or a piece of functionality, or you can choose to define something

as a view because you will have multiple instances of that view in your application.

Because of the content model of WPF, there is nothing specific to the Prism Library required to define a

view. The easiest way to define a view is to define a user control. To add a view to the UI, you simply

need a way to construct it and add it to a container. WPF provides mechanisms to do this. The Prism

Library adds the ability to define a region into which a view can be dynamically added at run time.

Composite Views

A view that supports specific functionality can become complicated. In that case, you might want to

divide the view into several child views and have the parent view handle constructing itself by using the

child views as parts. The application might do this statically at design time, or it might support having

modules add child views through a contained region at run time. When you have a view that is not fully

defined in a single view class, you can refer to that as a composite view. In many situations, a composite

view is responsible for constructing the child views and for coordinating the interactions between them.

You can design child views that are more loosely coupled from their sibling views and their parent

composite view by using the Prism Library commands and the event aggregator.

Views and Design Patterns

Although the Prism Library does not require that you use them, you should consider using one of several

UI design patterns when implementing a view. The Stock Trader RI and QuickStarts demonstrate the

Model-View-ViewModel (MVVM) pattern as a way to implement a clean separation between the view

layout and the view logic.

The MVVM UI design pattern is recommended because it is a natural fit for the Microsoft XAML

platforms. The dependency property system and rich data binding stack of these platforms enable the

view and view model to communicate in a loosely coupled manner.

Separating the logic from the view is important for testability and maintainability, and it improves the

developer-designer workflow.

If you create a view with a user control or custom control and put all the logic in the code-behind file,

your view can be difficult to test because you have to create an instance of the view to unit test the

logic. This is a problem particularly if the view derives from, or depends on, running WPF components as

126

part of its execution context. To make sure that you can unit test the view logic in isolation without

these dependencies, you need to be able to create a mockup of the view to remove the dependencies

on the execution context, which requires separate classes for the view and the logic.

If you define a view as a data template, there is no code associated with the view itself. Therefore, you

have to put the associated logic somewhere else. The same clean separation of logic from layout that is

required for testability also helps make the view easier to maintain.

Note: Unit testing and UI automation testing are two different types of testing with different

coverage.

Unit testing best practices recommend that the object be tested in isolation. To achieve object

isolation, you need a mockup or stub for each external dependency. Then granular unit tests

are run against the object.

UI automation testing runs the application, applies gestures to the UI, and then tests for the

expected results. This type of test verifies that UI elements are correctly connected to the

application logic.

Separating the logic from the view provides a clean separation of concerns. In addition to testability

considerations, this separation enables designers to work on the UI independently of the developer. For

more information about MVVM, see Implementing the MVVM Pattern.

Commands, UI Triggers, Actions, and Behaviors

When a view is implemented with its logic in the code-behind file, you add event handlers to service UI

interactions. However, when you use MVVM, the view model cannot directly handle events raised by

the UI. To route UI gesture events to the view model, you can use commands or UI triggers, actions, and

behaviors.

Commands

Commands separate the semantics and the object that invokes a command from the logic that executes

the command. Built into commands is the ability to indicate whether an action is available. Commands

in the UI are data bound to ICommand properties on the view model. For more information about

commands, see Commands in Implementing the MVVM Pattern.

UI Triggers, Actions, and Behaviors

Triggers, actions, and behaviors are part of the Microsoft.Expression.Interactivity namespace and are

shipped with Blend for Visual Studio 2013. They are also part of the Blend SDK. Triggers, actions, and

behaviors provide a comprehensive API for handling UI events or commands, and then routing them to

the ICommand properties methods exposed by the DataContext. For more information about UI

triggers, actions, and behaviors, see sections Invoking Command Objects from the View in Implementing

the MVVM Pattern and Interaction Triggers and Events to Commands in Advanced MVVM Scenarios.

127

User Interactions

User interactions are interactions that the application presents to the user. These interaction are

typically popup windows presented to the user. In MVVM scenarios these user interactions can be

generated either from the view or from the view model. Prism provides InteractionRequests and

InteractionRequestTriggers for cases when the view model needs to request a user interaction, and the

InvokeCommandAction action for when the view needs to invoke a command when a specified event is

fired.

For more information about user Interactions, examples, and how to use them, see the Interactivity

QuickStart.

Data Binding

Data binding is one of the most important framework features of the XAML platforms. To successfully

develop applications on the XAML platforms, you need a solid understanding of data binding.

Data binding takes full advantage of the intrinsic change notification provided by the dependency

property system. When combined with the Common Language Runtime (CLR) class implementation of

the INotifyPropertyChanged interface, change notification enables codeless interaction between the

target and source objects participating in the data binding.

Data binding enables dissimilar target and source types to data bind by using a value converter to

convert one type to the other type. Data binding has multiple validation hooks within its pipeline that

you can use to validate user input.

You are strongly encouraged to read the Dependency Properties Overview and Data Binding Overview

topics on MSDN. A full understand of these two topics is critical to successfully developing applications

on the Microsoft XAML platforms. For more information about data binding, see Data Binding in

Implementing the MVVM Pattern.

Regions

Regions are enabled in the Prism Library through a region manager, regions, and region adapters. The

next sections describe how they work together.

Region Manager

The RegionManager class is responsible for creating and maintaining a collection of regions for the host

controls. The RegionManager uses a control-specific adapter that associates a new region with the host

control. The following illustration shows the relationship between the region, control, and adapter set

up by the RegionManager.

http://msdn.microsoft.com/en-us/library/ms752914.aspx
http://msdn.microsoft.com/en-us/library/ms752347.aspx

128

Region, control, and adapter relationship

The RegionManager can create regions in code or in XAML. The RegionManager.RegionName attached

property is used to create a region in XAML by applying the attached property to the host control.

Applications can contain one or more instances of a RegionManager. You can specify the

RegionManager instance into which you want to register the region. This is useful if you want to move

the control around in the visual tree and do not want the region to be cleared when the attached

property value is removed.

The RegionManager provides a RegionContext attached property that permits its regions to share data.

Region Implementation

A region is a class that implements the IRegion interface. The term region represents a container that

can hold dynamic data that is presented in a UI. A region allows the Prism Library to place dynamic

content contained in modules in predefined placeholders in a UI container.

Regions can hold any type of UI content. A module can contain UI content presented as a user control, a

data type that is associated with a data template, a custom control, or any combination of these. This

lets you define the appearance for the UI areas and then have modules place content in these

predetermined areas.

A region can contain zero or more items. Depending on the type of host control the region is managing,

one or more of the items could be visible. For example, a ContentControl can display only a single

object. However, the region in which it is located can contain many items, and an ItemsControl can

display multiple items. This allows each item in the region to be visible in the UI.

In the following illustration, the Stock Trader RI shell contains four regions: MainRegion,

MainToolbarRegion, ResearchRegion, and ActionRegion. These regions are populated by the various

modules in the application—the content can be changed at any time.

129

Stock Trader RI regions

Module User Control to Region Mapping

To demonstrate how modules and content are associated with regions, see the following illustration. It

shows the association of WatchModule and the NewsModule with the corresponding regions in the

shell.

The MainRegion contains the WatchListView user control, which is contained in the WatchModule. The

ResearchRegion also contains the ArticleView user control, which is contained in the NewsModule.

In applications created with the Prism Library, mappings like this will be a part of the design process

because designers and developers use them to determine what content is proposed to be in a specific

region. This allows designers to determine the overall space needed and any additional items that must

be added to ensure that the content will be viewable in the allowable space.

130

Module user control to region mapping

Default Region Functionality

While you do not need to fully understand region implementations to use them, it might be useful to

understand how controls and regions are associated and the default region functionality: for example,

how a region locates and instantiates views, how views can be notified when they are the active view, or

how view lifetime can be tied to activation.

The following sections describe the region adapter and region behaviors.

Region Adapter

To expose a UI control as a region, it must have a region adapter. Region adapters are responsible for

creating a region and associating it with the control. This allows you to use the IRegion interface to

manage the UI control contents in a consistent way. Each region adapter adapts a specific type of UI

control. The Prism Library provides the following three region adapters:

 ContentControlRegionAdapter. This adapter adapts controls of type

System.Windows.Controls.ContentControl and derived classes.

 SelectorRegionAdapter. This adapter adapts controls derived from the class

System.Windows.Controls.Primitives.Selector, such as the

System.Windows.Controls.TabControl control.

 ItemsControlRegionAdapter. This adapter adapts controls of type

System.Windows.Controls.ItemsControl and derived classes.

Region Behaviors

The Prism Library introduces the concept of region behaviors. These are pluggable components that give

a region most of its functionality. Region behaviors were introduced to support view discovery and

131

region context (described later in this topic), and to create an API that is consistent across both WPF and

Silverlight. Additionally, behaviors provide an effective way to extend a region's implementation.

A region behavior is a class that is attached to a region to give the region additional functionality. This

behavior is attached to the region and remains active for the lifetime of the region. For example, when

an AutoPopulateRegionBehavior is attached to a region, it automatically instantiates and adds any

ViewTypes that are registered against regions with that name. For the lifetime of the region, it keeps

monitoring the RegionViewRegistry for new registrations. It is easy to add custom region behaviors or

replace existing behaviors, either on a system-wide or a per-region basis.

The next sections describe the default behaviors that are automatically added to all regions. One

behavior, the SelectorItemsSourceSyncBehavior, is only attached to controls that derive from the

Selector.

Registration Behavior

The RegionManagerRegistrationBehavior is responsible for making sure that the region is registered to

the correct RegionManager. When a view or control is added to the visual tree as a child of another

control or region, any region defined in the control should be registered in the RegionManager of the

parent control. When the child control is removed, the registered region is unregistered.

Auto-Population Behavior

There are two classes responsible for implementing view discovery. One of them is the

AutoPopulateRegionBehavior. When it is attached to a region, it retrieves all view types that are

registered under the name of the region. It then creates instances of those views and adds them to the

region. After the region is created, the AutoPopulateRegionBehavior monitors the RegionViewRegistry

for any newly registered view types for that region name.

If you want to have more control over the view discovery process, consider creating your own

implementation of the IRegionViewRegistry and the AutoPopulateRegionBehavior.

Region Context Behaviors

The region context functionality is contained within two behaviors: the

SyncRegionContextWithHostBehavior and the BindRegionContextToDependencyObjectBehavior.

These behaviors are responsible for monitoring changes to the context that were made on the region,

and then synchronizing the context with a context dependency property attached to the view.

Activation Behavior

The RegionActiveAwareBehavior is responsible for notifying a view if it is active or inactive. The view

must implement IActiveAware to receive these change notifications. This active aware notification is

one-directional (it travels from the behavior to the view). The view cannot affect its active state by

changing the active property on the IActiveAware interface.

Region Lifetime Behavior

The RegionMemberLifetimeBehavior is responsible for determining if an item should be removed from

the region when it is deactivated. The RegionMemberLifetimeBehavior monitors the region's

132

ActiveViews collection to discover items that transition into a deactivated state. The behavior checks

the removed items for IRegionMemberLifetime or the RegionMemberLifetimeAttribute (in that order)

to determine if it should be kept alive on removal.

If the item in the collection is a System.Windows.FrameworkElement, it will also check its DataContext

for IRegionMemberLifetime or the RegionMemberLifetimeAttribute.

The region items are checked in the following order:

1. IRegionMemberLifetime.KeepAlive value

2. DataContext's IRegionMemberLifetime.KeepAlive value

3. RegionMemberLifetimeAttribute.KeepAlive value

4. DataContext's RegionMemberLifetimeAttribute.KeepAlive value

Control-Specific Behaviors

The SelectorItemsSourceSyncBehavior is used only for controls that derive from Selector, such as a tab

control in WPF. It is responsible for synchronizing the views in the region with the items of the selector,

and then synchronizing the active views in the region with the selected items of the selector.

Extending the Region Implementation

The Prism Library provides extension points that allow you to customize or extend the default behavior

of the provided APIs. For example, you can write your own region adapters, region behaviors, or change

the way the Navigation API parses URIs. For more information about extending the Prism Library, see

Extending the Prism Library.

View Composition

View composition is the constructing of a view. In composite applications, views from multiple modules

have to be displayed at run time in specific locations within the application UI. To achieve this, you need

to define the locations where the views will appear and how the views will be created and displayed in

those locations.

Views can be created and displayed in the locations either automatically through view discovery, or

programmatically through view injection. These two techniques determine how individual views are

mapped to named locations within the application UI.

View Discovery

In view discovery, you set up a relationship in the RegionViewRegistry between a region's name and the

type of a view. When a region is created, the region looks for all the ViewTypes associated with the

region and automatically instantiates and loads the corresponding views. Therefore, with view

discovery, you do not have explicit control over when the views that correspond to a region are loaded

and displayed.

133

View Injection

In view injection, your code obtains a reference to a region, and then programmatically adds a view into

it. Typically, this is done when a module initializes or as a result of a user action. Your code will query a

RegionManager for a specific region by name and then inject views into it. With view injection, you have

more control over when views are loaded and displayed. You also have the ability to remove views from

the region. However, with view injection, you cannot add a view to a region that has not yet been

created.

Navigation

The Prism Library 4.0 contains Navigation APIs. The Navigation APIs simplify the view injection process

by allowing you to navigate a region to an URI. The Navigation API instantiates the view, adds it to the

region, and then activates it. Additionally, the Navigation API allows navigating back to a previously

created view contained in a region. For more information about the Navigation APIs, see Navigation.

When to Use View Discovery vs. View Injection

Choosing which view loading strategy to use for a region depends on the application requirements and

the function of the region.

Use view discovery in the following situations:

 Automatic view loading is desired or required.

 Single instances of a view will be loaded into the region.

Use view injection in the following situations:

 Your application uses the Navigation APIs.

 You need explicit or programmatic control over when a view is created and displayed, or you

need to remove a view from a region; for example, as a result of application logic or navigation.

 You need to display multiple instances of the same views in a region, where each view instance

is bound to different data.

 You need to control which instance of a region a view is added to. For example, you want to add

a customer detail view to a specific customer detail region. (This scenario requires

implementing scoped regions as described later in this topic.)

UI Layout Scenarios

In composite applications, views from multiple modules are displayed at run time in specific locations

within the application UI. To achieve this, you need to define the locations where the views will appear

and how the views will be created and displayed in those locations.

The decoupling of the view and the location in the UI in which it will be displayed allows the appearance

and layout of the application to evolve independently of the views that appear within the region.

134

The next sections describe the core scenarios you will encounter when you develop a composite

application. When appropriate, examples from the Stock Trader RI will be used to demonstrate a

solution for the scenario.

Implementing the Shell

The shell is the application root object in which the primary UI content is contained. In a Windows

Presentation Foundation (WPF) application, the shell is the Window object.

A shell can contain named regions where modules can specify the views that will appear. It can also

define certain top-level UI elements, such as the main menu and toolbar. The shell defines the overall

structure and appearance for the application, and is similar to an ASP.NET master page control. It could

define styles and borders that are present and visible in the shell layout itself, and it could also define

styles, templates, and themes that are applied to the views that are plugged into the shell.

You do not need to have a distinct shell as part of your application architecture to use the Prism Library.

If you are building a completely new composite application, implementing a shell provides a well-

defined root and initialization pattern for setting up the main UI of your application. However, if you are

adding Prism Library features to an existing application, you do not have to change the basic

architecture of your application to add a shell. Instead, you can alter your existing window definitions or

controls to add regions that can pull in views as needed.

You can also have more than one shell in your application. If your application is designed to open more

than one top-level window for the user, each top-level window acts as shell for the content it contains.

Stock Trader RI Shell

The WPF Stock Trader RI has a shell as its main window. In the following illustration, the shell and views

are highlighted. The shell is the main window that appears when the Stock Trader RI starts and which

contains all the views. It defines the regions into which modules add their views and a couple of top-

level UI items, including the CFI Stock Trader title and the Watch List tear-off banner.

135

Stock Trader RI shell window, regions, and views

The shell implementation in the Stock Trader RI is provided by Shell.xaml, its code-behind file

Shell.xaml.cs, and its view model ShellViewModel.cs. Shell.xaml includes the layout and UI elements that

are part of the shell, including definitions of regions to which modules add their views.

The following XAML shows the structure and main XAML elements that define the shell. Notice that the

RegionName attached property is used to define the four regions and that the window background

image provides a background for the shell.

XAML

<!--Shell.xaml (WPF) -->

<Window x:Class="StockTraderRI.Shell">

 <!--shell background -->

 <Window.Background>

 <ImageBrush ImageSource="Resources/background.png" Stretch="UniformToFill"/>

 </Window.Background>

 <Grid>

 <!-- logo -->

 <Canvas x:Name="Logo" ...>

 <TextBlock Text="CFI" ... />

 <TextBlock Text="STOCKTRADER" .../>

 </Canvas>

 <!-- main bar -->

136

 <ItemsControl

 x:Name="MainToolbar"

 prism:RegionManager.RegionName="{x:Static inf:RegionNames.MainToolBarRegion}">

 </ItemsControl>

 <!-- content -->

 <Grid>

 <Controls:AnimatedTabControl

 x:Name="PositionBuySellTab"

 prism:RegionManager.RegionName="{x:Static inf:RegionNames.MainRegion}"/>

 </Grid>

 <!-- details -->

 <Grid>

 <ContentControl

 x:Name="ActionContent"

 prism:RegionManager.RegionName="{x:Static inf:RegionNames.ActionRegion}">

 </ContentControl>

 </Grid>

 <!-- sidebar -->

 <Grid x:Name="SideGrid">

 <Controls:ResearchControl

 prism:RegionManager.RegionName="{x:Static inf:RegionNames.ResearchRegion}">

 </Controls:ResearchControl>

 </Grid>

 </Grid>

</Window>

The implementation of the Shell code-behind file is very simple. The Shell is exported so that when the

bootstrapper creates it, its dependencies will be resolved by the Managed Extensibility Framework

(MEF). The shell has its single dependency—the ShellViewModel—injected during construction, as

shown in the following example.

C#

// Shell.xaml.cs

[Export]

public partial class Shell : Window

{

 public Shell()

 {

 InitializeComponent();

 }

 [Import]

 ShellViewModel ViewModel

 {

137

 set

 {

 this.DataContext = value;

 }

 }

}

C#

// ShellViewModel.cs

[Export]

public class ShellViewModel : BindableBase

{

 // This is where any view model logic for the shell would go.

}

The minimal code in the code-behind file illustrates the power and simplicity of the composite

application architecture and loose coupling between the shell and its constituent views.

Defining Regions

You define where views will appear by defining a layout with named locations, known as regions.

Regions act as placeholders for one or more views that will be displayed at run time. Modules can locate

and add content to regions in the layout without knowing how and where the region is displayed. This

allows the layout to change without affecting the modules that add the content to the layout.

Regions are defined by assigning a region name to a WPF control, either in XAML as shown in the

previous Shell.xaml file or in code. Regions can be accessed by their region name. At run time, views are

added to the named Region control, which then displays the view or views according to the layout

strategy that the views implement. For example, a tab control region will lay out its child views in a

tabbed arrangement. Regions support the addition or removal of views. Views can be created and

displayed in regions either programmatically or automatically. In the Prism Library, the former is

achieved through view injection and the latter through view discovery. These two techniques determine

how individual views are mapped to the named regions within the application UI.

The shell of the application defines the application layout at the highest level; for example, by specifying

the locations for the main content and the navigation content, as shown in the following illustration.

Layout within these high-level views is similarly defined, allowing the overall UI to be recursively

composed.

138

A template shell

Regions are sometimes used to define locations for multiple views that are logically related. In this

scenario, the region control is typically an ItemsControl-derived control that will display the views

according to the layout strategy that it implements, such as in a stacked or tabbed layout arrangement.

Regions can also be used to define a location for a single view; for example, by using a ContentControl.

In this scenario, the region control displays only one view at a time, even if more than one view is

mapped to that region location.

Stock Trader RI Shell Regions

The Stock Trader RI shows the use of both the single view and the multiple view layout approaches. You

can see both in the shell for the application, which defines locations for the application's high-level

views. The following illustration shows the regions defined by the Stock Trader RI shell.

139

Stock Trader RI shell regions

A multiple-view layout is also demonstrated in the Stock Trader RI when the application is buying or

selling a stock. The Buy/Sell area is a list-style region that shows multiple buy/sell views

(OrderCompositeView) as part of its list, as shown in the following illustration.

ItemsControl region

140

The shell's ActionRegion contains the OrdersView. The OrdersView contains the Submit All and Cancel

All buttons as well as the OrdersRegion. The OrdersRegion is attached to a ListBox control which

displays multiple OrderCompositeViews.

IRegion

A region is a class that implements the IRegion interface. The region is the container that holds content

to be displayed by a control. The following code shows the IRegion interface.

C#

public interface IRegion : INavigateAsync, INotifyPropertyChanged

{

 IViewsCollection Views { get; }

 IViewsCollection ActiveViews { get; }

 object Context { get; set; }

 string Name { get; set; }

 Comparison<object> SortComparison { get; set; }

 IRegionManager Add(object view);

 IRegionManager Add(object view, string viewName);

 IRegionManager Add(object view, string viewName, bool createRegionManagerScope);

 void Remove(object view);

 void Deactivate(object view);

 object GetView(string viewName);

 IRegionManager RegionManager { get; set; }

 IRegionBehaviorCollection Behaviors { get; }

 IRegionNavigationService NavigationService { get; set; }

}

Adding a Region in XAML

The RegionManager supplies an attached property that you can use for simple region creation in XAML.

To use the attached property, you must load the Prism Library namespace into the XAML and then use

the RegionName attached property. The following example shows how to use the attached property in

a window with an AnimatedTabControl.

Notice the use of the x:Static markup extension to reference the MainRegion string constant. This

practice eliminates magic strings in the XAML.

XAML

<!—(WPF) -->

<Controls:AnimatedTabControl

 x:Name="PositionBuySellTab"

 prism:RegionManager.RegionName="{x:Static inf:RegionNames.MainRegion}"/>

Adding a Region by Using Code

The RegionManager can register regions directly without using XAML. The following code example

shows how to add a region to a control from the code-behind file. First a reference to the region

manager is obtained. Then, using the RegionManager static methods SetRegionManager and

141

SetRegionName, the region is attached to the UI's ActionContent control and then that region is named

ActionRegion.

C#

IRegionManager regionManager = ServiceLocator.Current.GetInstance<IRegionManager>();

RegionManager.SetRegionManager(this.ActionContent, regionManager);

RegionManager.SetRegionName(this.ActionContent, "ActionRegion");

Displaying Views in a Region When the Region Loads

With the view discovery approach, modules can register views (view models or presentation models) for

a specific named location. When that location is displayed at run time, any views that have been

registered for that location will be created and displayed within it automatically.

Modules register views with a registry. The parent view queries this registry to discover the views that

were registered for a named location. After they are discovered, the parent view places those views on

the screen by adding them to the placeholder control.

After the application is loaded, the composite view is notified to handle the placement of new views

that have been added to the registry.

The following illustration shows the view discovery approach.

View discovery

The Prism Library defines a standard registry, RegionViewRegistry, to register views for these named

locations.

To show a view in a region, register the view with the region manager, as shown in the following code

example. You can directly register a view type with the region, in which case the view will be

142

constructed by the dependency injection container and added to the region when the control hosting

the region is loaded.

C#

// View discovery

this.regionManager.RegisterViewWithRegion("MainRegion", typeof(EmployeeView));

Optionally, you can provide a delegate that returns the view to be shown, as shown in the next example.

The region manager will display the view when the region is created.

C#

// View discovery

this.regionManager.RegisterViewWithRegion("MainRegion", () =>

this.container.Resolve<EmployeeView>());

The UI Composition QuickStart has a walkthrough in the EmployeeModule ModuleInit.cs file that

demonstrates how to use the RegisterViewWithRegion method.

Displaying Views in a Region Programmatically

In the view injection approach, views are programmatically added or removed from a named location by

the modules that manage them. To enable this, the application contains a registry of named locations in

the UI. A module can use the registry to look up one of the locations and then programmatically inject

views into it. To make sure that locations in the registry can be accessed similarly, each of the named

locations adheres to a common interface used to inject the view. The following illustration shows the

view injection approach.

View injection

The Prism Library defines a standard registry, RegionManager, and a standard interface, IRegion, for

access these locations.

To use view injection to add a view to a region, get the region from the region manager, and then call

the Add method, as shown in the following code. With view injection, the view is displayed only after

the view is added to a region, which can happen when the module is loaded or when a user action

completes a predefined action.

143

C#

// View injection

IRegion region = regionManager.Regions["MainRegion"];

var ordersView = container.Resolve<OrdersView>();

region.Add(ordersView, "OrdersView");

region.Activate(ordersView);

In addition to the Stock Trader RI, the UI Composition QuickStart has a walkthrough for implementing

view injection.

Navigation

The Prism Library 5.0 includes Navigation APIs that provide a rich and consistent API for implementing

navigation in a WPF application.

Region navigation is a form of view injection. When a navigation request is processed, it will attempt to

locate a view in the region that can fulfill the request. If it cannot find a matching view, it calls the

application container to create the object, and then injects the object into the target region and

activates it.

The following code example from the Stock Trader RI ArticleViewModel illustrates how to initiate a

navigation request.

C#

this.regionManager.RequestNavigate(RegionNames.SecondaryRegion,

 new Uri("/NewsReaderView", UriKind.Relative));

For more information about region navigation, see Navigation. The View-Switching Navigation

QuickStart and State-Based Navigation QuickStart are also examples of implementing application

navigation.

Ordering Views in a Region

Whether it uses view discovery or view Injection, an application might need to order how views appear

in a TabControl, ItemsControl, or any other control that displays multiple active views. By default, views

appear in the order that they were registered and added into the region.

When a composite application is built, views are often registered from different modules. Declaring

dependencies between modules can help alleviate the problem, but when modules and views do not

have any real interdependencies, declaring an artificial dependency couples modules unnecessarily.

To allow views to participate in ordering themselves, the Prism Library provides the ViewSortHint

attribute. This attribute contains a string Hint property that allows a view to declare a hint of how it

should be ordered in the region.

When displaying views, the Region class uses a default view sorting routine that uses the hint to order

the views. This is a simple case-sensitive ordinal sort. Views that have the sort hint attribute are ordered

144

ahead of those without. Also, those without the attribute appear in the order they were added to the

region.

If you want to change how views are ordered, the Region class provides a SortComparison property that

you can set with your own Comparison<object> delegate method. It is important to note that the

ordering of the region's Views and ActiveViews properties are reflected in the UI because adapters such

as the ItemsControlRegionAdapter bind directly to these properties. A custom region adapter could

implement its own sorting and filter that will override how the region orders views.

The View Switching QuickStart demonstrates a simple numbering scheme to order the views in the left-

hand-side navigation region. The following code examples show ViewSortHint applied to each of the

navigation item views.

C#

[Export]

[ViewSortHint("01")]

public partial class EmailNavigationItemView

[Export]

[ViewSortHint("02")]

public partial class CalendarNavigationItemView

[Export]

[ViewSortHint("03")]

public partial class ContactsDetailNavigationItemView

[Export]

[ViewSortHint("04")]

public partial class ContactsAvatarNavigationItemView

Sharing Data Between Multiple Regions

The Prism Library provides multiple approaches to communicating between views, depending on your

scenario. The region manager provides the RegionContext property as one of these approaches.

RegionContext is useful when you want to share context between a parent view and child views that are

hosted in a region. RegionContext is an attached property. You set the value of the context on the

region control so that it can be made available to all child views that are displayed in that region control.

The region context can be any simple or complex object and can be a data-bound value. The

RegionContext can be used with either view discovery or view injection.

Note: The DataContext property in WPF is used to set the local data context for the view. It allows the

view to use data binding to communicate with a view model, local presenter, or model. RegionContext

is used to share context between multiple views and is not local to a single view. It provides a simple

mechanism for sharing context between multiple views.

The following code shows how the RegionContext attached property is used in XAML.

145

XAML

<TabControl AutomationProperties.AutomationId="DetailsTabControl"

 prism:RegionManager.RegionName="{x:Static local:RegionNames.TabRegion}"

 prism:RegionManager.RegionContext="{Binding Path=SelectedEmployee.EmployeeId}"

 ...>

You can also set the RegionContext in code, as shown in the following example.

C#

RegionManager.Regions["Region1"].Context = employeeId;

To retrieve the RegionContext in a view, the GetObservableContext static method of the

RegionContext class is used. It passes the view as a parameter and then accesses its Value property, as

shown in the following code example.

C#

private void GetRegionContext()

{

 this.Model.EmployeeId = (int)RegionContext.GetObservableContext(this).Value;

}

The value of the RegionContext can be changed from within a view by simply assigning a new value to

its Value property. Views can opt to be notified of changes to the RegionContext by subscribing to the

PropertyChanged event on the ObservableObject that is returned by the GetObservableContext

method. This allows multiple views to be kept in synchronization when their RegionContext is changed.

The following code example demonstrates subscribing to the PropertyChanged event.

C#

ObservableObject<object> viewRegionContext =

 RegionContext.GetObservableContext(this);

viewRegionContext.PropertyChanged += this.ViewRegionContext_OnPropertyChangedEvent;

private void ViewRegionContext_OnPropertyChangedEvent(object sender,

 PropertyChangedEventArgs args)

{

 if (args.PropertyName == "Value")

 {

 var context = (ObservableObject<object>) sender;

 int newValue = (int)context.Value;

 }

}

146

Note: The RegionContext is set as an attached property on the content object hosted in the region.

This means that the content object has to derive from DependencyObject. In the preceding example,

the view is a visual control, which ultimately derives from DependencyObject.

If you choose to use WPF data templates to define your view, the content object will represent the

ViewModel or PresentationModel. If your view model or presentation model needs to retrieve the

RegionContext, it will need to derive from the DependencyObject base class.

Creating Multiple Instances of a Region

Scoped regions are available only with view injection. You should use them if you need a view to have its

own instance of a region. Views that define regions with attached properties automatically inherit their

parent's RegionManager. Usually, this is the global RegionManager that is registered in the shell

window. If the application creates more than one instance of that view, each instance would attempt to

register its region with the parent RegionManager. RegionManager allows only uniquely named

regions; therefore, the second registration would produce an error.

Instead, use scoped regions so that each view will have its own RegionManager and its regions will be

registered with that RegionManager rather than the parent RegionManager, as shown in the following

illustration.

Parent and scoped RegionManagers

To create a local RegionManager for a view, specify that a new RegionManager should be created when

you add your view to a region, as illustrated in the following code example.

C#

IRegion detailsRegion = this.regionManager.Regions["DetailsRegion"];

View view = new View();

bool createRegionManagerScope = true;

IRegionManager detailsRegionManager = detailsRegion.Add(view, null,

 createRegionManagerScope);

The Add method will return the new RegionManager that the view can retain for further access to the

local scope.

147

Creating Views

The visual representation of your application can take many forms, including user controls, custom

controls, and data templates, to name a few. In the case of the Stock Trader RI, user controls are

typically used to represent distinct sections on the main window, but this is not a standard. In your

application, you should use an approach that you are most familiar with and that fits into how you work

as a designer. Regardless of the predominating visual representation in your application, you will

inevitably use a combination of user controls, custom controls, and data templates in your overall

design. The following figure shows where the Stock Trader RI uses these various items. This illustration

also serves as a reference for the following sections, which describe each of the items.

Stock Trader RI usage of user controls, custom controls, and data templates

User Controls

Both Blend for Visual Studio 2013 and Visual Studio 2013 provide rich support for creating user controls.

User controls created with these tools are therefore recommended for creating UI content with the

Prism Library. As mentioned earlier in this topic, the Stock Trader RI uses them extensively to create

content that will be inserted into regions. The WatchListView.xaml user control is a good example of a

simple UI representation that is contained inside the WatchModule. This control is a very simple control

that is straightforward to create using this model.

Custom Controls

In some situations, a user control is too limiting. In these cases, custom layout or extensibility is more

important than ease of creation. This is where custom controls are useful. In the Stock Trader RI, the pie

chart control is a good example of this. This control is composed from data derived from the positions

and shows a chart of the overall portfolio. This type of control is a little more challenging than a user

control to create, and it has limited visual design support in Blend for Visual Studio 2013 and Visual

Studio 2013, compared to a user control.

148

Data Templates

Data templates are an important part of most types of data-driven applications. The use of data

templates for list-based controls is prevalent throughout the Stock Trader RI. In many cases, you can use

a data template to create complete visual representations without needing to create any type of

control. The ResearchRegion uses a data template to show articles and, in conjunction with an Items

style, provides an indication of which item was selected.

Blend for Visual Studio 2013 and Visual Studio 2013 have full visual design support for data templates.

Resources

Resources such as styles, resource dictionaries, and control templates can be scattered throughout an

application. This is especially true with a composite application. When you consider where to place

resources, pay special attention to dependencies between UI elements and the resources they need.

The Stock Trader RI solution, shown in the following figure, contains labels that indicate the various

areas where resources can live.

149

Resource distribution across a solution

Application Resources

Typically, application resources are resources that are available to an application as a whole. These

resources tend to be focused on the root application, but they can also provide default styling on a type

basis for modules or controls. An example of this is a text box style that is applied to the text box type in

the root application. This style will be available to all text boxes in the application unless the style is

overridden at the module or control level.

150

Module Resources

Module resources play the same role as root application resources in that they can apply to all items in a

module. Using resources at this level can provide a consistent appearance across the entire module and

can also allow for reuse in more specific instances that span one or more visual components. The use of

resources at the module level should be contained within the individual module. Creating dependencies

between modules can lead to issues that are difficult to locate when UI elements appear incorrectly.

Control Resources

Control resources are usually contained in control libraries and can be used by all the controls in the

control library. These resources tend to have the most limited scope because control libraries typically

contain very specific controls and do not contain user controls. (In an application created with the Prism

Library, user controls are typically placed in the modules in which they are used.)

UI Design Guidance

The goal of this topic is to provide some high-level guidance to the XAML designer and developer who

are building an application with the Prism Library and WPF. This topic describes UI layout, visual

representation, data binding, resources, and the presentation model. After reading this topic, you

should have a high-level understanding of how to approach designing the UI of an application based on

the Prism Library and some of the techniques that can help you create a maintainable UI in composite

applications.

Guidelines for Designing User Interfaces

The layout of composite applications created with the Prism Library builds on the standard principals of

WPF —the layout uses the concepts of panels that contain related items. However, with composite

applications, the content inside the various panels is dynamic and is not known during design time. This

forces designers and developers to create page structures that can contain layout content and then

design each of the elements that fit into the layout separately. As a designer or developer, this means

that you have to think about two main layout concepts in the Prism Library: container composition and

regions.

Container Composition

Container composition is really just an extension of the containment model that WPF inherently

provides. The term container can mean any element, including a window, page, user control, panel,

custom control, control template, or data template, that can contain other elements.

How you visualize your UI can vary from implementation to implementation, but you will find recurring

themes that stand out. You will create a window, page, or user control that contains both fixed content

and dynamic content. The fixed content will consist of the overall structure of the containing UI

element, and the dynamic content will be what is placed inside a region.

For example, the WPF Stock Trader RI has a startup window named Shell.xaml that contains the overall

structure for the application. The next illustration shows the shell loaded in Blend for Visual Studio 2013.

151

Notice that only the fixed portion of the UI is visible. The remaining sections of the shell are dynamically

inserted into the various regions by the modules as the application loads.

The design-time experience is a little limited in this type of application, but the fact that you know

content will be placed in the various regions at run time is something that you need to design for. To see

an example of this, compare the designer view of the main page in the next illustration to the run-time

view in the illustration that follows it. In the designer view, the page is mostly empty. Contrast that with

the run-time view, where there is a position area that contains a tab control with position data, and a

trend line, pie chart, and news area pertaining to the selected stocks. The differences between the

designer view and run-time view demonstrate the challenges designers and developers face when they

create applications built with the Prism Library.

The items cannot be seen during design time; therefore, determining how big they are and how they fit

into the overall appearance of the application is a little difficult. Consider the following as you create the

layout for your containers:

 Are there any size constraints that will limit how large content can be? If there are, consider

using containers that support scrolling.

 Consider using an expander and ScrollViewer combination for situations in which a large

amount of dynamic content needs to fit into a confined area.

 Pay close attention to how content enlarges as the screen content grows to ensure that the

appearance of your application is appealing in any resolution.

152

Stock Trader RI main window in Blend for Visual Studio 2013

Stock Trader RI main window during run time

Viewing Composite Application at Design Time

The two previous figures illustrate one of the challenges of working with high-level views that are

composed at run time. Each UI element in a composite application must be designed separately. This

makes it hard to visualize how the composite page or window will look at run time. To visualize the

composite view in its composed state, you can create a test project with a page or window that contains

all the UI elements for the view you want to test.

Additionally, consider using the design-time sample data features in Blend for Visual Studio 2013 and

Visual Studio 2013 to populate UI elements with data. Design-time data is very helpful when you work

with data templates, list controls, charts, or graphs. For more information, see the section Guidelines for

Design-Time Sample Data.

Layout

Consider the following when you design the layout of a composite application:

 The shell defines the main layout of the application. Each area of the layout is a region and

should be kept as an empty container. Do not place content inside regions at design time

because content will be loaded there at run time.

153

 The shell should contain the background, titles, and the footer. Think of the shell as an ASP.NET

master page.

 Control containers that act as regions are decoupled from the views that they contain.

Therefore, you should be able to change the size of the views without modifying the controls,

and you should be able to change the size of the controls without modifying the views. You

should consider the following when defining the size of a view:

◦ If a view will be used in several regions or if it is uncertain where it will be used, design it

with dynamic width and height.

◦ If the views have fixed sizes, the regions of the shell should use dynamic sizes.

◦ If the shell regions have fixed sizes, the views should use dynamic sizes.

◦ Views might require a fixed height and dynamic width. An example of this is the

PositionPieChart view located in the sidebar of the Stock Trader RI.

◦ Other views might require a dynamic height and width. For example, the NewsReader

views in the sidebar of the Stock Trader RI. The height itself depends on the title's

length, and the width should always adapt to the region's size (sidebar width). The same

applies to the PositionSummaryView view, where the grid's width should adapt to the

screen size and the height should adapt to the number of rows in the grid.

 Views should generally have transparent backgrounds, allowing the shell background to provide

the application visual background.

 Always use named resources for assigning colors, brushes, fonts and font sizes, rather than

directly assigning the property value in XAML. This makes application maintenance much easier

over time. It also allows an application to respond to changes in resource dictionaries at run

time.

Animation

Consider the following when you use animation in the shell or views:

 You can animate the layout of the shell, but you will have to animate its contents and views

separately.

 Design and animate each view separately.

 Use soft or gentle animations to provide a visual clue that a UI element is being brought into

view or being removed from view. This gives an application a polished look and feel.

Blend for Visual Studio 2013 offers a rich set of behaviors, easing functions, and an outstanding editing

experience for animating and transitioning UI elements based on visual state changes or events. For

more information, see VisualStateManager Class on MSDN.

http://msdn.microsoft.com/en-us/library/cc626338(v=VS.95).aspx

154

Run-Time Optimization

Consider the following tips for performance optimization:

 Place any common resources in the App.xaml file or a merged dictionary to avoid duplicating

the styles.

Design-Time Optimizations

The following sections describe design-time scenarios and provide solutions for making the most of the

design-time experience.

Large Solutions with Many XAML Resources

In large applications with many XAML resources that are part of the solution, visual designer load time

can be affected, sometimes significantly. This performance slowdown exists because the visual designer

must parse all merged XAML resources. The solution to this problem is to move all XAML resources to

another solution, compile that solution, and then reference the new XAML resource DLL from the large

solution. Because the XAML resources are in a binary referenced assembly, the visual designer does not

parse the XAML resources, thus improving design-time performance. When moving XAML resources to

an external assembly, you might want to consider exposing ComponentResourceKeys for your

resources. For more information, see ComponentResourceKey Markup Extension on MSDN.

XAML Assets

XAML is a powerful and expressive language for creating assets such as images, diagrams, drawings, and

3-D scenes. Some developers and designers prefer creating XAML assets instead of using .ico, .jpg, or

.png image files. One reason that they prefer the XAML approach is to take advantage of the resolution

independence of XAML rendering. Another is that they can use one tool set, Blend for Visual Studio

2013, to create all the required assets and design their applications.

If the solution has many of these assets, design-time visual designer loading can be affected. Moving

assets to a separate DLL solves the performance problem. Moving the assets also enables reuse across

multiple solutions.

Visual Designers and Referenced Assemblies

An unfortunate side-effect of moving XAML resources and assets to a binary referenced assembly is that

the Blend for 2013 and Visual Studio 2013 property editors do not list resources located in binary

referenced assemblies. This means that you will not be able to pick a named resource from one of the

resource pickers provided by the tools. Instead, you will need to type the name of the resource.

Guidelines for Creating Designer Friendly Views

The following are some of the characteristics of a designer friendly (also known as a blendable or tool-

able) application:

 It provides a productive editing experience by using the Visual Studio and Blend designers.

 It is tooling-enabled. For example, it allows you to use the binding builder.

http://msdn.microsoft.com/en-us/library/ms753186.aspx

155

 It provides design-time sample data when required.

 It allows code to be executed at design time without causing unhandled exceptions.

The following actions are performed many times during an editing session. User code that is not

designer friendly will cause one or more of these actions to fail, thus reducing the productivity and

creativity of a developer or designer.

 Design surface actions:

◦ Constructing objects

◦ Loading objects

◦ Setting property values

◦ Performing design surface gestures

◦ Using a control as the root element

◦ Hosting a control inside another control

◦ Opening, closing, and reopening a XAML file repeatedly

◦ Rebuilding the project

◦ Reloading the designer

 Binding builder actions:

◦ Discovering the DataContext

◦ Listing the available data sources

◦ Listing data source type properties

 Design-time sample data actions:

◦ Using controls on the design surface to correctly display sample data

Coding for Design Time

To give you a rich design-time experience, the Visual Studio and Blend designers instantiate objects and

run code at design time. However, null reference exceptions caused by code that attempts to access a

reference type before it has been instantiated cause a high percentage of loading failures and

unnecessary design time exceptions.

The following table lists the main causes of poor design-time experiences. By avoiding the following

issues and using the techniques to mitigate these problems, your design-time experience and

productivity will be greatly enhanced, and the developer-to-designer workflow will be much smoother.

Avoid This in User Code Visual Blend for

156

Studio 2013 Visual

Studio

2013

Spinning multiple threads at design time. For example, instantiating and starting a

Timer in a constructor or Loaded event at design time.

Using controls that cause stack overflows at design time.

Using controls that attempt to recursively load themselves.

Throwing null reference exceptions in converters or data template selectors.

Throwing null reference or other exceptions in constructors. These are caused by:

 Using code that calls into the business or data layers to return data
from a database or over the network at design time.

 Attempting to resolve dependencies by using MEF, inversion of
control (IoC), or a Service Locator before bootstrapping or container
initialization code has run.

Throwing null reference or other exceptions inside the Loaded events of controls or

user controls. This happens when you make assumptions about the state of the

control that might be true at run time but are not true at design time.

Attempting to access the Application or Application.Current object at design time.

Creating very large projects.

Mitigating Problems in Design-Time User Code

A few defensive coding practices will eliminate most of the issues described in the preceding table.

However, before you can mitigate problems in design-time user code, you must understand that your

application controls and code are being executed by the designer in isolation, inside an uninitialized

application domain. Uninitialized in this case means that the usual startup, bootstrapping, or

initialization code has not run.

When your application executes at run time, the startup code in App.xaml.cs or App.xaml.vb is run. If

you have code in there that the rest of your application depends on, this code will not have been

executed at design time. If you have not anticipated this in your code, unwanted exceptions will occur.

(This is why attempting to access the Application or Application.Current object in user code at design

time will result in exceptions.) To mitigate these issues:

 Never assume that referenced objects will be instantiated in design-time code. In code that can

be executed at design time, always perform a null check before accessing any reference object.

 If your code accesses the Application or Application.Current objects, perform a null reference

check before accessing the object.

 If your constructors or Loaded event handlers need to run complex code or code that accesses a

database or calls out to the network, consider one of the following solutions:

157

◦ Wrap the code inside a check that determines if the code is running at design time by

calling the System.ComponentModel DesignerProperties method,

DesignerProperties.GetIsInDesignMode.

◦ Instead of running the code directly in the constructor or Loaded event handler,

abstract the calls to a class behind an interface, and then use one of many techniques to

resolve that dependency differently at design time, run time, and test time.

For example, instead of calling out to a data service directly to retrieve data, wrap the

data service calls in a class that exposes the methods through an interface. Then, at

design time, resolve the interface with a mock or design-time object.

Understanding when User Control Code Executes at Design-Time

Both Blend and Visual Studio use mockups of the root object displayed in a designer pane. This is

necessary to provide the required design experience. Because the root object is mocked, its constructor

and Loaded event code are not executed at design time. However, the remaining controls in the scene

are constructed normally, and their Loaded event is raised just like at run time.

In the following illustration, the root Windows constructor and Loaded event code will not be executed.

The child user controls constructor and Loaded event code will be executed.

These concepts are important, especially if you are building composite applications or applications that

are built dynamically at run time.

Most application views are coded and designed independently. Because they are designed

independently, they are typically the root object in the designer. Because of this, their constructor and

Loaded event code never executes.

However, if you take that same user control and place it on a design surface as a child of another

control, the once isolated user control code is now executing at design time. If you have not followed

the above practices for mitigating design-time code problems, the now hosted user control could

become unfriendly and cause designer load issues.

158

Design-Time Properties

The built-in "d:" design-time properties provide a smooth road to a successful design-time tooling

experience.

The problem we need to solve is how to provide a shape to the Binding Builder tools at design-time. In

this case, the shape is an instantiated Type that the Binding Builder can reflect on, and then list those

properties for selection when building a binding.

Shape is also provided by design-time sample data. Sample data is covered in the section, Guidelines for

Design-Time Sample Data.

The following sections describe how to use the d:DataContext property and the d:DesignInstance

markup extension.

The "d:" in the property and markup extension is the alias for the design namespace that the design

properties are members of. For more information see the MSDN topic, Design-Time Attributes in the

WPF Designer.

The "d:" properties and markup extensions cannot be created or extended in user code; they can only

be used in XAML. The "d:" properties and markup extensions are not compiled into your application;

they are used only by the Visual Studio and Blend tooling.

d:DataContext Property

d:DataContext, specifies a design-time data context for a control and its children. When specifying

d:DataContext, you should always provide the same shape to the design-time DataContext as the run-

time DataContext.

If both a DataContext and a d:DataContext are specified for a control, the tooling will use the

d:DataContext.

d:DesignInstance Markup Extension

If markup extensions are new to you, read Markup Extensions and WPF XAML on MSDN.

d:DesignInstance returns an instantiated Type ("shape") that you will want to assign as the data source

for binding to controls in the designer. The type does not need to be creatable to be used for

establishing shape. The following table explains the d:DesignInstance markup extension properties.

Markup Extension

Property
Definition

Type Name of the Type that will be created. Type is the default parameter in
the constructor.

IsDesignTimeCreatable Can the specified Type be created? If false, a faux Type will be created
rather than the real Type. The default is false.

CreateList If true, returns a generic list of the specified Type. The default is false.

http://msdn.microsoft.com/en-us/library/ee839627.aspx
http://msdn.microsoft.com/en-us/library/ee839627.aspx
http://msdn.microsoft.com/en-us/library/ms747254.aspx

159

Typical d:DataContext Scenario

The following three code examples demonstrate a repeatable pattern for wiring up views and view

models and enabling the designer's tooling.

The PersonViewModel is a dependency that the PersonView has at run time. While the view model in

the example is incredibly simple, real-world view models typically have one or more external

dependencies that must be resolved, and those dependencies are typically injected into their

constructor.

When the PersonView is constructed, its dependency PersonViewModel will be built and its

dependencies resolved by MEF or a dependency injection container.

Note: If the view model has no external dependencies that need to be resolved, the view model can be

instantiated in the view's XAML, and its DataContext and the d:DataContext are not required.

C#

// PersonViewModel.cs

[Export]

public class PersonViewModel {

 public String FirstName { get; set; }

 public String LasName { get; set; }

}

C#

// PersonView.xaml.cs

[Export]

public partial class PersonView : UserControl

{

 public PersonView()

 {

 InitializeComponent();

 }

 [Import]

 public PersonViewModel ViewModel

 {

 get { return this.DataContext as PersonViewModel; }

 set { this.DataContext = value; }

 }

}

This is a good pattern for wiring up a view and view model; however, it leaves the view unaware of its

DataContext's shape (view model) at design time.

In the following XAML example, you can see the d:DesignInstance markup extension used on the Grid to

return a faux instance of PersonViewModel that is then exposed by the d:DataContext. As a result, all

160

child controls of the Grid will inherit the d:DataContext, enabling the designer tooling to discover and

use its types and properties, resulting in a more productive design experience for developers and

designers.

XAML

<!--PersonView.xaml -->

<UserControl

 xmlns:local="clr-namespace:WpfApplication1"

 x:Class="WpfApplication1.PersonView"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 mc:Ignorable="d"

 d:DesignHeight="300" d:DesignWidth="300">

 <Border BorderBrush="LightGray" BorderThickness="1" CornerRadius="10" Padding="10">

 <Grid d:DataContext="{d:DesignInstance local:PersonViewModel}">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="100" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 <Label Grid.Column="0" Grid.Row="0" Content="First Name" />

 <Label Grid.Column="0" Grid.Row="1" Content="Las Name" />

 <TextBox

 Grid.Column="1" Grid.Row="0" Width="150" MaxLength="50"

 HorizontalAlignment="Left" VerticalAlignment="Top"

 Text="{Binding Path=FirstName, Mode=TwoWay}" />

 <TextBox

 Grid.Column="1" Grid.Row="1" Width="150" MaxLength="50"

 HorizontalAlignment="Left" VerticalAlignment="Top"

 Text="{Binding Path=LasName, Mode=TwoWay}" />

 </Grid>

 </Border>

</UserControl>

161

Attached Property and ViewModel Locator Solution

There are several alternative techniques for associating a view and view model available from the

developer community. One of the challenges is that solutions that work great at run time do not

always work at design time. One such solution is the use of attached properties and view model

locators to assign a view's DataContext. The view model locator is required so that the view model can

be constructed and have its dependencies resolved.

The problem with this solution is that you must also include the d:DataContext – d:DesignInstance

combination because the visual designer tooling cannot be reflected in the results of the attached

property the way that it can with the d:DesignInstance.

Regardless of which technique you implement in your applications for resolving shape at design time,

the most important goal is to be consistent throughout your application. Consistency will make

application maintenance much easier and will lead to a successful designer-developer workflow.

Guidelines for Design-Time Sample Data

The WPF and Silverlight Designer team published an in-depth, scenario-based training article that

discusses the use of sample data in WPF and Silverlight projects. The article, Sample Data in the WPF

and Silverlight Designer, is available on MSDN.

Using Design-Time Sample Data

If you use a visual design tool, such as Blend or Visual Studio 2013, design-time sample data becomes

very important. The views can be populated with data and images, making the design task easier and

quicker to accomplish. This results in improved productivity and creativity.

Empty list controls that contain data templates will not be visible unless they are populated with data,

making the task of editing the empty controls more time consuming because you need to run the

application to see how the last edit will look at run time.

Sample Data Sources

You can use sample data from any of the following sources:

 Blend for Visual Studio 2013 XML sample data

 Blend for Visual Studio 2013 and Visual Studio 2013 XAML sample data

 XAML resources

 Code

The data from each of these sources is described in the following subsections.

Blend XML Sample Data

Blend gives you the capability to quickly create an XML schema and populate a corresponding XML file.

This is accomplished without any dependency on any project classes.

http://blogs.msdn.com/b/wpfsldesigner/archive/2010/06/30/sample-data-in-the-wpf-and-silverlight-designer.aspx
http://blogs.msdn.com/b/wpfsldesigner/archive/2010/06/30/sample-data-in-the-wpf-and-silverlight-designer.aspx

162

The purpose of this type of sample data is to let designers start their projects quickly, without waiting

for a developer or before application classes are available for consumption.

While most sample data is supported in both the Blend and Visual Studio designers, XML sample data is

a Blend feature and does not render in the Visual Studio designer.

Note: XML sample data file is not compiled or added to the assembly when built; however, the XML

schema is compiled into the built assembly.

Blend for Visual Studio 2013 and Visual Studio 2013 XAML Sample Data

Beginning in Expression Blend 4 and Visual Studio 2010, the d:DesignData markup extension was added

to enable the design-time loading of XAML sample data.

Sample data XAML files contain XAML that instantiates one or more types and assigns values to

properties.

d:DesignData has a Source property that takes a uniform resource identifier (URI) to the sample data

XAML file located in the project. The d:DesignData markup extension loads the XAML file, parses it, and

then returns an object graph. The object graph can be consumed by the d:DataContext property,

CollectionViewSource d:DesignSource property, or DomainDataSource d:DesignData property.

 One of the challenges that the d:DesignData markup extension overcomes is that it can create sample

data for non-creatable user types. For example, WCF Rich Internet Application (RIA) Services entity–

derived objects cannot be created in code. In addition, developers might have their own types that are

not creatable, but would still like to have sample data for these types.

You can change how d:DesignData processes your sample data file by setting the Build Action property

on the sample data file in the Solution Explorer as follows:

 Build Action = DesignData – faux types will be created

 Build Action = DesignDataWithDesignTimeCreatableTypes – real types will be created

When Blend is used to create sample data for a class, it creates a XAML sample data file with the Build

Action set to DesignData. If you require real types, open the solution in Visual Studio and change the

Build Action for the sample data file to DesignDataWithDesignTimeCreatableTypes.

Note: In the next illustration, the Custom Tool property is empty. This is required for sample data to

work correctly. By default, Blend correctly sets this property to empty.

When you use Visual Studio 2013 to add a sample data file, you typically add a new resource dictionary

item and edit from there. In this case, you must set the Build Action and clear the Custom Tool

property.

163

Sample data file properties

Expression Blend provides tooling for quickly creating and binding XAML sample data. The XAML sample

data can be used and viewed in the Visual Studio 2013 designer, as shown in the following illustration.

Defining sample data in Blend for Visual Studio 2013

164

After it generates the sample data, the data will appear in the Data pane, as shown in the following

illustration.

Data pane

You can then drag it onto the root element of the view, such as the UserControl, and have it set the

d:DataContext property. You can also drop sample data collections onto items controls, and Blend will

wire up the sample data to the control.

Note: XAML sample data files are not compiled into or included in built assemblies.

XAML Resource

You can create a resource in XAML that instantiates the desired types, and then bind that resource to a

DataContext or list control.

This technique can be used to quickly create throw-away sample data that is used for editing a data

template that would take longer to edit without the sample data.

Code

If you prefer creating sample data in code, you can write a class that exposes properties or methods that

return sample data to their consumer. For example, you could write a Customers class that in its default

empty constructor populated itself with multiple instances of the Customer class. Each of the Customer

instances would have the appropriate property values set also.

One technique that you can use to consume the sample data class described previously is to use the

d:DataContext, d:DesignInstance combination, ensuring that you set the d:DesignInstance

IsDesignTimeCreatable property to True. The reason IsDesignTimeCreatable must be True is that you

want the customers constructor to be executed so that the code to populate the class will run. If

customers is treated as a faux type, the customers code will never be run and only the "shape" will be

discoverable by the tooling.

The following XAML example instantiate the Customers class, and then sets it as the d:DataContext.

Child controls of this Grid can consume data exposed by the Customers class.

XAML

<Grid d:DataContext="{d:DesignInstance local:Customers, IsDesignTimeCreatable=True}">

165

UI Layout Key Decisions

When you begin a composite application project, there are some UI design decisions that you need to

make that will be difficult to change later. Generally, these decisions are application-wide and their

consistency helps developers and designer productivity.

The following are the important UI layout decisions:

 Decide on application flow and define regions accordingly.

 Decide which type of view loading each region will use.

 Decide if you want to use the Region Navigation APIs.

 Decide which UI Design pattern you will use (MVVM, presentation model, and so on).

 Decide on a sample data strategy.

More Information

For more information about extending the Prism Library, see Extending the Prism Library.

For more information about commands, see Commands in Implementing the MVVM Pattern.

For more information about data binding, see Data Binding in Implementing the MVVM Pattern.

For more information about region navigation, see Navigation.

For more information about the guidelines discussed in this topic, see the following:

 Dependency Properties Overview on MSDN.

 Data binding; see:

◦ Data Binding Overview on MSDN.

◦ Data Binding in WPF in MSDN Magazine.

 Data Templating Overview on MSDN.

 Resources Overview on MSDN.

 UserControl Class on MSDN.

 VisualStateManager Class on MSDN.

 Customizing Controls For Windows Presentation Foundation in MSDN Magazine.

 ComponentResourceKey Markup Extension on MSDN.

 Design-Time Attributes in the WPF Designer on MSDN.

 Markup Extensions and WPF XAML on MSDN.

 Sample Data in the WPF and Silverlight Designer on MSDN.

http://msdn.microsoft.com/en-us/library/ms752914.aspx
http://msdn.microsoft.com/en-us/library/ms742521.aspx
http://msdn.microsoft.com/en-us/magazine/cc163299.aspx
http://msdn.microsoft.com/en-us/library/ms742521.aspx
http://msdn.microsoft.com/en-us/library/ms750613.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.usercontrol.aspx
http://msdn.microsoft.com/en-us/library/cc626338(v=VS.95).aspx
http://msdn.microsoft.com/en-us/magazine/cc163421.aspx
http://msdn.microsoft.com/en-us/library/ms753186.aspx
http://msdn.microsoft.com/en-us/library/ee839627.aspx
http://msdn.microsoft.com/en-us/library/ms747254.aspx
http://blogs.msdn.com/b/wpfsldesigner/archive/2010/06/30/sample-data-in-the-wpf-and-silverlight-designer.aspx

166

 Learning the Visual Studio WPF and Silverlight Designer. This contains tutorials and articles on

layout, resources, data binding, sample data, debugging data bindings, object data sources, and

master-detail forms.

http://blogs.msdn.com/b/wpfsldesigner/archive/2010/01/15/learn.aspx

167

8: Navigation
As the user interacts with a rich client application, its user interface (UI) will be continuously updated to

reflect the current task and data that the user is working on. The UI may undergo considerable changes

over time as the user interacts with and completes various tasks within the application. The process by

which the application coordinates these UI changes is often referred to as navigation. This topic

describes how to implement navigation for composite Model-View-ViewModel (MVVM) applications

using the Prism library.

Frequently, navigation means that certain controls in the UI are removed, while other controls are

added. In other cases, navigation may mean that the visual state of one or more existing controls is

updated—for example, some controls may be simply hidden or collapsed, while other controls are

shown or expanded. Similarly, navigation may mean that the data being displayed by a control is

updated to reflect the current state of the application—for example, in a master-detail scenario, the

data displayed in the detail view will be updated based on the currently selected item in the master

view. All of these scenarios can be considered navigation because the user interface is updated to reflect

the user's current task and the application's current state.

Navigation within an application can result from the user's interaction with the UI (via mouse events or

other UI gestures) or from the application itself as a result of internal logic-driven state changes. In some

cases, navigation may involve very simple UI updates that require no custom application logic. In other

cases, the application may implement complex logic to programmatically control navigation to ensure

that certain business rules are enforced—for example, the application may not allow the user to

navigate away from a certain form without first ensuring that the data entered is correct.

Implementing the required navigation behavior in a Windows Presentation Foundation (WPF)

application can often be relatively straightforward because it provides direct support for navigation.

However, navigation can be more complex to implement in applications that use the Model-View-

ViewModel (MVVM) pattern or in composite applications that use multiple loosely-coupled modules.

Prism provides guidance on implementing navigation in these situations.

Navigation in Prism

Navigation is defined as the process by which the application coordinates changes to its UI as a result of

the user's interaction with the application or internal application state changes.

UI updates can be accomplished by adding or removing elements from the application's visual tree, or

by applying state changes to existing elements within the visual tree. WPF is a very flexible platform, and

it is often possible to implement a particular navigation scenario using this approach. However, the

approach that will be most appropriate for your application depends on multiple factors.

Prism differentiates between the two styles of navigation described earlier. Navigation accomplished via

state changes to existing controls in the visual tree is referred to as state-based navigation. Navigation

accomplished via the addition or removal of elements from the visual tree is referred to as view-based

168

navigation. Prism provides guidance on implementing both styles of navigation, focusing on the case

where the application is using the Model-View-ViewModel (MVVM) pattern to separate the UI

(encapsulated in the view) from the presentation logic and data (encapsulated in the view model).

State-Based Navigation

In state-based navigation, the view that represents the UI is updated either through state changes in the

view model or through the user's interaction within the view itself. In this style of navigation, instead of

replacing the view with another view, the view's state is changed. Depending on how the view's state is

changed, the updated UI may feel to the user like navigation.

This style of navigation is suitable in the following situations:

 The view needs to display the same data or functionality in different styles or formats.

 The view needs to change its layout or style based on the underlying state of the view model.

 The view needs to initiate limited modal or non-modal interaction with the user within the

context of the view.

This style of navigation is not suitable for situations in which the UI has to present different data to the

user or when the user has to perform a different task. In these situations, it is better to implement

separate views (and view models) to represent the data or task, and then to navigate between them

using view-based navigation, as described later on in this topic. Similarly, this style of navigation is not

suitable if the number of UI state changes required to implement the navigation are overly complex

because the view's definition can become large and difficult to maintain. In this case, it is better to

implement the navigation across separate views by using view-based navigation.

The following sections describe the typical situations in which state-based navigation can be used. Each

of these sections refers to the State-Based Navigation QuickStart, which implements an instant

messaging–style application that allows users to manage and chat with their contacts.

Displaying Data in Different Formats or Styles

Your application may often need to present the same data to the user, but in different formats or styles.

In this case, you can use a state-based navigation within the view to switch between the different styles,

potentially using an animated transition between them. For example, the State-Based Navigation

QuickStart allows users to choose how their contacts are displayed—either as a simple text list or as

avatars (icons). Users can switch between these visual representations by clicking the List button or the

Avatars button. The view provides an animated transition between the two representations, as shown

in the following illustration.

169

Contact view navigation in the State-Based Navigation QuickStart

Because the view is presenting the same data, but in a different visual representation, the view model is

not required to be involved in the navigation between representations. In this case, navigation is

entirely handled within the view itself. This approach provides the UI designer with a lot of flexibility to

design a compelling user experience without requiring changes to the application's code.

Blend behaviors provide a good way to implement this style of navigation within a view. The State-Based

Navigation QuickStart application uses Blend's DataStateBehavior data-bound to a radio button to

switch between two visual states that are defined using the visual state manager, one button to show

the contacts as a list and one button to show the contacts as icons.

XAML

<ei:DataStateBehavior Binding="{Binding IsChecked, ElementName=ShowAsListButton}"

 Value="True"

 TrueState="ShowAsList"

 FalseState="ShowAsIcons"/>

As the user clicks the Contacts or Avatar radio buttons, the visual state is toggled between the

ShowAsList visual state and the ShowAsIcons visual state. The flip transition animation between these

states is also defined using the visual state manager.

Another example of this style of navigation is shown by the State-Based Navigation QuickStart

application when the user switches to the details views for the currently selected contact. The following

illustration shows an example of this.

170

The Contact Details view in the State-Based Navigation QuickStart

Again, this can be easily implemented using the Blend DataStateBehavior; however, this time it is bound

to the ShowDetails property on the view model, which toggles between the ShowDetails and

ShowContacts visual states using a flip transition animation.

Reflecting Application State

Similarly, the view within an application may sometimes need to change its layout or style based on

changes to an internal application state, which in turn is represented by a property on a view model. An

example of this scenario is shown in the State-Based Navigation QuickStart where the user's connection

status is represented on the Chat view model class using a ConnectionStatus property. As the user's

connection status changes, the view is informed (via a property change notification event) allowing the

view to visually represent the current connection state appropriately, as shown in the following

illustration.

171

Connection state representation in the State-Based Navigation QuickStart

To implement this, the view defines a DataStateBehavior data bound to the view model's

ConnectionStatus property to toggle between the appropriate visual states.

XAML

<ei:DataStateBehavior Binding="{Binding ConnectionStatus}"
 Value="Available"

 TrueState="Available" FalseState="Unavailable"/>

Note that the connection state can be changed by the user via the UI or by the application according to

some internal logic or event. For example, the application may move to an "unavailable" state if the user

does not interact with the view within a certain time period or when the user's calendar indicates that

he or she is in a meeting. The State-Based Navigation QuickStart simulates this scenario by switching the

connection status randomly using a timer. When the connection status is changed, the property on the

view model is updated, and the view is informed via a property changed event. The UI is then updated

to reflect the current connection status.

All the preceding examples involve defining visual states in the view and switching between them as a

result of the user's interaction with the view or via changes in properties defined by the view model.

This approach allows the UI designer to implemenent navigation-like visual behavior in the view without

requiring the view to be replaced or requiring any code changes to the application's code. This approach

is suitable when the view is required to render the same data in different styles or layouts. It is not

suitable for situations in which the user is to be presented with different data or application

functionality or when navigating to a different part of the application.

172

Interacting With the User

Frequently, an application will need to interact with the user in a limited way. In these situations, it is

often more appropriate to interact with the user within the context of the current view, instead of

navigating to a new view. For example, in the State-Based Navigation QuickStart, the user is able to send

a message to a contact by clicking the Send Message button. The view then displays a pop-up window

that allows the user to type the message, as shown in the following illustration. Because this interaction

with the user is limited and logically takes place within the context of the parent view, it can be easily

implemented as state-based navigation.

Interacting with the user using a pop-up window in the State-Based Navigation QuickStart

To implement this behavior, the State-Based Navigation QuickStart implements a SendMessage

command, which is bound to the Send Message button. When this command is invoked, the view model

interacts with the view to display the pop-up window. This is achieved using the Interaction Request

pattern described in Implementing the MVVM Pattern.

The following code example shows how the view in the State-Based Navigation QuickStart application

responds to the SendMessageRequest interaction request object provided by the view model. When

the request event is received, the SendMessageChildWindow is displayed as a popup window.

XAML

<prism:InteractionRequestTrigger SourceObject="{Binding SendMessageRequest}">
 <prism:PopupWindowAction IsModal="True">
 <prism:PopupWindowAction.WindowContent>
 <vs:SendMessagePopupView />
 </prism:PopupWindowAction.WindowContent>

173

 </prism:PopupWindowAction>

 </prism:InteractionRequestTrigger>

View-Based Navigation

Although state-based navigation can be useful for the scenarios outlined earlier, navigation within an

application will most often be accomplished by replacing one view within the application's UI with

another. In Prism, this style of navigation is referred to as view-based navigation.

Depending on the requirements of the application, this process can be fairly complex and require careful

coordination. The following are common challenges that often have to be addressed when

implementing view-based navigation:

 The target of the navigation—the container or host control of the views to be added or

removed—may handle navigation differently as views are added or removed from it, or they

may visually represent navigation in different ways. In many cases, the navigation target will be

a simple Frame or ContentControl, and navigated views will simply be displayed within these

controls. However, there are many scenarios where the target for the navigation operation is a

different type of container control, such as a TabControl or a ListBox control. In these cases,

navigation may require the activation or selection of an existing view or the addition of new

view is a specific way.

 The application will also often have to define how the view to be navigated to is identified. For

example, in a web application, the page to be navigated to is often directly identified by a

Uniform Resource Identifier (URI). In a client application, the view can be identified by type

name, resource location, or in a variety of different ways. Furthermore, in a composite

application, which is composed from loosely coupled modules, the views will often be defined

in separate modules. Individual views will need to be identified in a way that does not introduce

tight coupling and dependencies between modules.

 After the view is identified, the process by which the new view is instantiated and initialized has

to be carefully coordinated. This can be particularly important when using the MVVM pattern.

In this case, the view and view model may need to be instantiated and associated with each

other via the view's data context during the navigation operation. In the case when the

application is leveraging a dependency injection container, such as the Unity Application Block

(Unity) or the Managed Extensibility Framework (MEF), the instantiation of the views and/or

view models (and other dependent classes) may have to be achieved using a specific

construction mechanism.

 The MVVM pattern provides a separation between the application's UI and its presentation and

business logic. However, the navigational behavior of the application will often span UI and

presentation logic parts of the application. The user will often initiate navigation from within

the view, and the view will be updated as a result of that navigation, but navigation will often

also need to be initiated or coordinated from within the view model. The ability to cleanly

separate the navigational behavior of the application across the view and view model is an

important aspect to consider.

174

 An application will also often need to pass parameters or context to the view so that it can be

initialized properly. For example, if the user navigates to a view to update the details of a

specific customer, the customer's ID or data will have to be passed to the view so that it can

display the correct information.

 Many applications will also have to carefully coordinate navigation to ensure that certain

business rules are obeyed. For example, users may be prompted before navigating away from a

view so that they can correct any invalid data or be prompted to submit or discard any data

changes that they have made within that view. This process requires careful coordination

between the previous view and the new view.

 Lastly, most modern applications allow the user to easily navigate backward (or forward) to

previously displayed views. Similarly, some applications implement their workflows using a

sequence of views or forms and allow users to navigate forward or backward through them,

adding or updating data as they go, before completing the task and submitting all their changes

at one time. These scenarios require some kind of journaling (or history) mechanism so that the

sequence of navigation can be stored, replayed, or pre-defined.

Prism provides support and guidance for these challenges by extending Prism's region mechanism to

support navigation. The following sections provide a brief summary of Prism regions and describe how

they have been extended to support view-based navigation.

Prism Region Overview

Prism regions are designed to support the development of composite applications (that is, applications

that consist of multiple modules) by allowing the application's overall UI to be constructed in a loosely-

coupled way. Regions allow views defined in a module to be displayed within the application's UI

without requiring the module to have explicit knowledge of the application's overall UI structure. They

allow the layout of the application's UI to be changed easily, thereby allowing the UI designer to choose

the most appropriate UI design and layout for the application without requiring changes in the modules

themselves.

Prism regions are essentially named placeholders within which views can be displayed. Any control in

the application's UI can be a declared a region by simply adding a RegionName attached property to it,

as shown here.

XAML

<ContentControl prism:RegionManager.RegionName="MainRegion" ... />

For each control specified as a region, Prism creates a Region object to represent the region and a

RegionAdapter object, which manages the placement and activation of views into the specified control.

The Prism Library provides RegionAdapter implementations for most of the common WPF controls. You

can create a custom RegionAdapter to support additional controls or when you need to define a custom

behavior. The RegionManager class provides access to the Region objects within the application.

175

In many cases, the region control will be a simple control, such as a ContentControl, that can display one

view at a time. In other cases, the Region control will be a control that is able to display multiple views

at the same time, such as a TabControl or a ListBox control.

The region adapter manages a list of views within the associated region. One or more of these views will

be displayed in the region control according to its defined layout strategy. Views can be assigned a name

that can be used to retrieve that view later on. The region adapter manages the active state of the views

within the region. The active view is the view that is the selected or top-most view—for example, in a

TabControl, the active view is the one displayed in the selected tab; in a ContentControl, the active view

is the view that is currently displayed as the control's content.

Note: The active state of a view is important to consider during navigation. Frequently, you will want

the active view to participate in navigation so that it can save data before the user navigates away

from it, or so that it can confirm or cancel the navigation operation.

Previous versions of Prism allowed views to be displayed in a region in two ways. The first, called view

injection, allows views to be programmatically displayed in a region. This approach is useful for dynamic

content, where the view to be displayed in the region changes frequently, according to the application's

presentation logic.

View injection is supported through the Add method on the Region class. The follow code example

shows how you can obtain a reference to a Region object via the RegionManager class and

programmatically add a view to it. In this example, the view is created using a dependency injection

container.

C#

IRegionManager regionManager = ...;

IRegion mainRegion = regionManager.Regions["MainRegion"];

InboxView view = this.container.Resolve<InboxView>();

mainRegion.Add(view);

The second method, called view discovery, allows a module to register a view type against a region

name. Whenever a region with the specified name is displayed, an instance of the specified view will be

automatically created and displayed in the region. This approach is useful for relatively static content,

where the view to be displayed in a region does not change.

View discovery is supported through the RegisterViewWithRegion method on the RegionManager class.

This method allows you to specify a callback method that will be called when the named region is

shown. The following code example shows how you can create a view (via the dependency injection

container) when the main region is first shown.

C#

IRegionManager regionManager = ...;

regionManager.RegisterViewWithRegion("MainRegion", () =>

 container.Resolve<InboxView>());

176

For a detailed overview of Prisms region support and information about how to leverage regions to

compose the application's UI using view injection and discovery, see Composing the User Interface. The

rest of this topic describes how regions have been extended to support view-based navigation, and how

this addresses the various challenges described earlier.

Basic Region Navigation

Both view injection and view discovery can be considered to be limited forms of navigation–view

injection is a form of explicit, programmatic navigation, and view discovery is a form of implicit or

deferred navigation. However, in Prism 4.0, regions have been extended to support a more general

notion of navigation, based on URIs and an extensible navigation mechanism.

Navigation within a region means that a new view is to be displayed within that region. The view to be

displayed is identified via a URI, which, by default, refers to the name of the view to be created. You can

programmatically initiate navigation using the RequestNavigate method defined by the INavigateAsync

interface.

Note: Despite its name, the INavigateAsync interface does not represent asynchronous navigation

that's carried out on a separate background thread. Instead, the INavigateAsync interface represents

the ability to perform pseudo-asynchronous navigation. The RequestNavigate method may return

synchronously following the completion of navigation operation, or it may return while a navigation

operation is still pending, as in the case where the user needs to confirm the navigation. By allowing

you to specify callbacks and continuations during navigation, Prism provides a mechanism to enable

these scenarios without requiring the complexity of navigating on a background thread.

The INavigateAsync interface is implemented by the Region class, allowing you to initiate navigation

within that region.

C#

IRegion mainRegion = ...;

mainRegion.RequestNavigate(new Uri("InboxView", UriKind.Relative));

You can also call the RequestNavigate method on the RegionManager, which allows you to specify the

name of the region to be navigated. This convenient method obtains a reference to the specified region

and then calls the RequestNavigate method, as shown in the preceding code example.

C#

IRegionManager regionManager = ...;

regionManager.RequestNavigate("MainRegion",

 new Uri("InboxView", UriKind.Relative));

By default, the navigation URI specifies the name of a view that is registered in the container.

Using MEF, you can simply export the view type with the specified name.

C#

[Export("InboxView")]

public partial class InboxView : UserControl

177

During navigation, the specified view is instantiated, via the container or MEF, along with its

corresponding view model and other dependent services and components. After the view is

instantiated, it is then added to the specified region and activated (activation is described in more detail

later in this topic).

Note: The preceding description illustrates view-first navigation, where the URI refers to the name of

the view type, as it is exported or registered with the container. With view-first navigation, the

dependent view model is created as a dependency of the view. An alternative approach is to use view

model–first navigation, where the navigation URI refers to the name of the view model type, as it is

exported or registered with the container. View model–first navigation is useful when the view is

defined as a data template, or when you want your navigation scheme to be defined independently of

the views.

The RequestNavigate method also allows you to specify a callback method, or a delegate, which will be

called when navigation is complete.

C#

private void SelectedEmployeeChanged(object sender, EventArgs e)

{

 ...

 regionManager.RequestNavigate(RegionNames.TabRegion,

 "EmployeeDetails", NavigationCompleted);

}

private void NavigationCompleted(NavigationResult result)

{

 ...

}

The NavigationResult class defines properties that provide information about the navigation operation.

The Result property indicates whether or not navigation succeeded. If navigation failed, the Error

property provides a reference to any exception that was thrown during navigation. The Context

property provides access to the navigation URI and any parameters it contains, and a reference to the

navigation service that coordinated the navigation operation.

View and View Model Participation in Navigation

Frequently, the views and view models in your application will want to participate in navigation. The

INavigationAware interface enables this. You can implement this interface on the view or (more

commonly) the view model. By implementing this interface, your view or view model can opt-in to

participate in the navigation process.

Note: In the description that follows, although a reference is made to calls to this interface during

navigation between views, it should be noted that the INavigationAware interface will be called during

navigation whether it is implemented by the view or by the view model.

During navigation, Prism checks to see whether the view implements the INavigationAware interface;

if it does, it calls the required methods during navigation. Prism also checks to see whether the object

178

set as the view's DataContext implements this interface; if it does, it calls the required methods during

navigation.

This interface allows the view or view model to participate in a navigation operation. The

INavigationAware interface defines three methods.

C#

public interface INavigationAware

{

 bool IsNavigationTarget(NavigationContext navigationContext);

 void OnNavigatedTo(NavigationContext navigationContext);

 void OnNavigatedFrom(NavigationContext navigationContext);

}

The IsNavigationTarget method allows an existing (displayed) view or view model to indicate whether it

is able to handle the navigation request. This is useful in cases where you can re-use an existing view to

handle the navigation operation or when navigating to a view that already exists. For example, a view

displaying customer information can be updated to display a different customer's information. For more

information about using this method, see the section, Navigating to Existing Views, later in this topic.

The OnNavigatedFrom and OnNavigatedTo methods are called during a navigation operation. If the

currently active view in the region implements this interface (or its view model), its OnNavigatedFrom

method is called before navigation takes place. The OnNavigatedFrom method allows the previous view

to save any state or to prepare for its deactivation or removal from the UI, for example, to save any

changes that the user has made to a web service or database.

If the newly created view implements this interface (or its view model), its OnNavigatedTo method is

called after navigation is complete. The OnNavigatedTo method allows the newly displayed view to

initialize itself, potentially using any parameters passed to it on the navigation URI. For more

information, see the next section, Passing Parameters During Navigation.

After the new view is instantiated, initialized, and added to the target region, it then becomes the active

view, and the previous view is deactivated. Sometimes you will want the deactivated view to be

removed from the region. Prism provides the IRegionMemberLifetime interface, which allows you to

control the lifetime of views within regions by allowing you to specify whether deactivated views are to

be removed from the region or simply marked as deactivated.

C#

public class EmployeeDetailsViewModel : IRegionMemberLifetime

{

 public bool KeepAlive

 {

 get { return true; }

 }

}

179

The IRegionMemberLifetime interface defines a single read-only property, KeepAlive. If this property

returns false, the view is removed from the region when it is deactivated. Because the region no longer

has a reference to the view, it then becomes eligible for garbage collection (unless some other

component in your application maintains a reference to it). You can implement this interface on your

view or your view model classes. Although the IRegionMemberLifetime interface is primarily intended

to allow you to manage the lifetime of views within regions during activation and deactivation, the

KeepAlive property is also considered during navigation after the new view is activated in the target

region.

Note: Regions that can display multiple views, such as those that use an ItemsControl or a TabControl,

will display both non-active and active views. Removal of a non-active view from these types of regions

will result in the view being removed from the UI.

Passing Parameters During Navigation

To implement the required navigational behavior in your application, you will often need to specify

additional data during navigation request than just the target view name. The NavigationContext object

provides access to the navigation URI, and to any parameters that were specified within it or externally.

You can access the NavigationContext from within the IsNavigationTarget, OnNavigatedFrom, and

OnNavigatedTo methods.

Prism provides the NavigationParameters class to help specify and retrieve navigation parameters. The

NavigationParameters class maintains a list of name-value pairs, one for each parameter. You can use

this class to pass parameters as part of navigation URI or for passing object parameters.

The following code example shows how to add individual string parameters to the

NavigationParameters instance so that it can be appended to the navigation URI.

C#

Employee employee = Employees.CurrentItem as Employee;

if (employee != null)

{

 var navigationParameters = new NavigationParameters();

 navigationParameters.Add("ID", employee.Id);

 _regionManager.RequestNavigate(RegionNames.TabRegion,

 new Uri("EmployeeDetailsView" + navigationParameters.ToString(),

UriKind.Relative));

}

180

Additionally, you can pass object parameters by adding them to the NavigationParameters instance,

and passing it as a parameter of the RequestNavigate method. This is shown in the following code.

C#

Employee employee = Employees.CurrentItem as Employee;

if (employee != null)

{

 var parameters = new NavigationParameters();

 parameters.Add("ID", employee.Id);

 parameters.Add("myObjectParameter", new ObjectParameter());

 regionManager.RequestNavigate(RegionNames.TabRegion,

 new Uri("EmployeeDetailsView", UriKind.Relative), parameters);

}

You can retrieve the navigation parameters using the Parameters property on the NavigationContext

object. This property returns an instance of the NavigationParameters class, which provides an indexer

property to allow easy access to individual parameters, independently of them being passed through the

query or through the RequestNavigate method.

C#

public void OnNavigatedTo(NavigationContext navigationContext)

{

 string id = navigationContext.Parameters["ID"];

 ObjectParameter myParameter = navigationContext.Parameters["myObjectParameter"];

}

Navigating to Existing Views

Frequently, it is more appropriate for the views in your application to be re-used, updated, or activated

during navigation, instead of replaced by a new view. This is often the case where you are navigating to

the same type of view but need to display different information or state to the user, or when the

appropriate view is already available in the UI but needs to be activated (that is, selected or made top-

most).

For an example of the first scenario, imagine that your application allows the user to edit customer

records, using the EditCustomer view, and the user is currently using that view to edit customer ID 123.

If the customer decides to edit the customer record for customer ID 456, the user can simply navigate to

the EditCustomer view and enter the new customer ID. The EditCustomer view can then retrieve the

data for the new customer and update its UI accordingly.

An example of the second scenario is where the application allows the user to edit more than one

customer record at a time. In this case, the application displays multiple EditCustomer view instances in

a tab control—for example, one for customer ID 123 and another for customer ID 456. When the user

navigates to the EditCustomer view and enters customer ID 456, the corresponding view will be

activated (that is, its corresponding tab will be selected). If the user navigates to the EditCustomer view

and enters customer ID 789, a new instance will be created and displayed in the tab control.

181

The ability to navigate to an existing view is useful for a variety of reasons. It is often more efficient to

update an existing view instead of replace it with a new instance of the same type. Similarly, activating

an existing view, instead of creating a duplicate view, provides a more consistent user experience. In

addition, the ability to handle these situations seamlessly without requiring much custom code means

that the application is easier to develop and maintain.

Prism supports the two scenarios described earlier via the IsNavigationTarget method on the

INavigationAware interface. This method is called during navigation on all views in a region that are of

the same type as the target view. In the preceding examples, the target type of the view is the

EditCustomer view, so the IsNavigationTarget method will be called on all existing EditCustomer view

instances currently in the region. Prism determines the target type from the view URI, which it assumes

is the short type name of the target type.

Note: For Prism to determine the type of the target view, the view's name in the navigation URI should

be the same as the actual target type's short type name. For example, if your view is implemented by

the MyApp.Views.EmployeeDetailsView class, the view name specified in the navigation URI should

be EmployeeDetailsView. This is the default behavior provided by Prism. You can customize this

behavior by implementing a custom content loader class; you can do this by implementing the

IRegionNavigationContentLoader interface or by deriving from the RegionNavigationContentLoader

class.

The implementation of the IsNavigationTarget method can use the NavigationContext parameter to

determine whether it can handle the navigation request. The NavigationContext object provides access

to the navigation URI and the navigation parameters. In the preceding examples, the implementation of

this method in the EditCustomer view model compares the current customer ID to the ID specified in

the navigation request, and it returns true if they match.

C#

public bool IsNavigationTarget(NavigationContext navigationContext)

{

 string id = navigationContext.Parameters["ID"];

 return _currentCustomer.Id.Equals(id);

}

If the IsNavigationTarget method always returns true, regardless of the navigation parameters, that

view instance will always be re-used. This allows you to ensure that only one view of a particular type

will be displayed in a particular region.

Confirming or Cancelling Navigation

You will often find that you will need to interact with the user during a navigation operation, so that the

user can confirm or cancel it. In many applications, for example, the user may try to navigate while in

the middle of entering or editing data. In these situations, you may want to ask the user whether he or

she wants to save or discard the data that has been entered before continuing to navigate away from

182

the page, or whether the user wants to cancel the navigation operation altogether. Prism supports these

scenarios via the IConfirmNavigationRequest interface.

The IConfirmNavigationRequest interface derives from the INavigationAware interface and adds the

ConfirmNavigationRequest method. By implementing this interface on your view or view model class,

you allow them to participate in the navigation sequence in a way that allows them to interact with the

user so that the user can confirm or cancel the navigation. You will often use an Interaction Request

object, as described in Using Interaction Request Objects in Advanced MVVM Scenarios, to display a

confirmation pop-up window.

Note: The ConfirmNavigationRequest method is called on the active view or view model, similar to

the OnNavigatedFrom method described earlier.

The ConfirmNavigationRequest method provides two parameters, a reference to the current navigation

context as described earlier, and a callback method that you can call when you want navigation to

continue. For this reason, the callback is known as a continuation callback. You can store a reference to

the continuation callback so the application can call it after it finishes interacting with the user. If your

application interacts with the user through an Interaction Request object, you can chain the call to the

continuation callback to the callback from the interaction request. The following diagram illustrates the

overall process.

Confirming Navigation Using an InteractionRequest Object

The following steps summarize the process of confirming navigation using an InteractionRequest object:

1. Navigation operation is initiated via a RequestNavigate call.

2. If the view or view model implements IConfirmNavigation, call ConfirmNavigationRequest.

3. The view model raises the interaction request event.

183

4. The view displays the confirmation pop-up window and awaits the user's response.

5. The interaction request callback is invoked when the user closes the pop-up window.

6. Continuation callback is invoked to continue or cancel the pending navigation operation.

7. The navigation operation is completed or canceled.

To illustrate this, look at the View-Switching Navigation Quick Start. This application provides the ability

for the user to compose a new email using the ComposeEmailView and ComposeEmailViewModel

classes. The view model class implements the IConfirmNavigation interface. If the user navigates, such

as by clicking the Calendar button, when they are composing an email, the ConfirmNavigationRequest

method will be called so that the view model can confirm the navigation with the user. To support this,

the view model class defines an interaction request, as shown in the following code example.

C#

public class ComposeEmailViewModel : NotificationObject, IConfirmNavigationRequest

{

 . . .

 private readonly InteractionRequest<Confirmation>

 confirmExitInteractionRequest;

 public ComposeEmailViewModel(IEmailService emailService)

 {

 . . .

 this.confirmExitInteractionRequest = new

 InteractionRequest<Confirmation>();

 }

 public IInteractionRequest ConfirmExitInteractionRequest

 {

 get { return this.confirmExitInteractionRequest; }

 }

}

In the ComposeEmailVew class, an interaction request trigger is defined, and data is bound to the

ConfirmExitInteractionRequest property on the view model. When the interaction request is made, a

simple pop-up window will be displayed to the user.

XAML

<UserControl.Resources>

 <DataTemplate x:Key="ConfirmExitDialogTemplate">

 <TextBlock HorizontalAlignment="Center" VerticalAlignment="Center"

 Text="{Binding}"/>

 </DataTemplate>

</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White">
<ei:Interaction.Triggers>

184

 <prism:InteractionRequestTrigger SourceObject="{Binding
 ConfirmExitInteractionRequest}">
 <prism:PopupWindowAction IsModal="True" CenterOverAssociatedObject="True"/>
 </prism:InteractionRequestTrigger>
</ei:Interaction.Triggers>
...

The ConfirmNavigationRequest method on the ComposeEmailVewModel class is called if the user

attempts to navigate while an email is being composed. The implementation of this method invokes the

interaction request defined earlier so that the user can confirm or cancel the navigation operation.

C#

void IConfirmNavigationRequest.ConfirmNavigationRequest(

 NavigationContext navigationContext, Action<bool> continuationCallback)

{

 . . .

 this.confirmExitInteractionRequest.Raise(

 new Confirmation {Content = "...", Title = "..."},

 c => {continuationCallback(c.Confirmed);});

}

The callback for the interaction request is called when the user clicks the buttons in the confirmation

pop-up window to confirm or cancel the operation. This callback simply calls the continuation callback,

passing in the value of the Confirmed flag, and causing the navigation to continue or be canceled.

Note: It should be noted that after the interaction request event is raised, the

ConfirmNavigationRequest method immediately returns so that the user can continue to interact with

the UI of the application. When the user clicks the OK or Cancel buttons on the pop-up window, the

callback method of the interaction request is made, which in turn calls the continuation callback to

complete the navigation operation. All the methods are called on the UI thread. Using this technique,

no background threads are required.

Using this mechanism, you can control if the navigation request is carried out immediately or is

deferred, pending an interaction with the user or some other asynchronous interaction (for example, as

a result of a web service request). To enable navigation to proceed, you can simply call the continuation

callback method, passing true to indicate that it can continue. Similarly, you can pass false to indicate

that the navigation should be canceled.

C#

void IConfirmNavigationRequest.ConfirmNavigationRequest(

 NavigationContext navigationContext, Action<bool> continuationCallback)

{

 continuationCallback(true);

}

If you want to defer navigation, you can store a reference to the continuation callback you can then call

when the interaction with the user (or web service) completes. The navigation operation will be pending

until you call the continuation callback.

185

If the user initiates another navigation operation in the meantime, the navigation request then becomes

canceled. In this case, calling the continuation callback has no effect because the navigation operation to

which it relates is no longer current. Similarly, if you decide not to call the continuation callback, the

navigation operation will be pending until it is replaced with a new navigation operation.

Using the Navigation Journal

The NavigationContext class provides access to the region navigation service, which is responsible for

coordinating the sequence of operations during navigation within a region. It provides access to the

region in which navigation is taking place, and to the navigation journal associated with that region. The

region navigation service implements the IRegionNavigationService, which is defined as follows.

C#

public interface IRegionNavigationService : INavigateAsync

{

 IRegion Region {get; set;}

 IRegionNavigationJournal Journal {get;}

 event EventHandler<RegionNavigationEventArgs> Navigating;

 event EventHandler<RegionNavigationEventArgs> Navigated;

 event EventHandler<RegionNavigationFailedEventArgs> NavigationFailed;

}

Because the region navigation service implements the INavigateAsync interface, you can initiate

navigation within the parent region by calling its RequestNavigate method. The Navigating event is

raised when a navigation operation is initiated. The Navigated event is raised when navigation within a

region is completed. The NavigationFailed is raised if an error was encountered during navigation.

The Journal property provides access to the navigation journal associated with the region. The

navigation journal implements the IRegionNavigationJournal interface, which is defined as follows.

C#

public interface IRegionNavigationJournal

{

 bool CanGoBack { get; }

 bool CanGoForward { get; }

 IRegionNavigationJournalEntry CurrentEntry { get; }

 INavigateAsync NavigationTarget { get; set; }

 void Clear();

 void GoBack();

 void GoForward();

 void RecordNavigation(IRegionNavigationJournalEntry entry);

}

You can obtain and store a reference to the region navigation service within a view during navigation via

the OnNavigatedTo method call. By default, Prism provides a simple stack-based journal that allows you

to navigate forward or backward within a region.

186

You can use the navigation journal to allow the user to navigate from within the view itself. In the

following example, the view model implements a GoBack command, which uses the navigation journal

within the host region. Therefore, the view can display a Back button that allows the user to easily

navigate back to the previous view within the region. Similarly, you can implement a GoForward

command to implement a wizard style workflow.

C#

public class EmployeeDetailsViewModel : INavigationAware

{

 ...

 private IRegionNavigationService navigationService;

 public void OnNavigatedTo(NavigationContext navigationContext)

 {

 navigationService = navigationContext.NavigationService;

 }

 public DelegateCommand<object> GoBackCommand { get; private set; }

 private void GoBack(object commandArg)

 {

 if (navigationService.Journal.CanGoBack)

 {

 navigationService.Journal.GoBack();

 }

 }

 private bool CanGoBack(object commandArg)

 {

 return navigationService.Journal.CanGoBack;

 }

}

You can implement a custom journal for a region if you need to implement a specific workflow pattern

within that region.

Note: The navigation journal can only be used for region-based navigation operations that are

coordinated by the region navigation service. If you use view discovery or view injection to implement

navigation within a region, the navigation journal will not be updated during navigation and cannot be

used to navigate forward or backward within that region.

Using the WPF Navigation Framework

Prism region navigation was designed to address a wide range of common scenarios and challenges that

you may face when implementing navigation in a loosely-coupled, modular application that uses the

MVVM pattern and a dependency injection container, such as Unity, or the Managed Extensibility

187

Framework (MEF). It also was designed to support navigation confirmation and cancelation, navigation

to existing views, navigation parameters and navigation journaling.

By supporting navigation within Prism regions, it also supports navigation within a wide range of layout

controls and supports the ability to change the layout of the application's UI without affecting its

navigation structure. It also supports pseudo-synchronous navigation, which allows for rich user

interaction during navigation.

However, the Prism region navigation was not designed to replace WPF's navigation framework.

Instead, Prism region navigation was designed to be used side-by-side with the WPF navigation

framework.

The WPF navigation framework is difficult to use to support the MVVM pattern and dependency

injection. It is also based on a Frame control that provides similar functionality in terms of journaling and

navigation UI. You can use the WPF navigation framework alongside Prism region navigation, though it

may be easier and more flexible to implement navigation using only Prism regions.

The Region Navigation Sequence

The following illustration provides an overview of the sequence of operations during a navigation

operation. It is provided for reference so that you can see how the various elements of the Prism region

navigation work together during a navigation request.

188

Prism region navigation sequence

More Information

For more information about Prism regions, see Composing the User Interface.

For more information about the MVVM pattern and Interaction Request pattern, see Implementing the

MVVM Pattern and Advanced MVVM Scenarios.

189

For more information about the Interaction Request object, see Using Interaction Request Objects in

Advanced MVVM Scenarios.

For more information about the Visual State Manager, see VisualStateManager Class on MSDN.

For more information about using Microsoft Blend behaviors, see Working with built-in behaviors on

MSDN.

For more information about creating custom behaviors with Microsoft Blend, see Creating Custom

Behaviors on MSDN.

http://msdn.microsoft.com/en-us/library/cc626338(v=VS.95).aspx
http://msdn.microsoft.com/en-us/library/ff724013(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ff724708(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ff724708(v=Expression.40).aspx

190

9: Communicating Between Loosely

Coupled Components
When building large complex WPF applications, a common approach is to divide the functionality into

discrete module assemblies. It is also desirable to minimize the use of static references between these

modules, which can be accomplished through the use of delegate commands, region context, shared

services, and event aggregator. This allows the modules to be independently developed, tested,

deployed, and updated, and it forces loosely coupled communication. This topic provides guidance

when to use delegate commands and routed commands and when to use event aggregator and .NET

framework events.

When communicating between modules, it is important that you know the differences between the

approaches so that you can best determine which approach to use in your particular scenario. The Prism

Library provides the following communication approaches:

 Solution commanding. Use when there is an expectation of immediate action from the user

interaction.

 Region context. Use this to provide contextual information between the host and views in the

host's region. This approach is somewhat similar to the DataContext, but it does not rely on it.

 Shared services. Callers can call a method on the service which raises an event to the receiver

of the message. Use this if none of the preceding is applicable.

 Event aggregation. For communication across view models, presenters, or controllers when

there is not a direct action-reaction expectation.

Solution Commanding

If you need to respond to a user gesture, such as clicking on a command invoker (for example, a button

or menu item), and if you want the invoker to be enabled based on business logic, use commanding.

Windows Presentation Foundation (WPF) provides RoutedCommand, which is good at connecting

command invokers, such as menu items and buttons, with command handlers that are associated with

the current item in the visual tree that has keyboard focus.

However, in a composite scenario, the command handler is often a view model that does not have any

associated elements in the visual tree or is not the focused element. To support this scenario, the Prism

Library provides DelegateCommand, which allows you to call a delegate method when the command is

executed, and CompositeCommand, which allows you to combine multiple commands. These

commands are different from the built-in RoutedCommand, which will route command execution and

handling up and down the visual tree. This allows you to trigger a command at a point in the visual tree

and handle it at a higher level.

191

The CompositeCommand is an implementation of ICommand so that it can be bound to invokers.

CompositeCommands can be connected to several child commands; when the CompositeCommand is

invoked, the child commands are also invoked.

CompositeCommands support enablement. CompositeCommands listen to the CanExecuteChanged

event of each one of its connected commands. It then raises this event notifying its invoker(s). The

invoker(s) reacts to this event by calling CanExecute on the CompositeCommand. The

CompositeCommand then again polls all its child commands by calling CanExecute on each child

command. If any call to CanExecute returns false, the CompositeCommand will return false, thus

disabling the invoker(s).

How does this help you with cross module communication? Applications based on the Prism Library may

have global CompositeCommands that are defined in the shell that have meaning across modules, such

as Save, Save All, and Cancel. Modules can then register their local commands with these global

commands and participate in their execution.

Note: DelegateCommand and CompositeCommands can be found in the

Microsoft.Practices.Prism.Mvvm namespace which is located in the Prism.Mvvm NuGet package.

About WPF Routed Events and Routed Commands

A routed event is a type of event that can invoke handlers on multiple listeners in an element tree,

instead of notifying only the object that directly subscribed to the event. WPF-routed commands

deliver command messages through UI elements in the visual tree, but the elements outside the tree

will not receive these messages because they only bubble up or down from the focused element or an

explicitly stated target element. Routed events can be used to communicate through the element tree,

because the event data for the event is perpetuated to each element in the route. One element could

change something in the event data, and that change would be available to the next element in the

route.

Therefore, you should use WPF routed events in the following scenarios: defining common handlers at

a common root or defining your own custom control class.

Creating a Delegate Command

To create a delegate command, instantiate a DelegateCommand field in the constructor of your view

model, and then expose it as an ICommand property.

C#

// ArticleViewModel.cs

public class ArticleViewModel : BindableBase

{

 private readonly ICommand showArticleListCommand;

 public ArticleViewModel(INewsFeedService newsFeedService,

 IRegionManager regionManager,

 IEventAggregator eventAggregator)

 {

192

 this.showArticleListCommand = new DelegateCommand(this.ShowArticleList);

 }

 public ICommand ShowArticleListCommand

 {

 get { return this.showArticleListCommand; }

 }

}

Creating a Composite Command

To create a composite command, instantiate a CompositeCommand field in the constructor, add

commands to it, and then expose it as an ICommand property.

C#

public class MyViewModel : BindableBase

{

 private readonly CompositeCommand saveAllCommand;

 public ArticleViewModel(INewsFeedService newsFeedService,

 IRegionManager regionManager,

 IEventAggregator eventAggregator)

 {

 this.saveAllCommand = new CompositeCommand();

 this.saveAllCommand.RegisterCommand(new SaveProductsCommand());

 this.saveAllCommand.RegisterCommand(new SaveOrdersCommand());

 }

 public ICommand SaveAllCommand

 {

 get { return this.saveAllCommand; }

 }

}

Making a Command Globally Available

Typically, to create a globally available command, create an instance of the DelegateCommand or the

CompositeCommand and expose it through a static class.

C#

public static class GlobalCommands

{

 public static CompositeCommand MyCompositeCommand = new CompositeCommand();

}

In your module, associate child commands to the globally available command.

C#

GlobalCommands.MyCompositeCommand.RegisterCommand(command1);

GlobalCommands.MyCompositeCommand.RegisterCommand(command2);

193

Note: To increase the testability of your code, you can use a proxy class to access the globally available

commands and mock that proxy class in your tests.

Binding to a Globally Available Command

The following code example shows how to bind a button to the command in WPF.

XAML

<Button Name="MyCompositeCommandButton" Command="{x:Static

local:GlobalCommands.MyCompositeCommand}">Execute My Composite Command </Button>

Note: Another approach is to store the command as a resource inside the App.xaml file in the

Application.Resources section. Then, in the view—which must be created after setting that resource—

you can set Command="{Binding MyCompositeCommand, Source={StaticResource

GlobalCommands}}" to add an invoker to the command.

Region Context

There are a lot of scenarios where you might want to share contextual information between the view

that is hosting a region and a view that is inside a region. For example, a master detail–like view shows a

business entity and exposes a region to show additional detail information for that business entity. The

Prism Library uses a concept named RegionContext to share an object between the host of the region

and any views that are loaded inside the region, as shown in the following illustration.

Using RegionContext

Depending on the scenario, you can choose to share a single piece of information (such as an identifier)

or a shared model. The view can retrieve the RegionContext, and then sign up for change notifications.

The view can also change the RegionContext's value. There are several ways of exposing and consuming

the RegionContext:

 You can expose RegionContext to a region in Extensible Application Markup Language (XAML).

 You can expose RegionContext to a region in code.

194

 You can consume RegionContext from a view inside a region.

Note: The Prism Library currently only supports consuming the RegionContext from a view inside a

region if that view is a DependencyObject. If your view is not a DependencyObject (for example, you

are using WPF automatic data templates and adding your view model directly in the region), consider

creating a custom RegionBehavior to forward the RegionContext to your view objects.

About the Data Context Property

Data context is a concept that allows elements to inherit information from their parent elements

about the data source that is used for binding. Child elements automatically inherit the DataContext of

their parent element. The data flows down the visual tree.

Shared Services

Another method of cross-module communication is through shared services. When the modules are

loaded, modules add their services to the service locator. Typically, services are registered and retrieved

from a service locator by common interface types. This allows modules to use services provided by other

modules without requiring a static reference to the module. Service instances are shared across

modules, so you can share data and pass messages between modules.

In the Stock Trader Reference Implementation (Stock Trader RI), the Market module provides an

implementation of IMarketFeedService. The Position module consumes these services by using the shell

application's dependency injection container, which provides service location and resolution. The

IMarketFeedService is meant to be consumed by other modules, so it can be found in the

StockTraderRI.Infrastructure common assembly, but the concrete implementation of this interface does

not need to be shared, so it is defined directly in the Market module and can be updated independently

of other modules.

To see how these services are exported into MEF, see the MarketFeedService.cs and

MarketHistoryService.cs files, as shown in the following code example. The Position module's

ObservablePosition receives the IMarketFeedService service through constructor dependency injection.

C#

// MarketFeedService.cs

[Export(typeof(IMarketFeedService))]

[PartCreationPolicy(CreationPolicy.Shared)]

public class MarketFeedService : IMarketFeedService, IDisposable

{

 ...

}

This helps with cross-module communication because service consumers do not need a static reference

to modules providing the service. This service can be used to send or receive data between modules.

195

Note: Some dependency injection containers allow the registration of dependencies using attributes,

as shown in this example. Other containers may use explicit registration. In these cases, the

registration typically occurs during module loading when Prism invokes the IModule.Initialize method.

See Modular Application Development for more information.

Event Aggregation

The Prism Library provides an event mechanism that enables communications between loosely coupled

components in the application. This mechanism, based on the event aggregator service, allows

publishers and subscribers to communicate through events and still do not have a direct reference to

each other.

The EventAggregator provides multicast publish/subscribe functionality. This means there can be

multiple publishers that raise the same event and there can be multiple subscribers listening to the

same event. Consider using the EventAggregator to publish an event across modules and when sending

a message between business logic code, such as controllers and presenters.

One example of this, from the Stock Trader RI, is when the Process Order button is clicked and the order

successfully processes; in this case, other modules need to know the order is successfully processed so

they can update their views.

Events created with the Prism Library are typed events. This means you can take advantage of compile-

time type checking to detect errors before you run the application. In the Prism Library, the

EventAggregator allows subscribers or publishers to locate a specific EventBase. The event aggregator

also allows for multiple publishers and multiple subscribers, as shown in the following illustration.

Event aggregator

About .NET Framework Events

Using .NET Framework events is the most simple and straightforward approach for communication

between components if loose coupling is not a requirement. Events in the .NET Framework implement

the Publish-Subscribe pattern, but to subscribe to an object, you need a direct reference to that object,

which, in composite applications, typically resides in another module. This results in a tightly coupled

design. Therefore, .NET Framework events are used for communication within modules instead of

between modules.

196

If you use .NET Framework events, you have to be very careful of memory leaks, especially if you have

a non-static or short-lived component that subscribes to an event on a static or longer-lived one. If you

do not unsubscribe the subscriber, it will be kept alive by the publisher, and this will prevent the first

one from being garbage-collected.

IEventAggregator

The EventAggregator class is offered as a service in the container and can be retrieved through the

IEventAggregator interface. The event aggregator is responsible for locating or building events and for

keeping a collection of the events in the system.

C#

public interface IEventAggregator

{

 TEventType GetEvent<TEventType>() where TEventType : EventBase;

}

The EventAggregator constructs the event on its first access if it has not already been constructed. This

relieves the publisher or subscriber from needing to determine whether the event is available.

PubSubEvent

The real work of connecting publishers and subscribers is done by the PubSubEvent class. This is the

only implementation of the EventBase class that is included in the Prism Library. This class maintains the

list of subscribers and handles event dispatching to the subscribers.

The PubSubEvent class is a generic class that requires the payload type to be defined as the generic

type. This helps enforce, at compile time, that publishers and subscribers provide the correct methods

for successful event connection. The following code shows a partial definition of the PubSubEvent class.

Note: PubSubEvent can be found in the Microsoft.Practices.SubSubEvents namespace which is located

in the Prism.PubSubEvents NuGet package.

C#

// PubSubEvent.cs

public class PubSubEvent<TPayload> : EventBase

{

 ...

 public SubscriptionToken Subscribe(Action<TPayload> action);

 public SubscriptionToken Subscribe(Action<TPayload> action, ThreadOption

threadOption);

 public SubscriptionToken Subscribe(Action<TPayload> action, bool

keepSubscriberReferenceAlive)

 public SubscriptionToken Subscribe(Action<TPayload> action, ThreadOption

threadOption, bool keepSubscriberReferenceAlive)

 public virtual SubscriptionToken Subscribe(Action<TPayload> action, ThreadOption

threadOption, bool keepSubscriberReferenceAlive);

197

 public virtual SubscriptionToken Subscribe(Action<TPayload> action, ThreadOption

threadOption, bool keepSubscriberReferenceAlive, Predicate<TPayload> filter);

 public virtual void Publish(TPayload payload);

 public virtual void Unsubscribe(Action<TPayload> subscriber);

 public virtual bool Contains(Action<TPayload> subscriber)

 ...

}

Creating and Publishing Events

The following sections describe how to create, publish, and subscribe to PubSubEvent using the

IEventAggregator interface.

Creating an Event

The PubSubEvent<TPayload> is intended to be the base class for an application's or module's specific

events. TPayLoad is the type of the event's payload. The payload is the argument that will be passed to

subscribers when the event is published.

For example, the following code shows the TickerSymbolSelectedEvent in the Stock Trader Reference

Implementation (Stock Trader RI). The payload is a string containing the company symbol. Notice how

the implementation for this class is empty.

C#

public class TickerSymbolSelectedEvent : PubSubEvent<string>{}

Note: In a composite application, the events are frequently shared between multiple modules, so they

are defined in a common place. In the Stock Trader RI, this is done in the StockTraderRI.Infrastructure

project.

Publishing an Event

Publishers raise an event by retrieving the event from the EventAggregator and calling the Publish

method. To access the EventAggregator, you can use dependency injection by adding a parameter of

type IEventAggregator to the class constructor.

The following code demonstrates publishing the TickerSymbolSelectedEvent.

C#

this.eventAggregator.GetEvent<TickerSymbolSelectedEvent>().Publish("STOCK0");

Subscribing to Events

Subscribers can enlist with an event using one of the Subscribe method overloads available on the

PubSubEvent class. There are several ways to subscribe to PubSubEvents. Use the following criteria to

help determine which option best suits your needs:

 If you need to be able to update UI elements when an event is received, subscribe to receive

the event on the UI thread.

 If you need to filter an event, provide a filter delegate when subscribing.

198

 If you have performance concerns with events, consider using strongly referenced delegates

when subscribing and then manually unsubscribe from the PubSubEvent.

 If none of the preceding is applicable, use a default subscription.

The following sections describe these options.

Subscribing on the UI Thread

Frequently, subscribers will need to update UI elements in response to events. In WPF, only a UI thread

can update UI elements.

By default, the subscriber receives the event on the publisher's thread. If the publisher sends the event

from the UI thread, the subscriber can update the UI. However, if the publisher's thread is a background

thread, the subscriber may be unable to directly update UI elements. In this case, the subscriber would

need to schedule the updates on the UI thread using the Dispatcher class.

The PubSubEvent provided with the Prism Library can assist by allowing the subscriber to automatically

receive the event on the UI thread. The subscriber indicates this during subscription, as shown in the

following code example.

C#

public void Run()

{

 ...

 this.eventAggregator.GetEvent<TickerSymbolSelectedEvent>().Subscribe(ShowNews,

ThreadOption.UIThread);

);

}

public void ShowNews(string companySymbol)

{

 this.articlePresentationModel.SetTickerSymbol(companySymbol);

}

The following options are available for ThreadOption:

 PublisherThread. Use this setting to receive the event on the publishers' thread. This is the

default setting.

 BackgroundThread. Use this setting to asynchronously receive the event on a .NET Framework

thread-pool thread.

 UIThread. Use this setting to receive the event on the UI thread.

In order for PubSubEvents to publish to subscribers on the UI thread, the EventAggregator must

initially be constructed on the UI thread.

199

Subscription Filtering

Subscribers may not need to handle every instance of a published event. In these cases, the subscriber

can use the filter parameter. The filter parameter is of type System.Predicate<TPayLoad> and is a

delegate that gets executed when the event is published to determine if the payload of the published

event matches a set of criteria required to have the subscriber callback invoked. If the payload does not

meet the specified criteria, the subscriber callback is not executed.

Frequently, this filter is supplied as a lambda expression, as shown in the following code example.

C#

FundAddedEvent fundAddedEvent = this.eventAggregator.GetEvent<FundAddedEvent>();

fundAddedEvent.Subscribe(FundAddedEventHandler, ThreadOption.UIThread, false,

fundOrder => fundOrder.CustomerId == this.customerId);

Note: The Subscribe method returns a subscription token of type

Microsoft.Practices.Prism.Events.SubscriptionToken that can be used to remove a subscription to the

event later. This token is particularly useful when you are using anonymous delegates or lambda

expressions as the callback delegate or when you are subscribing the same event handler with

different filters.

Note: It is not recommended to modify the payload object from within a callback delegate because

several threads could be accessing the payload object simultaneously. You could have the payload be

immutable to avoid concurrency errors.

Subscribing Using Strong References

If you are raising multiple events in a short period of time and have noticed performance concerns with

them, you may need to subscribe with strong delegate references. If you do that, you will then need to

manually unsubscribe from the event when disposing the subscriber.

By default, PubSubEvent maintains a weak delegate reference to the subscriber's handler and filter on

subscription. This means the reference that PubSubEvent holds on to will not prevent garbage collection

of the subscriber. Using a weak delegate reference relieves the subscriber from the need to unsubscribe

and allows for proper garbage collection.

However, maintaining this weak delegate reference is slower than a corresponding strong reference. For

most applications, this performance will not be noticeable, but if your application publishes a large

number of events in a short period of time, you may need to use strong references with PubSubEvent. If

you do use strong delegate references, your subscriber should unsubscribe to enable proper garbage

collection of your subscribing object when it is no longer used.

To subscribe with a strong reference, use the keepSubscriberReferenceAlive parameter on the

Subscribe method, as shown in the following code example.

C#

FundAddedEvent fundAddedEvent = eventAggregator.GetEvent<FundAddedEvent>();

200

bool keepSubscriberReferenceAlive = true;

fundAddedEvent.Subscribe(FundAddedEventHandler, ThreadOption.UIThread,

keepSubscriberReferenceAlive, fundOrder => fundOrder.CustomerId == _customerId);

The keepSubscriberReferenceAlive parameter is of type bool:

 When set to true, the event instance keeps a strong reference to the subscriber instance,

thereby not allowing it to get garbage collected. For information about how to unsubscribe, see

the section Unsubscribing from an Event later in this topic.

 When set to false (the default value when this parameter omitted), the event maintains a weak

reference to the subscriber instance, thereby allowing the garbage collector to dispose the

subscriber instance when there are no other references to it. When the subscriber instance gets

collected, the event is automatically unsubscribed.

Default Subscriptions

For a minimal or default subscription, the subscriber must provide a callback method with the

appropriate signature that receives the event notification. For example, the handler for the

TickerSymbolSelectedEvent requires the method to take a string parameter, as shown in the following

code example.

C#

public TrendLineViewModel(IMarketHistoryService marketHistoryService,

IEventAggregator eventAggregator)

{

 ...

eventAggregator.GetEvent<TickerSymbolSelectedEvent>().Subscribe(this.TickerSymbolChan

ged);

}

public void TickerSymbolChanged(string newTickerSymbol)

{

 MarketHistoryCollection newHistoryCollection =

this.marketHistoryService.GetPriceHistory(newTickerSymbol);

 this.TickerSymbol = newTickerSymbol;

 this.HistoryCollection = newHistoryCollection;

}

201

Unsubscribing from an Event

If your subscriber no longer wants to receive events, you can unsubscribe by using your subscriber's

handler or you can unsubscribe by using a subscription token.

The following code example shows how to directly unsubscribe to the handler.

C#

FundAddedEvent fundAddedEvent = this.eventAggregator.GetEvent<FundAddedEvent>();

fundAddedEvent.Subscribe(FundAddedEventHandler, ThreadOption.PublisherThread);

fundAddedEvent.Unsubscribe(FundAddedEventHandler);

The following code example shows how to unsubscribe with a subscription token. The token is supplied

as a return value from the Subscribe method.

C#

FundAddedEvent fundAddedEvent = this.eventAggregator.GetEvent<FundAddedEvent>();

subscriptionToken = fundAddedEvent.Subscribe(FundAddedEventHandler,

ThreadOption.UIThread, false, fundOrder => fundOrder.CustomerId == this.customerId);

fundAddedEvent.Unsubscribe(subscriptionToken);

More Information

For more information about weak references, see Weak References on MSDN.

http://msdn.microsoft.com/en-us/library/ms404247.aspx

202

10: Deploying Applications
To successfully move a Prism application into production, you need to plan for deployment as part of

the design process of your application. This topic covers the considerations and actions you need to

perform to prepare your composite or modular application for deployment and the actions you need to

take to get the application in the user's hands.

Deploying WPF Prism Applications

A WPF Prism application can be composed of an executable and any number of additional DLLs. The

main executable is the shell application project. Some of the additional DLLs will be the modules of the

application. There may be some additional DLLs that are just shared assemblies used by the shell and

modules of the application. In addition, you might have a set of resource or content files that get

deployed along with the application.

To deploy a WPF Prism application, you have three choices:

 "XCopy deployment"

 ClickOnce deployment

 Windows Installer deployment

"XCopy deployment" is used as a general term for manual deployment through some sort of file copy

operation, which may or may not include the use of the XCOPY command-line tool. If you choose to

deploy the application in this way, it is up to you to manually package the files and move them to the

target computer. The application should be ready to run as long as the expected folder structure and

relative locations of the shell application executable, the module DLLs, and the content files are

maintained.

Usually, a more automatic means of deployment is desired to ensure that things get placed in the right

location and the user has easy access to run the application. To facilitate that, you can choose to use

ClickOnce or Windows Installer (.msi files), depending on what additional installation requirements exist

for the application.

The decision of whether to use ClickOnce or Windows Installer is often misunderstood. ClickOnce is not

intended to be a one-size-fits-all deployment technology. It is intended for applications that need a low-

impact install on a client computer. If your application needs to make computer-wide changes when it is

installed—such as to install drivers, integrate with other applications, install services and other things

that go outside the scope of just running your executable, ClickOnce is probably not an appropriate

deployment choice. However, if you have a lightweight installation on the client computer and you want

to benefit from network deployment and update of your WPF application, ClickOnce can be a great

choice.

203

To create a Windows Installer deployment package (.msi file) for your application, you have a variety of

choices, including Visual Studio Setup projects, Windows Installer XML (WiX) projects, or numerous

third-party installer creation products.

Deploying WPF Prism Application with ClickOnce

ClickOnce is a Windows Presentation Foundation (WPF) or Windows Forms deployment mechanism that

has been part of the .NET Framework since version 2.0. ClickOnce enables automatic deployment and

update of WPF applications over the network from a deployment server. WPF Prism applications can use

ClickOnce to get the shell, modules, and any other dependencies deployed to the client computer. The

main challenge with Prism applications is that the Visual Studio publishing process for ClickOnce does

not automatically include dynamically loaded modules in the published application.

Deploying a WPF application with ClickOnce is a two-step process. First, you have to publish the

application from Visual Studio, and then you can deploy it to client computers. Publishing the

application generates two manifests (a deployment manifest and an application manifest), and it copies

the application files to a publish directory. That publish folder can then be moved to another server that

may not be directly accessible from the developer computer to make the published application

accessible to client computers from a known location and URL. Deploying an application to a client

computer simply requires providing a URL or link that the user can navigate to. The URL points to the

deployment manifest on the publishing deployment server. When that URL is loaded in the browser,

ClickOnce on the client computer downloads the manifests and the application files specified by the

manifests. After the files are downloaded and stored under the user profile, ClickOnce then launches the

application. If subsequent updates are published to the deployment server, ClickOnce can automatically

detect those updates, download, and apply them, or there are settings that allow you to detect and

apply updates on demand or in the background after the application has launched.

When you publish a WPF Prism application that has dynamically loaded modules, the shell project will

typically not have project references to the dynamically loaded modules. As a result, the published

ClickOnce application manifest also does not include those module files, and if you deploy the

application using ClickOnce, the client computer will not get the module files. To address this, you must

modify the application manifest to include the module files that are not referenced by the shell

application project.

ClickOnce Publishing Process

You can publish ClickOnce applications from Visual Studio 2013 using the Windows Software

Development Kit (SDK) tool named the Manifest Generating and Editing tool (Mage) or a custom tool

that uses the ClickOnce publishing APIs. Visual Studio exposes most of the capabilities needed for

ClickOnce publishing. However, Visual Studio may not be available or desired for IT administrators who

manage ClickOnce deployments on the server. Mage is designed to address most common

administrative tasks for ClickOnce; it is a lightweight .NET Framework Windows-based application that

can be given to your administrators. However, Mage requires too many detailed steps, performed in the

correct order, to successfully complete common tasks such as modifying the application files listed in

the application manifest. To make these tasks simpler, a custom utility is needed.

204

The Manifest Manager Utility sample utility demonstrates how to use the ClickOnce publishing API to

manage deployment and application manifests in a simpler way. This utility is used for updating

application manifest file lists and deployment manifest settings in a single user interface (UI) and its use

is described in later sections in this topic for initial deployment and update of a Prism application. The

Manifest Manager Utility uses APIs exposed in the Microsoft.Build.Tasks.Deployment namespace to

load, manipulate, and save modified manifest files for a ClickOnce deployment. You can download the

Manifest Manager Utility from the Prism community site on Codeplex. To learn the specific steps

involved in publishing and updating a WPF Prism application that uses dynamic module loading, see the

Publishing and Updating Applications Using the Prism Library Hands-on Lab.

The following illustration shows the typical structure for a ClickOnce application publication, based on

the way Visual Studio generates the deployment folders when you publish an application with

ClickOnce. It includes a root folder for the application, which contains the default deployment manifest

(.application file). The default deployment manifest usually points to the most recently published

version when generated by Visual Studio, but it can be changed to point to whichever version the

administrator chooses. The root folder also contains the Setup.exe bootstrapper, which allows you to

deploy prerequisites for your application that might require an installer or executable to run before

deploying the application using ClickOnce. There is then a subfolder for the application-specific files,

under which you get a separate subfolder for each version that you publish. The publish version is a

separate project setting and entry in the deployment manifest file for versioning the deployment as a

whole, as opposed to the individual assembly versions of the contained assemblies. The publish version

is used by ClickOnce to determine when there is an update available from a client that has already

installed a ClickOnce application.

ClickOnce publish folder structure

http://compositewpf.codeplex.com/releases/view/14771

205

Under each publish version's application files folder, you have another copy of the deployment manifest

(.application file) that can be used to deploy specific versions to a client computer, or it can be copied to

the root folder to cause a server-side rollback to a previous version. The application executable, in

addition to any dependent libraries (such as Prism module assemblies) and resource files, will also be in

this folder and will be automatically suffixed by a .deploy file name extension when published by Visual

Studio. This is done to simplify the file extension mappings on the publishing web server so that you

don't have to allow downloads of .dll, .exe, and a myriad of other potential file types that the application

is composed of.

The application manifest (.exe.manifest) file is also contained in this folder and is referenced by the

deployment manifest. It contains the list of files the application is composed of with hash values per file

to assist in change detection; it also contains a list of permissions required by the application to run

because ClickOnce can launch applications in a partial trust AppDomain if desired.

If you manually generate or update a ClickOnce application publication using either Mage or a custom

tool, you are not constrained to this folder and file structure. For any particular ClickOnce publication,

the chain of dependencies includes the following:

 It includes a deployment manifest that points to the application manifest through an embedded

code base URL.

 It includes an application manifest that contains relative paths to each of the application files.

These files must reside in the same folder or a subfolder from where the application manifest

resides.

It includes the application files themselves, usually with a .deploy file name extension appended to the

file name to simplify mapping these files to MIME types on the deployment server. ClickOnce

automatically strips off the .deploy file name extension on the client side after the file is downloaded.

ClickOnce Deployment and Update Process

The actual deployment of the application to a user via ClickOnce is almost always initiated by providing a

URL or hyperlink to the deployment manifest of your published application on the deployment server.

The user can click the hyperlink or enter the address in a browser, and the ClickOnce deployment

process is invoked. After the manifest and application files are downloaded to the client computer, the

application is launched. There are ClickOnce options that allow you to install the application during the

initial deployment for offline use, or you can require the user to launch the application using the link or

URL every time. When you publish a new version of the application to the deployment server, ClickOnce

can automatically or manually check for updates and will download and apply the update for the next

time the application launches.

More Information

You can download the Manifest Manager Utility from the Prism community site on Codeplex.

http://compositewpf.codeplex.com/releases/view/14771

206

To learn the specific steps involved in publishing and updating a WPF Prism application that uses

dynamic module loading, see the Publishing and Updating Applications Using the Prism Library Hands-on

Lab.

207

11: Glossary
This glossary includes definitions of important terms that appear in the Prism documentation.

bootstrapper. The class responsible for the initialization of an application built using the Prism Library.

command. A loosely coupled way for you to handle user interface (UI) actions. Commands bind a UI

gesture to the logic that performs the action.

composite application. A composite application is composed of a number of discrete and independent

modules. These components are integrated together in a host environment to form a single, seamless

application.

composite command. A command that has multiple child commands.

container. Provides a layer of abstraction for the creation of objects. Dependency injection containers

can reduce the dependency coupling between objects by providing the facility to instantiate instances of

classes and manage their lifetime based on the configuration of the container.

DelegateCommand. Allows delegating the commanding handling logic to selected methods instead of

requiring a handler in the code-behind. It uses .NET Framework delegates as the method of invoking a

target handling method.

EventAggregator. A service that is primarily a container for events that allows publishers and

subscribers to be decoupled so they can evolve independently. This decoupling is useful in modularized

applications because new modules can be added that respond to events defined by the shell or other

modules.

modularity. The ability to create complex applications from discrete functional units named modules.

When you develop in a modularized fashion, you structure the application into separate modules that

can be individually developed, tested, and deployed by different teams. It also helps you address

separation of concerns by keeping a clean separation between the UI and business functionality.

model. Encapsulates the application's business logic and data.

Model-View-ViewModel (MVVM). The MVVM pattern helps to cleanly separate the business and

presentation logic of your application from its user interface (UI). Maintaining a clean separation

between application logic and UI helps to address numerous development and design issues and can

make the application much easier to test, maintain, and evolve.

module. A logical unit of separation in the application.

ModuleCatalog. Defines the modules that the end user needs to run the application. The module

catalog knows where the modules are located and the module's dependencies.

ModuleManager. The main class that manages the process of validating the module catalog, retrieving

modules if they are remote, loading the modules into the application domain, and invoking the module's

Initialize method.

208

module management phases. The phases that lead to a module being initialized. These phases are

module discovery, module loading, and module initialization.

navigation. The process by which the application coordinates changes to its UI as a result of the user's

interaction with the application, or as a result of internal application state changes.

ViewModel-first composition. The composition approach where the view model is logically created first,

followed by the view.

Notifications. Provide change notifications to any data-bound controls in the view when the underlying

property value changes. This is required to implement the MVVM pattern and is implemented using the

BindableBase class.

on-demand module. A module that is retrieved and initialized only when it is explicitly requested by the

application.

region. A named location that you can use to define where a view will appear. Modules can locate and

add content to a region in the layout without exact knowledge of how and where the region is visually

displayed. This allows the appearance and layout to change without affecting the modules that add the

content to the layout.

RegionContext. A technique that can be used to share context between a parent view and child views

that are hosted in a region. The RegionContext can be set through code or by using data binding XAML.

RegionManager. The class responsible for maintaining a collection of regions and creating new regions

for controls. The RegionManager finds an adapter mapped to a WPF control and associates a new

region to that control. The RegionManager also supplies the attached property that can be used for

simple region creation from XAML.

Separated Presentation pattern. Pattern used to implement views, which separates presentation and

business logic from the UI. Using a separated presentation allows presentation and business logic to be

tested independently of the UI, makes it easier to maintain code, and increases re-use opportunities.

shell. The main window of a WPF application where the primary UI content is contained.

scoped region. Regions that belong to a particular region scope. The region scope is delimited by a

parent view and includes all the child views of the parent view.

service. A service provides functionality to other modules in a loosely coupled way through an interface

and is often a singleton.

state-based navigation. Navigation accomplished via state changes to existing controls in the visual tree.

UI composition. The act of building an interface by composing it from discrete views at run time, likely

from separate modules.

view. The main unit of UI construction within a composite UI application. The view encapsulates the UI

and UI logic that you would like to keep as decoupled as possible from other parts of the application.

You can define a view as a user control, data template, or even a custom control.

209

view-based navigation. Navigation accomplished via the addition or removal of elements from the

visual tree.

view-first composition. The composition approach where the view is logically created first, followed by

the view model or presenter on which it depends.

view discovery. A way to add, show, or remove views in a region by associating the type of a view with a

region name. Whenever a region with that name displays, the registered views will be automatically

created and added to the region.

view injection. A way to add, show, or remove views in a region by adding or removing instances of a

view to a region. The code interacting with the region does not have direct knowledge of how the region

will handle displaying the view.

view model. Encapsulates the presentation logic and state for the view. It is responsible for coordinating

the view's interaction with any model classes that are required.

view model location. Locates and instantiates view models and associating to their respective views

typically by using a convention base approach.

210

12: Patterns in the Prism Library
When you build applications, you typically encounter or employ patterns. In the Prism Library and

example reference implementation, the guidance demonstrates the Adapter, Application Controller,

Command, Composite and Composite View, Dependency Injection, Event Aggregator, Façade, Inversion

of Control, Observer, Model-View-ViewModel (MVVM), Registry, Repository, Separated Interface, Plug-

In, and Service Locator patterns that are briefly discussed in this appendix. The following illustration

shows a typical composite application architecture using the Prism Library and some of the common

patterns. A simpler application would likely encounter some of these patterns while using Prism, but not

necessarily all of them.

Sample composite application architecture with common patterns

This section provides a brief overview of the patterns in alphabetical order and pointers to where you

can see an example of each pattern in the Prism code.

Adapter

The Adapter pattern, as the name implies, adapts the interface of one class to match the interface

expected by another class. In the Prism Library, the Adapter pattern is used to adapt regions to the

Windows Presentation Foundation (WPF) ItemsControl, ContentControl, and Selector. To see the

Adapters pattern applied, see the file ItemsControlRegionAdapter.cs in the Prism Library.

211

Application Controller Pattern

The Application Controller pattern allows you to separate the responsibility of creating and displaying

views into a controller class. This kind of controller is a little different than the controller in an MVC

application. The application controller's responsibility is to encapsulate the control of view presentation.

It can take care of instantiating views; it does this by placing them in the appropriate container in the

user interface (UI), switching between views that share the same container, and sometimes coordinates

communication between views or view models. Even though the name of the pattern is Application

Controller, controllers are often scoped to a subset of an application, such as a module controller in a

Prism application or a controller that spans a set of related views. As a result, you will often have more

than one controller in a Prism application. For an example implementation of this pattern, see the

OrdersController class in the Stock Trader Reference Implementation (Stock Trader RI).

Command Pattern

The Command pattern is a design pattern in which objects are used to represent actions. A command

object encapsulates an action and its parameters. This allows a decoupling of the invoker of the

command and the handlers of the command. The Prism.Mvvm Library provides a CompositeCommand

that allows combining of multiple ICommand items and a DelegateCommand that allows a ViewModel

or controller to provide an ICommand that connects to local methods for execution and notification of

ability to execute. To see the usage of the CompositeCommand and the DelegateCommand in the Stock

Trader RI, see the files StockTraderRICommands.cs and OrderDetailsViewModel.cs.

Composite and Composite View

At the heart of a composite application is the ability to combine individual views into a composite view.

Frequently, the composing view defines a layout for the child views. For example, the shell of the

application may define a navigation area and content area to host child views at run time, as shown in

the following illustration.

212

Composition example

In the Stock Trader RI, this can be seen with the use of regions in the shell. The shell defines regions that

modules locate and add views to during the initialization process. For examples of defining regions, see

the Shell.xaml file.

Composite views do not have to be dynamically composed, as is the case when using Prism's regions. A

composite view can also just be a view that is built up of several other child views that are statically

composed through the UI definition. An example of this is child user controls that are declared in the

Extensible Application Markup Language (XAML).

Dependency Injection Pattern

The Dependency Injection pattern is a specialized version of the Inversion of Control pattern (described

later in this appendix) where the concern being inverted is the process of obtaining the needed

dependency. Dependency Injection is used throughout the Stock Trader RI and the Prism Library. When

using a container, the responsibility of construction is put on the container instead of the consuming

class. During object construction, the dependency injection container resolves any external

dependencies. Because of this, the concrete implementation of the dependencies can be changed more

readily as the system evolves. This better supports testability and growth of a system over time due to

looser coupling. The Stock Trader RI uses the Managed Extensibility Framework (MEF) to help manage

dependencies between components. However, the Prism Library itself is not tied to a specific

dependency injection container; you are free to choose whichever dependency injection container you

want, but you must provide an adapter that implements the IServiceLocator interface. The Prism Library

provides adapters for both the MEF and Unity Application Block (Unity). To see an example of a

component with its dependencies resolved by injection in the Stock Trader RI, see the constructor in the

NewsController.cs file. For examples using Unity, see the ModuleInit class in the UI Composition

QuickStart.

Event Aggregator Pattern

The Event Aggregator pattern channels events from multiple objects through a single object to simplify

registration for clients. In the Prism Library, a variation of the Event Aggregator pattern allows multiple

objects to locate and publish or subscribe to events. To see the EventAggregator and the events it

manages, see EventAggregator and the PubSubEvent in the Prism.PubSubEvents Library. To see the

usage of the EventAggregator in the Stock Trader RI, see the file WatchListViewModel.cs.

Façade Pattern

The Façade pattern simplifies a more complex interface, or set of interfaces, to ease their use or to

isolate access to those interfaces. The Prism Library provides façades for the container and the logging

services to help isolate the library from changes in those services. This allows the consumer of the

library to provide its own services that will work with the Prism Library. The IServiceLocator and

ILoggerFacade interfaces define the façade interfaces the Prism Library expects when it communicates

with a container or logging service.

213

Inversion of Control Pattern

Frequently, the Inversion of Control (IoC) pattern is used to enable extensibility in a class or framework.

For example, a class designed with an eventing model at certain points of execution inverts control by

allowing event listeners to take action when the event is invoked.

Two forms of the IoC pattern demonstrated in the Prism Library and Stock Trader RI include dependency

injection and the Template Method pattern. Dependency injection is described earlier. In the Template

Method pattern, a base class provides a recipe, or process, that calls virtual or abstract methods.

Because of this, an inherited class can override appropriate methods to enable the behavior required. In

the Prism Library, this is shown in the UnityServiceLocatorAdapter class. To see another example of

using the Template pattern, see the file StockTraderRIBootstrapper.cs in the Stock Trader RI.

Observer Pattern

The Observer pattern seeks to decouple those interested in an object's state change from the changing

object. In the .NET Framework, this is often seen through events. Prism demonstrates a variation of the

Observer pattern to separate the request for interaction with the user from the actual chosen

interaction. This is done through an InteractionRequest object that is often offered by a view model in

the Model-View-ViewModel (MVVM) pattern.

This InteractionRequest is an object that encapsulates an event monitored by the view. When the view

receives an interaction request, it can choose how to handle the interaction. A view may decide to

display a modal window to provide feedback to the user, or it may display an unobtrusive notification

without interrupting the user's workflow. Offering this request as an object provides a way to data-bind

in WPF to the request and to specify the response without requiring code-behind in the view.

Model-View-ViewModel Pattern

Presentation Model is one of several UI patterns that focus on keeping the logic for the presentation

separate from the visual representation. This is done to separate the concerns of visual presentation

from that of visual logic, which helps improve maintainability and testability. Related UI patterns include

Model-View-Controller (MVC) and Model-View-Presenter (MVP). The Model-View-ViewModel (MVVM)

approach, demonstrated in the Prism's Stock Trader RI, is a specific implementation variant of the

Presentation Model pattern.

The Prism Library itself is intended to be neutral with respect to choice of separated UI patterns. You can

be successful with any of the patterns, although considering the facilities in WPF for data binding,

commands, and behaviors, the MVVM pattern is the recommended approach and the Prism guidance

provides documentation and samples to get you started using MVVM. To see examples of MVVM in the

Basic MVVM QuickStart, see the files QuestionnaireView.xaml, QuestionnaireView.xaml.cs, and

QuestionnaireViewModel.cs.

214

Registry Pattern

The Registry pattern specifies an approach to locating one or more objects from a well-known object.

The Prism Library applies the Registry pattern when associating view types to a region. The

IRegionViewRegistry interface and RegionViewRegistry class define a registry used to associate region

names to the view types created when those regions are loaded. This registry is used in the

ModuleInit.cs file in the UI Composition QuickStart.

Repository Pattern

A repository allows you to separate how you acquire data for an application from the code that needs

the data. The repository represents a collection of domain objects that the application code can

consume without needing to be coupled to the specific mechanism that retrieves those objects. The

domain objects are part of the model of the application, and by obtaining those objects through a

repository, the repository retrieval and update strategy can be changed without affecting the rest of the

application. Additionally, the repository interface becomes an easy dependency to substitute for the

purposes of unit testing.

Separated Interface and Plug-In

The ability to locate and load modules at run time opens greater opportunities for parallel development,

expands module deployment choices, and encourages a more loosely coupled architecture. The

following patterns enable this ability:

 Separated Interface. This pattern reduces coupling by placing the interface definition in a

separate package from the implementation. When using Prism with Unity, each module

implements the IModule interface. For an example of implementing a module in the UI

Composition Quickstart, see the file ModuleInit.cs.

 Plug-In. This pattern allows the concrete implementation of a class to be determined at run

time to avoid requiring recompilation when changing which concrete implementation is used

or because of changes in the concrete implementation. In the Prism Library, this is handled

through the DirectoryModuleCatalog, ConfigurationModuleCatalog, and the

ModuleInitializer, which work together to locate and initialize IModule plug-ins. For

examples of supporting plug-ins, see the files DirectoryModuleCatalog.cs,

ConfigurationModuleCatalog.cs, and ModuleInitializer.cs in the Prism Library.

Note: MEF was designed to support the plug-in model, allowing components to

declaratively export and import concrete implementations.

Service Locator Pattern

The Service Locator pattern solves the same problems that the Dependency Injection pattern solves, but

it uses a different approach. It allows classes to locate specific services they are interested in without

needing to know who implements the service. Frequently, this is used as an alternative to dependency

215

injection, but there are times when a class will need to use service location instead of dependency

injection, such as when it needs to resolve multiple implementers of a service. In the Prism Library, this

can be seen when the ModuleInitializer service resolves individual IModules. For an example of using

the UnityContainer to locate a service in the UI Composition Quickstart, see the file ModuleInit.cs.

More Information

The following are references and links to the patterns found in the Stock Trader RI and in the Prism

Library:

 Composite pattern in Chapter 4, "Structural Patterns," in Design Patterns: Elements of

Reusable Object-Oriented Software (1).

 Adapter pattern in Chapter 4, "Structural Patterns," in Design Patterns: Elements of Reusable

Object-Oriented Software (1).

 Façade pattern in Chapter 4, "Structural Patterns," in Design Patterns: Elements of Reusable

Object-Oriented Software (1).

 Template Method pattern in Chapter 5, "Behavioral Patterns," in Design Patterns: Elements

of Reusable Object-Oriented Software (1).

 Observer pattern in Chapter 5, "Behavioral Patterns," in Design Patterns: Elements of

Reusable Object-Oriented Software (1).

 Exploring the Observer Design Pattern on MSDN.

 Repository pattern in Patterns of Enterprise Application Architecture by Martin Fowler or the

abbreviated version on his website.

 Inversion of Control containers and the Dependency Injection pattern on Martin Fowler's

website.

 Plugin pattern on Martin Fowler's website.

 Registry pattern on Martin Fowler's website.

 Presentation Model pattern on Martin Fowler's website.

 Event Aggregator pattern on Martin Fowler's website.

 Separated Interface pattern on Martin Fowler's website.

 MVC and MVP variants on Martin Fowler's website.

 Design Patterns: Dependency Injection by Griffin Caprio on MSDN.

 Model-View-ViewModel pattern on John Gossman's blog.

For more information about the Unity Application Block, see Unity Application Block on MSDN.

http://msdn.microsoft.com/en-us/library/Ee817669(pandp.10).aspx
http://www.martinfowler.com/eaaCatalog/repository.html
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/eaaCatalog/plugin.html
http://martinfowler.com/eaaCatalog/registry.html
http://www.martinfowler.com/eaaDev/PresentationModel.html
http://www.martinfowler.com/eaaDev/EventAggregator.html
http://www.martinfowler.com/eaaCatalog/separatedInterface.html
http://martinfowler.com/eaaDev/uiArchs.html
http://msdn.microsoft.com/en-us/magazine/cc163739.aspx
http://blogs.msdn.com/johngossman/archive/2005/10/08/478683.aspx
http://www.msdn.com/unity

216

(1) Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley Professional, 1995.

217

13: Prism Library
The Prism Library helps architects and developers create composite applications for Windows

Presentation Foundation (WPF) using the Model-View-ViewModel pattern. The Prism Library can

support those wanting to build a number of application styles with WPF, but it is was primarily

constructed for applications composed of discrete, functionally complete pieces that work together to

create a single, integrated user interface (UI), often referred to as a composite application. The Prism

Library accelerates the development of applications using proven design patterns.

The Prism Library is primarily designed to help architects and developers create applications that need

to accomplish the following:

 Build clients composed of independent, yet cooperating, modules or pieces.

 Separate the concerns of module builders from the concerns of the shell developer; by doing

this, business units can concentrate on developing domain-specific modules instead of the WPF

architecture.

 Separate the concerns of presentation, presentation logic, and application model through

support for presentation model patterns such as Model-View-ViewModel (MVVM).

 Use an architectural infrastructure to produce a consistent and high quality integrated

application.

When building your application with the Prism Library, you may use the Unity Extensions for the Prism

Library and the Unity Application Block (Unity) or the Managed Extensibility Framework (MEF)

Extensions for the Prism Library and MEF. These are built on the .NET Framework 4.5 for WPF, as shown

in the following illustration.

218

Composite application package

The Prism Library addresses common requirements for building both composite and non-composite

applications on the WPF platform. As a whole, the Prism Library accelerates development by providing

the services and components to address these needs.

The Prism Library ships signed binaries through NuGet packages to allow you to take advantage of Prism

immediately without the need to compile and as source in case you want to make modifications or just

see how it works.

Add Reference using NuGet and Accessing the Library Source Code

Add references to the Prism binaries in your code by searching NuGet for Prism. The Prism NuGet

package is dependent on the Prism.Composition, Prism.Interactivity, Prism.Mvvm, and

Prism.PubSubEvents NuGet packages.

The Prism NuGet package will download the Prism.Composition, Prism.PubSubEvents, Prism.Mvvm,

and Prism.Interactivity NuGet packages.

The source for the Prism library can be downloaded from http://aka.ms/prism-wpf-code.

Organization of the Prism Library

The Prism Library targeted for desktop applications consists of eight assemblies:

 Microsoft.Practices.Prism.Composition. This assembly contains interfaces and components to

help build composite applications. These components include the ModuleManager,

http://aka.ms/prism-wpf-Prism50Nuget
http://aka.ms/prism-wpf-Prism50CompositionNuget
http://aka.ms/prism-wpf-Prism50InteractivityNuget
http://aka.ms/prism-wpf-Prism50MvvmNuget
http://aka.ms/prism-wpf-Prism50PubSubEventsNuget
http://aka.ms/prism-wpf-Prism50Nuget
http://aka.ms/prism-wpf-code

219

ModuleCatalog, and Bootstrapper. Additionally, this assembly contains the RegionManager

component that helps compose the user interface from multiple parts..

 Microsoft.Practices.Prism.Interactivity. This assembly contains behaviors and actions for

interactions with the UI based on Blend for Visual Studio 2013 Behaviors (available in the Blend

SDK), largely in support of the MVVM pattern. This includes InteractionRequest,

InteractionRequestTrigger, Confirmation, and Notification. Additionally the

PopupWindowAction responds to the InteractionRequestTrigger.

 Microsoft.Practices.Prism.UnityExtensions. This assembly provides components to use the

Unity Application Block (Unity) with the Prism Library. These components include

UnityBootstrapper and UnityServiceLocatorAdapter.

 Microsoft.Practices.Prism.MefExtensions. This assembly provides components to use Managed

Extensibility Framework (MEF) with the Prism Library. These components include

MefBootstrapper and MefServiceLocatorAdapter.

 Microsoft.Practices.Prism.PubSubEvents (Event Aggregator). This assembly contains interfaces

and components to help send loosely coupled messages between modules. The components

include the PubSubEvents and EventAggregator.

 Microsoft.Practices.Prism.Mvvm. This assembly contains interfaces and components to help

implement the MVVM pattern. These components include BindableBase, PropertySupport,

ViewModelLocationProvider, DelegateCommand, and CompositeCommand.

 Microsoft.Practices.Prism.Mvvm.Desktop. This assembly contains the components specific to

WPF, which includes the platform specific dependency property called

AutoWireViewModelProperty.

 Microsoft.Practices.Prism.SharedInterfaces. This assembly contains the shared Prism interfaces

IActiveAware.

The Prism Library Source

The source for Prism.Composition, Prism.Interactivity, Prism.UnityExtensions, Prism.MefExtensions,

Prism.SharedInterfaces, Prism.PubSubEvents, and Prism.Mvvm assemblies can be found in the

PrismLibrary folder where Prism is installed. These assemblies target WPF applications.

Modifying the Library

If you want to modify the Prism Library, you can replace the NuGet referenced assemblies with your

own version of the binaries.

220

Running the Tests

If you modify the Prism Library and want to verify that existing functionality is not broken, execute the

unit tests for the projects. To run all the desktop unit tests in the solution file PrismLibrary_Desktop.sln,

on the Test menu, point to Run, and then click All Tests in Solution.

More Information

Prism's community sites are:

 Prism: http://www.codeplex.com/Prism.

 PubSubEvents (Event Aggregator): http://pnppubsub.codeplex.com.

 MVVM: http://pnpmvvm.codeplex.com.

For more information about Unity, see the following:

 "Unity Application Block" on MSDN: http://www.msdn.com/unity.

 Unity community site on CodePlex: http://www.codeplex.com/unity.

For more information about MEF, see the following:

 "Managed Extensibility Framework Overview" on MSDN.

 MEF community site on CodePlex: http://mef.codeplex.com/.

For more information about service locator, see the Common Service Locator on CodePlex:

http://commonservicelocator.codeplex.com/.

http://www.codeplex.com/Prism
http://pnppubsub.codeplex.com/
http://pnpmvvm.codeplex.com/
http://www.msdn.com/unity
http://www.codeplex.com/unity
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://mef.codeplex.com/
http://commonservicelocator.codeplex.com/

221

14: Upgrading from Prism Library 4.1
This topic describes how to upgrade a solution from version 4.1 to version 5.0 of the Prism Library and

the major changes that you should be aware of if you are considering upgrading to the 5.0 version.

ViewModel Namespace and API Changes

The classes in the Microsoft.Practices.Prism.ViewModel namespace were made obsolete but still exist

in Prism 5.0. You should use the classes from the Microsoft.Practices.Prism.Mvvm portable class library

with Microsoft.Practices.Prism.Mvvm namespace. The BindableBase class replaces the

NotificationObject class. If you need to implement INotifyPropertyChanged event, you should now use

BindableBase, and use the SetProperty method in the property setter, which verifies if the value

actually changed and if so, sets the backing field and raises the PropertyChanged event.

The 4.1 code was as follows:

C#

this.RaisePropertyChanged(() => this.WatchListItems);

. . .

if (value != this.timeInForce)

{

 this.timeInForce = value;

 this.RaisePropertyChanged(() => this.TimeInForce);

}

The 5.0 code is as follows:

C#

OnPropertyChanged(() => this.WatchListItems);

. . .

SetProperty(ref this.timeInForce, value);

The Prism NuGet package will manage the changes to the new Prism assemblies.

If you decide to manually update your references, the Microsoft.Practices.Prism.ViewModel

namespace now requires you to add the following references:

 Microsoft.Practices.Prism.Mvvm

 Microsoft.Practices.Prism.Mvvm.Desktop

 Microsoft.Practices.Prism.ShareInterfaces

Alternatively you can add a NuGet reference to the Prism.Mvvm package if you only want the

Prism.Mvvm APIs.

222

EventAggregator Namespace and API Changes

The classes in the Events namespace were made obsolete but still exist in Prism 5.0. You should use the

classes from the Prism.PubSubEvents portable class library with the Prism.PubSubEvents namespace.

The PubSubEvent class replaces the CompositePresentationEvent class.

The Prism NuGet package will manage the changes to the new Prism assemblies.

If you decide to manually update your references, you will now need to add a reference to the following:

 Microsoft.Practices.Prism.PubSubEvents

Alternatively you can insert a NuGet reference to the Prism.PubSubEvents NuGet package if you only

want the Prism.PubSubEvents APIs.

Regions Namespace API Changes

The UriQuery class was replaced with the NavigationParameters class and moved to the Regions

namespace. Previous functionality remains the same, and support for object parameters was added. The

RequestNavigate method defined in the interface INavigateAsync was updated to allow the passing of

NavigationParameters.

Commands Assembly Changes

The following classes from the Commands namespace were moved from the Prism library to the

Prism.Mvvm portable class library:

 CompositeCommand

 DelegateCommand

 DelegateCommandBase

 WeakEventHandlerManager

For these classes you will only need to change your references to the Prism.Mvvm assembly.

The CommandBehaviorBase class was moved to the Prism.Interactivity namespace from the

Commands namespace. The ExecuteCommand method now takes an object as a parameter.

The ButtonBaseClickCommandBehavior and Click classes were removed as they were obsolete last

release.

Prism NuGet Packages

The following signed Prism assemblies can now be referenced from NuGet:

 Prism 5.0

 Prism.Composition 5.0

 Prism.Interactivity 5.0

 Prism.PubSubEvents 1.0

http://aka.ms/prism-wpf-Prism50Nuget
http://aka.ms/prism-wpf-Prism50CompositionNuget
http://aka.ms/prism-wpf-Prism50InteractivityNuget
http://aka.ms/prism-wpf-Prism50PubSubEventsNuget

223

 Prism.Mvvm 1.0

 Prism.UnityExtensions 5.0

 Prism.MefExtensions 5.0

The Prism NuGet package will download the Prism.Composition, Prism.PubSubEvents, Prism.Mvvm, and

Prism.Interactivity NuGet packages.

http://aka.ms/prism-wpf-Prism50MvvmNuget
http://aka.ms/prism-wpf-Prism50UnityExtensionsNuget
http://aka.ms/prism-wpf-Prism50MefExtensionsNuget
http://aka.ms/prism-wpf-Prism50Nuget

224

15: Extending the Prism Library
Prism contains assets that represent recommended practices for Windows Presentation Foundation

(WPF) client development. Developers can use an unmodified version of the guidance to create

composite applications using the Model-View-ViewModel (MVVM) pattern. However, because each

application is unique, you should analyze whether Prism is suitable for your particular needs. In some

cases, you will want to customize the guidance to incorporate your enterprise's best practices and

frequently repeated developer tasks.

The Prism Library can serve as the foundation for your WPF client applications. The Prism Library was

designed so that significant pieces can be customized or replaced to fit your specific scenario. You can

modify the source code for the existing library to incorporate new functionality. Developers can replace

key components in the architecture with ones of their own design because of the reliance on a container

to locate and construct key components in the architecture. In the library, you can even replace the

container itself if you want. Other common areas to customize include creating or customizing the

bootstrapper to select a module discovery strategy for module loading, calling your own logger, using

your own container, and creating your own region adapters.

This topic describes several key extensibility points in the Prism Library. These tend to be more

advanced topics and are not expected to be performed for most developers using the Prism Library. A

solid understanding of the goals and design decisions in the Prism Library will help to ensure any

extensions to Prism functionality don’t create side effects or degrade the architecture. It is

recommended that the main topics of the Prism documentation are read before extending the Prism

Library. Most of the techniques described in this document rely on replacing or modifying Prism Library

default configuration during the bootstrapping sequence when the application starts, so reading the

section Prism Key Concepts in Introduction is a prerequisite.

 The following are the key extensibility points in the Prism Library covered in this topic:

 Application Bootstrapper. This demonstrates the key extensibility point of the Prism Library.

 Modularity. This demonstrates extensibility points when building a modular application.

 Region Management. This demonstrates extending how regions behave, how they are

hosted, and how they interact with their views.

 Region Navigation. This demonstrates how to change your logical navigation structure.

 View Model Locator. This demonstrates how to modify the conventions when using the

View Model Locator.

Guidelines for Extensibility

Use these guidelines when you extend the Prism Library. You can extend the library by adding or

replacing services, modifying the source code, or adding new application capabilities.

225

Exposing Functionality

A library should provide a public API to expose its functionality. The interface of the API should be

independent of the internal implementation. Developers should not be required to understand the

library design or implementation to effectively use its default functionality. Whenever possible, the API

should apply to common scenarios for a specific functionality.

Extending Libraries

The Prism Library provides extensibility points that developers can use to tailor the library to suit their

needs. For example, when using the Prism Library, you can replace the provided logging service with

your own logging service.

You can extend the library without modifying its source code. To accomplish this, you should use

extensibility points, such as public base classes or interfaces. Developers can extend the base classes or

implement the interfaces and then add their extensions to the library. When defining the set of

extensibility points, consider the effect on usability. A large number of extensibility points can make the

library complicated to use and difficult to configure.

Some developers may be interested in customizing the code, which means they will modify the source

code instead of using the extension points. To support this effort, the library design should provide the

following:

 It should follow object-oriented design principles whenever practical.

 It should use appropriate patterns.

 It should efficiently use resources.

 It should adhere to security principles (for example, distrust of user input and principle of

least privilege).

Recommendations for Modifying the Prism Library

When modifying the source code, follow these best practices:

 Make sure you understand how the library works by reading the topics that describe its

design. Consider changing the library's namespace if you significantly alter the code or if you

want to use your customized version of the library together with the original version.

 Consider authoring your own assemblies that use the Prism Library’s built in extensibility

points first before altering or replacing the Prism Library binaries.

 Use strong naming. A strong name allows the assembly to be uniquely identified, versioned,

and checked for integrity. You will need to generate your own key pair to sign your modified

version of the application block. For more information, see Strong-Named Assemblies on

MSDN. Alternatively, you can choose to not sign your custom version. This is referred to as

weak naming.

http://msdn2.microsoft.com/en-us/library/wd40t7ad(vs.71).aspx

226

Extensibility Points in the Prism Library

This section outlines the extension points, by functional area, and associated information for extending

the library.

Container and Bootstrapper

The Prism Library directly supports both the Unity Application Block (Unity) and Managed Extensibility

Framework (MEF) as dependency injection containers; however, because the container is accessed

through the IServiceLocator interface, the container can be replaced.

Each Prism application configures the Prism Library through a bootstrapper class. Each stage in the

bootstrapping process is replaceable, as well as the sequence itself. The bootstrapper provides a key

extensibility point to replace default implementations with custom implementations or register

additional types and services.

Logging

Some Prism Library components log information, warning messages, or error messages. To avoid a

dependency on a particular logging approach, it logs these messages to the ILoggerFacade interface. A

common extension is to provide a custom logger for specific applications.

Modules

The Prism Library provides various ways to populate the module catalog and load modules; however,

your scenario may have needs that the library does not provide.

Module loading includes the following three phases, which can be customized:

 Module discovery. This is the process of populating a module catalog. Frequently, this is

done directly or by sweeping a directory, but your application may need to do this some

other way, such as from a database. In these cases, you can create a custom catalog that

populates itself from an appropriate source.

 Module retrieval and loading. This is the process of acquiring the module binaries locally

and loading the module into the current application domain. The library provides the

FileModuleTypeLoader, but you may want to implement your own retrieval strategy.

 Module initialization. This is the process of initializing a module. In the library, this is done

by the ModuleInitializer, but it can be replaced by providing a new object that implements

IModuleInitialzer.

Regions

The Prism Library provides default control adapters for enabling a control as a region. Extensions around

regions may involve providing custom region adapters, custom regions, or replacing the region manager.

If you have a custom WPF control or a third-party control that does not work with the provided region

adapters, you may want to create custom region adapters that will. It is also possible to replace the

default RegionManager by supplying a new IRegionManager in the container.

227

Region Navigation

The region feature of the Prism Library also supports navigation, including back/forward journaling

support. Views within a region can extend and participate in navigation through the INavigationAware

interface. Developers familiar with Silverlight navigation features will find Region analogous to the

Frame class. Region navigation supports several extensibility points that make it possible to change the

logical navigation structure of the application in addition to replacement of navigation services.

The RegionNavigationContentLoader class provides the ability to load content into a region based on

the NavigationContext. If the content being navigated to is already in the region, the

RegionNavigationContentLoader will locate that content and make it active instead of creating new

content to add to the region. The RegionNavigationContentLoader.GetCandidatesFromRegion method

searches the region’s views matching them by type. However, it is possible to have a view whose type

does not match the type used to resolve it. For example, you could register your view with a

dependency injection container using a "friendly" name that does not match the name of your view

type.

C#

[Export("FriendlyName")]

public class MyViewType

The Prism Library ships with UnityRegionNavigationContentLoader and

MefRegionNavigationContentLoader that override the base GetCandidatesFromRegion method

providing special handling necessary to find view types based on possible friendly name registration. If

you are not using either UnityRegionNavigationContentLoader or

MefRegionNavigationContentLoader, then make sure to add handling to a subclass of

RegionNavigationContentLoader specific to the dependency injection container you are using.

Container and Bootstrapper

The Prism Library contains the Bootstrapper base class. The Unity and MEF components derive from this

class as UnityBootstrapper and MefBootstrapper, respectively. The Bootstrapper base class defines an

abstract Run method that leaves the exact sequencing of the process up to the derived classes. Almost

every method is marked as virtual, allowing you to override individual methods to customize and extend

the bootstrapping process.

For most type instantiation, a bootstrapper will use the dependency injection container. However, there

are some parts of the bootstrapping process that cannot use the container:

 Creating the logger. Generally, the logger is created first (before the container) because the

bootstrapper needs to log information about creating the container. For more information

about changing the logging implementation, see the section, "Logging."

 Creating and configuring catalogs. Catalogs (for example, ModuleCatalog and

AggregateCatalog) are created before the container because they are used during

construction of the container.

228

 Creating the shell. Because the shell may already exist before the bootstrapping sequence

runs, the CreateShell method is left as abstract for the application developer to implement.

The application developer can use the container to instantiate or locate the shell because

the container has been created and initialized.

Replacing Default Prism Library Types

There may be times when you need to change or extend the underlying implementation of a Prism

Library type for an application. Because the Prism Library relies on dependency injection, you can

replace the type during the bootstrapping sequence and both your application and the Prism Library will

use the new type.

Replacing Default Types Using Unity

Any replacement types registered in the container before the UnityBootstrapper.ConfigureContainer

method is called will replace the type. The ConfigureContainer default implementation uses the

RegisterTypeIfMissing method to only add a Prism Library type if that associated interface is not already

registered.

To replace Prism Library types in Unity, first derive your new type from the interface or class you want to

replace. The following code example shows a replacement for the IEventAggregator interface.

C#

// when using Unity

public class ReplacementEventAggregator : IEventAggregator

{

 // ...

}

Now that you have the replacement type, override the ConfigureContainer method in the bootstrapper

and register interface and type before calling the base class. The following code example shows how to

register the replacement for the IEventAggregator.

C#

// when using Unity

protected override void ConfigureContainer()

{

 this.RegisterTypeIfMissing(typeof(IEventAggregator),

typeof(ReplacementEventAggregator), true);

 base.ConfigureContainer();

}

Replacing Default Types Using MEF

Any replacement types registered in the container before the MefBootstrapper.ConfigureContainer

method is called will replace the type. The ConfigureContainer default implementation only adds a

Prism Library type if that associated interface is not already registered.

229

To replace Prism Library types in MEF, first derive your new type from the interface you want to replace

and apply the appropriate MEF Export attributes to it. The following code example shows a replacement

for the IEventAggregator interface.

C#

// when using MEF

[Export(typeof(IEventAggregator))]

[PartCreationPolicy(CreationPolicy.Shared)]

public class ReplacementEventAggregator : IEventAggregator

{

 // ...

}

Now that you have the replacement type, override the ConfigureAggregateCatalog method in the

bootstrapper and add a catalog that contains the type to the AggregateCatalog. The following code

example shows how to use a TypeCatalog to add the replacement type. An AssemblyCatalog could also

have been used.

C#

// when using MEF

protected override void ConfigureAggregateCatalog()

{

 this.AggregateCatalog.Catalogs.Add(new

TypeCatalog(typeof(ReplacementEventAggregator)));

 base.ConfigureAggregateCatalog();

}

Registering Non-MEF Attributed Types with the MEF Container

Registering types with MEF is simple if you own the code and can take a direct dependency on MEF,

because all you need to do is add an Export attribute to the types. However, in some situations, you may

need to register types with MEF when you cannot take a direct dependency on the MEF assemblies. This

problem was encountered while the developers added MEF support to Prism because one of the design

goals was to ensure that the core Prism libraries were not container-specific. This meant that the

Microsoft.Practices.Prism assembly could not reference System.ComponentModel.Composition and

use the Export attribute. Instead, the team created derived classes in the

Microsoft.Practices.Prism.MefExtensions assembly that derived from the types the team wanted to

expose and exported the appropriate type. The following code example from the MefRegionManager

class shows an example of this approach by deriving from RegionManager and exporting the new type

as an IRegionManager.

C#

[Export(typeof(IRegionManager))]

public class MefRegionManager : RegionManager

{

}

230

Creating a Minimal Bootstrapper

Some applications do not use many of the features in the Prism Library. In some cases, application

developers may want the absolute minimum level of services—only dependency injection and service

location. To do this, override the ConfigureContainer method in the bootstrapper and implement the

following.

C#

// when using UnityBootstrapper

protected override void ConfigureContainer()

{

 // Base class implementation deliberately not called

 // base.ConfigureContainer();

 this.Container.AddNewExtension<UnityBootstrapperExtension>();

 Container.RegisterInstance<ILoggerFacade>(Logger);

 this.Container.RegisterInstance(this.ModuleCatalog);

 RegisterTypeIfMissing(typeof(IServiceLocator),

typeof(UnityServiceLocatorAdapter), true);

}

protected override RegionAdapterMappings ConfigureRegionAdapterMappings()

{

 return null;

}

protected override IRegionBehaviorFactory ConfigureDefaultRegionBehaviors()

{

 return null;

}

Note: The overrides of the region adapters and mappings are required because Unity cannot

determine the appropriate concrete type to return when an implementation of an interface is

requested. These calls associate the concrete type to return for each interface. When concrete types

are requested Unity is able to directly resolve them by instantiating that type.

C#

// when using MEFBootstrapper

protected override void ConfigureContainer()

{

 // Base class implementation deliberately not called

 // base.ConfigureContainer();

 this.Container.ComposeExportedValue<ILoggerFacade>(this.Logger);

 this.Container.ComposeExportedValue<IServiceLocator>(new

MefServiceLocatorAdapter(this.Container));

 this.Container.ComposeExportedValue<AggregateCatalog>(this.AggregateCatalog);

}

231

Changing Dependency Injection Containers

If you want to use Prism with a container other than Unity or MEF in your application, there are several

things you need to do. First, you need to write a Service Locator adapter for your container. You can use

the MefServiceLocatorAdapter and the UnityServiceLocatorAdapter as examples of how this can be

done. You will also need to write a container-specific bootstrapper class. Next, you need to create a new

container-specific bootstrapper, derived from the Bootstrapper class, and implement the necessary

methods, using the MefBootstrapper and UnityBootstrapper as examples.

Logging

The Prism Library is designed to log messages throughout the library. To do this logging in a way that is

not tied to a specific logging library, the Prism Library uses a logging façade, ILoggerFacade, to log its

messages. This interface contains a single method named Log that logs messages. By default, the

UnityBootstrapper and MefBoostrapper create a TextLogger as the designated logger.

There are three steps for creating and integrating a custom logger:

1. Create a class that implements the ILoggerFacade interface.

2. Implement the Log method.

3. In your application bootstrapper class, override the CreateLogger method to return a new

instance of your logging class.

The Log method in the ILoggerFacade interface takes three parameters:

 Message. This is the message to be logged.

 Category. This is the category of the event to be logged. The valid options are Debug,

Exception, Info, and Warn.

 Priority. This is the priority of the event to be logged. The valid options are None, High,

Medium, and Low.

The following code example shows a custom logger that wraps some other logging framework that takes

only a string.

C#

// CustomeLogger

using Microsoft.Practices.Prism.Logging;

...

public class CustomLogger : ILoggerFacade

{

 public void Log(string message, Category category, Priority priority)

 {

 string messageToLog =

 String.Format(System.Globalization.CultureInfo.InvariantCulture,

232

 "{1}: {2}. Priority: {3}. Timestamp:{0:u}.",

 DateTime.Now,

 category.ToString().ToUpperInvariant(),

 message,

 priority.ToString());

 MyOtherLoggingFramework.Log(messageToLog);

 }

}

C#

// ApplicationBootstrapper

using Microsoft.Practices.Prism.Logging;

...

public class ApplicationBootstrapper : UnityBootstrapper

{

 ...

 protected override ILoggerFacade CreateLogger()

 {

 return new CustomLogger();

 }

}

Modules

The following sections describe how the modularity features can be extended during registration,

assembly discovery, type discovery, and module initialization.

Adding Features to the Module Catalog

The Prism Library provides ModuleCatalog as both a class you can populate directly through the

AddModule methods, or you can derive from add methods to populate the Items property.

The ModuleCatalog class in the Prism Library provides a lot of additional capabilities beyond the

IModule interface. There are many different overloads of the AddModule method, module group

dependency checking, and sorting. There are several ways to extend the functionality of the

ModuleCatalog:

 Derive from ModuleCatalog. If you need to change the behavior of ModuleCatalog, derive a

new class and override one of the virtual methods.

 Write extension methods on IModuleCatalog. If you need additional functionality in your

application where you use IModuleCatalog, write an extension method on the interface.

 Write extension methods on ModuleCatalog. If you need additional functionality, but only

in places where you use ModuleCatalog, write an extension method on the concrete type.

233

Discovering Modules from a Custom Source

The Prism Library supports populating the module catalog from application configuration and from a

XAML file. You can extend Prism in your application to support loading from other data sources, such as

a web service, database, or other external files.

The following describes several ways to populate the catalog.

 Use the static CreateFromXaml method. If your data is already in the

Modularity:ModuleCatalog XAML schema, or if it can easily be converted, you can use this

method to directly populate a ModuleCatalog.

 Replace the IConfigurationStore in the ConfigurationModuleCatalog. If you are running a

WPF desktop application, you can implement an IConfigurationStore to return the module

section for the ConfigurationModuleCatalog.

 Derive from ModuleCatalog. You can also follow the example of the

ConfigurationModuleCatalog to derive from ModuleCatalog, acquire your data, and then

call the AddModule method to populate the catalog.

The follow code examples show how to load a custom configuration module file from disk.

C#

// Bootstrapper

protected override Microsoft.Practices.Prism.Modularity.IModuleCatalog

CreateModuleCatalog()

{

 ConfigurationModuleCatalog catalog = new ConfigurationModuleCatalog();

 catalog.Store = new MyModuleCatalogStore();

 return catalog;

}

C#

// MyModuleCatalogStore

public class MyModuleCatalogStore : IConfigurationStore

 {

 public ModulesConfigurationSection RetrieveModuleConfigurationSection()

 {

 ExeConfigurationFileMap fileMap = new ExeConfigurationFileMap()

 {

 ExeConfigFilename = "MyModuleCatalog.config"

 };

 Configuration configuration =

ConfigurationManager.OpenMappedExeConfiguration(fileMap,

ConfigurationUserLevel.None);

 return configuration.GetSection("modules") as

ModulesConfigurationSection;

 }

 }

234

Retrieving and Loading Modules from a Custom Assembly Source

If your application has a packaging or distribution mechanism other than assemblies, you can implement

your own IModuleTypeLoader to download and access types.

The Prism 4.1 Library MefXapModuleTypeLoader class is an example of this. It uses the MEF

DeploymentCatalog to download XAP files, locate the assemblies, and register them with the MEF

catalog.

Each IModuleTypeLoader implements the CanLoadModuleType method to allow the ModuleManager

to determine the appropriate type loader to use for obtaining a module. The following code example

shows the MefXapModuleTypeLoader implementation.

C#

// MefXapModuleTypeLoader.cs

public bool CanLoadModuleType(ModuleInfo moduleInfo)

{

 if (moduleInfo == null)

 {

 throw new ArgumentNullException("moduleInfo");

 }

 if (!string.IsNullOrEmpty(moduleInfo.Ref))

 {

 Uri uriRef;

 return Uri.TryCreate(moduleInfo.Ref, UriKind.RelativeOrAbsolute, out uriRef);

 }

 return false;

}

After you have your module type loader, you need to ensure it is in the ModuleManager's collection of

type loaders. The following code example is from the Prism.MefExtensions.Silverlight project.

C#

// MefModuleManager.Silverlight.cs

public override IEnumerable<IModuleTypeLoader> ModuleTypeLoaders

{

 get

 {

 if (this.mefTypeLoaders == null)

 {

 this.mefTypeLoaders = new List<IModuleTypeLoader>()

 { this.MefXapModuleTypeLoader };

 }

 return this.mefTypeLoaders;

 }

 set

 {

 this.mefTypeLoaders = value;

235

 }

}

Changing How Modules Are Initialized

In addition to the ModuleCatalog, the ModuleManager provides many virtual functions that can be

overridden to change how modules are loaded and initialized. Integrating with the MEF required the

MefModuleManager to override several methods in the ModuleManager. There are several ways to

change the behavior:

 Derive from ModuleManager. If you need to change the fundamental behavior of the

module loading and initialization sequence, derive from a new class and override virtual

methods.

 Replace IModuleIntializer. If you need to change how module types are instantiated and

initialized, replace IModuleIntializer.

 Write a custom IModuleTypeLoader. If you need to change how assemblies are loaded and

module types discovered within assemblies, write a custom IModuleTypeLoader. For more

information, see the section, Retrieving and Loading Modules from a Custom Assembly

Source.

Regions

The following sections describe how the region management features of the Prism Library can be

extended when regions are attached to controls, how regions behave, and how a region discovers its

views.

Region Adapters

Region adapters control how items placed in a region interact with the host control. The following

sections describe how to extend this behavior by creating a custom region adapter and controlling the

registration of the adapters.

Creating a Custom Region Adapter

To expose a UI control as a region, a region adapter is used. Region adapters are responsible for creating

a region and associating it to the control. By doing this, developers can manage the UI control's contents

in a consistent way through the IRegion interface. Each region adapter adapts a particular type of UI

control. The Prism Library provides three region adapters out-of-the-box:

 ContentControlRegionAdapter. This adapter adapts controls of type

System.Windows.Controls.ContentControl and derived classes.

 SelectorRegionAdapter. This adapter adapts controls derived from the class

System.Windows.Controls.Primitives.Selector, such as the

System.Windows.Controls.TabControl control.

236

 ItemsControlRegionAdapter. This adapter adapts controls of type

System.Windows.Controls.ItemsControl and derived classes.

There are some scenarios in which none of the preceding region adapters suit the developer needs. In

those cases, custom region adapters can be created to adapt controls not supported by the Prism

Library out-of-the-box.

Region adapters implement the Microsoft.Practices.Prism.Regions.IRegionAdapter interface. This

interface defines a single method named Initialize that takes the object to adapt and returns a new

region associated with the adapted control. The interface definition is shown in the following code.

C#

public interface IRegionAdapter

{

 IRegion Initialize(object regionTarget, string regionName);

}

To create a region adapter, you derive your class from RegionAdapterBase<T> and implement the

CreateRegion and Adapt methods. Optionally, override the AttachBehaviors method to attach special

logic to customize the region behavior. If you want to interact with the control that hosts the region, you

should also implement IHostAwareRegionBehavior.

The CreateRegion method is an abstract method defined in the RegionAdapterBase class. It returns a

region instance (an object that implements the IRegion interface) to be associated with the adapted

control. The Prism Library provides the following region implementations out-of-the-box:

 Region. This region allows multiple active views. This is the region used for controls derived

from the Selector class.

 SingleActiveRegion. This region allows a maximum of one active view at a time. This is the

region used for ContentControl controls.

 AllActiveRegion. This region keeps all the views in it active. Deactivation of views is not

allowed. This is the region used for ItemsControl controls.

The Adapt method is also an abstract method defined in the RegionAdapterBase class. It adapts the

control to the region created earlier. The Adapt method takes two parameters: the region with which

the adapted control has to be associated and the control to adapt. The following code example shows

the ContentControlRegionAdapter.

C#

public class ContentControlRegionAdapter : RegionAdapterBase<ContentControl>

{

 public ContentControlRegionAdapter(IRegionBehaviorFactory regionBehaviorFactory)

 : base(regionBehaviorFactory)

 {

 }

237

 protected override void Adapt(IRegion region, ContentControl regionTarget)

 {

 if (regionTarget == null) throw new ArgumentNullException("regionTarget");

 bool contentIsSet = regionTarget.Content != null;

 contentIsSet = contentIsSet || (BindingOperations.GetBinding(regionTarget,

ContentControl.ContentProperty) != null);

 if (contentIsSet)

 {

 throw new

InvalidOperationException(Resources.ContentControlHasContentException);

 }

 region.ActiveViews.CollectionChanged += delegate

 {

 regionTarget.Content = region.ActiveViews.FirstOrDefault();

 };

 region.Views.CollectionChanged +=

 (sender, e) =>

 {

 if (e.Action == NotifyCollectionChangedAction.Add &&

region.ActiveViews.Count() == 0)

 {

 region.Activate(e.NewItems[0]);

 }

 };

 }

 protected override IRegion CreateRegion()

 {

 return new SingleActiveRegion();

 }

}

Note: The region adapter will be registered as a singleton service and will be kept alive throughout the

application's lifetime, so make sure you do not keep references to possibly shorter lived objects, such

as UI controls or region instances.

Region adapter mappings are used by the region manager service to associate the correct region

adapters for XAML-defined regions. The following section describes how to customize the registration of

region adapter mappings.

Customizing the Region Adapter Mappings

One phase of the bootstrapping process is to register the default region adapter mappings. These

mappings are used by the region manager to associate the correct adapters for XAML-defined regions.

238

By default, an ItemsControlRegionAdapter, a ContentControlRegionAdapter, and a

SelectorRegionAdapter are registered. For more information about these adapters, see Composing the

User Interface.

The following code example shows the default implementation of the

ConfigureRegionAdapterMappings method. To customize the registration of region adapters, override

this method in your applications bootstrapper.

C#

// Bootstrapper.cs

protected virtual RegionAdapterMappings ConfigureRegionAdapterMappings()

{

 RegionAdapterMappings regionAdapterMappings =

ServiceLocator.Current.GetInstance<RegionAdapterMappings>();

 if (regionAdapterMappings != null)

 {

 regionAdapterMappings.RegisterMapping(typeof(Selector),

ServiceLocator.Current.GetInstance<SelectorRegionAdapter>());

 regionAdapterMappings.RegisterMapping(typeof(ItemsControl),

ServiceLocator.Current.GetInstance<ItemsControlRegionAdapter>());

 regionAdapterMappings.RegisterMapping(typeof(ContentControl),

ServiceLocator.Current.GetInstance<ContentControlRegionAdapter>());

 }

 return regionAdapterMappings;

}

Region Behaviors

Region behaviors are used by the Prism Library to provide most of the functionality for a region. During

the bootstrapping process, the bootstrapper registers the region behaviors that are attached to each

region by default. Additionally, adapters may add behaviors only when a region is associated with a

specific control type.

Adding a Region Behavior for All Regions

After you create a behavior, or extend an existing one, you can register it so it will be added to all new

regions. You can do this by overriding the ConfigureDefaultRegionBehaviors in the bootstrapper. The

following code example shows how to add a custom behavior for all regions.

C#

protected override IRegionBehaviorFactory ConfigureDefaultRegionBehaviors()

{

 IRegionBehaviorFactory factory = base.ConfigureDefaultRegionBehaviors();

 factory.AddIfMissing("MyBehavior", typeof(MyCustomBehavior));

}

239

Adding a Region Behavior for a Single Region

The following code example shows how to add a region behavior to a single region.

C#

IRegion region = regionManager.Region["Region1"];

region.Behaviors.Add("MyBehavior", new MyRegion());

Replacing an Existing Region Behavior

If you want to replace a default behavior with a different behavior, you can add it by overriding the

ConfigureDefaultRegionBehaviors method in your application-specific bootstrapper and registering

your behavior with the same key value as the default behavior. The Prism Library adds a default region

behavior only if a behavior with that key has not already been added.

Occasionally, you may want to add or a replace a region behavior to regions on a particular view. If

those regions are defined in XAML, like most regions are, the region may not be initially available for

attaching your custom behavior. You will need to monitor the availability of the region and attach your

behavior when the region becomes available. The following code example shows how to replace the

AutoPopulateBehavior with your custom version when the region becomes available.

C#

public class MyView : UserControl

{

 public MyView()

 {

 InitializeComponent();

 ObservableObject<IRegion> observableRegion =

RegionManager.GetObservableRegion(this.MyRegionHostControl);

 observableRegion.PropertyChanged += (sender, args) =>

 {

 IRegion region = ((ObservableObject<IRegion>)sender).Value;

 region.Behaviors.Add(AutoPopulateBehavior.BehaviorKey,

 new CustomAutoPopulateBehavior());

 };

 }

}

Removing a Region Behavior

Although there is no way to remove an existing behavior after it is added, you can prevent a behavior

from being added by overriding the ConfigureDefaultRegionBehaviors method in your application-

specific bootstrapper.

240

Changing How Views Are Discovered

You may want to control how views are registered or created when using view discovery. The following

are approaches to extending view discovery:

 Custom RegionViewRegistry. If you want to have extra control over registration of types (for

example, scoping the registry) or control over the creation of your types, you should derive

from this class.

 Custom AutoPopulateBehavior. If you want to change where the region discovers its registered

views (if you do not want to use the RegionViewRegistry) or if you want to change which views

are actually added to the region (for example, if you want to provide the ability to filter), you

can create a custom AutoPopulateBehavior for a single region or change the default for all

regions.

Region Navigation

The following sections describe how to extend the region navigation features of the Prism Library.

Changing Your Logical Navigation Structure

The region navigation features in the Prism Library use the type name of each view as the navigation

Uniform Resource Identifier (URI). Your application may want to expose a URI navigation scheme

independent of the view type names.

WPF applications can replace the IRegionNavigationContentLoader implementation to achieve the

same result. Multi-targeted applications may also want to use this approach to maintain a single place

where the URI structure for the application is defined.

To change the logical navigation structure, derive a new class from RegionNavigationContentLoader

and override the GetContractFromNavigationContext method. In the method, translate the incoming

contract name to the view type name to load. It is recommended to call the base class because it

conveniently parses the URI into a contract string to inspect. The following code example shows a

custom region content loader that maps "Home" to the Home view and "About" to the About view.

Note: This example uses MEF, so export attributes are applied at the top of the class to make it

available in the MEF container.

C#

[Export(typeof(IRegionNavigationContentLoader))]

[PartCreationPolicy(CreationPolicy.Shared)]

public class CustomRegionNavigationContentLoader : RegionNavigationContentLoader

{

 [ImportingConstructor]

 public CustomRegionNavigationContentLoader(IServiceLocator serviceLocator)

 : base(serviceLocator)

 {

241

 }

 protected override string GetContractFromNavigationContext(NavigationContext

navigationContext)

 {

 string contract = base.GetContractFromNavigationContext(navigationContext);

 if (contract.Equals("Home", StringComparison.OrdinalIgnoreCase))

 {

 return typeof(HomeView).Name;

 }

 if (contract.Equals("About", StringComparison.OrdinalIgnoreCase))

 {

 return typeof(AboutView).Name;

 }

 return contract;

 }

}

After you have your custom navigation content loader, replace it as the implementation of the

IRegionNavigationContentLoader in the container. For more information about replacing types in the

container, see the section, Container and Bootstrapper, earlier in this topic.

Advanced Navigation Replacements

The following sections describe replacing major portions of the region navigation infrastructure

provided by the Prism Library. Most developers will not have scenarios that require this level of

customization.

RegionNavigationContentLoader

The RegionNavigationContentLoader type implements the IRegionNavigationContentLoader interface.

You may either derive from RegionNavigationContentLoader and override methods, or replace the

implementation of the interface entirely.

In addition to the LoadContent method, the RegionNavigationContentLoader type has two other

possible methods to override, but they should be required only in uncommon navigation scenarios:

 GetCandidatesFromRegion. This method uses a filter to determine the views in a region that

are candidates for handling the navigation request. Applications that need to do special

filtering or ordering of candidate views will need to override this method.

 CreateNewRegionItem. This method is called to create a view if a candidate is not found

that can handle the navigation request. The default implementation uses the IServiceLocator

to create an instance of the view. Applications that need special logic outside of the

container to return instances or singletons of views will need to override this method.

242

IRegionNavigationJournal/IRegionNavigationJournalEntry

The region navigation service contains a journal that records the navigation history and provides back

and forward navigation. The default implementation is a standard stack implementation. Applications

that want to implement more advanced journal and history features (such as the Internet Explorer Back

button drop-down menu) may need to replace the RegionNavigationJournal to change behavior and

may need to replace the RegionNavigationJournalEntry to provide additional data, such as a Title field

and an Icon field, with each entry.

IRegionNavigationService

The region navigation service provides the core functionality of coordinating the navigation from one

view to another. Applications that want to delegate to another navigation system or want to wholesale

replace the navigation system in the Prism Library will need to replace the RegionNavigationService.

View Model Locator

The View Model Locator is used in the MVVM Basic QuickStart to wire the view and the view model

using its standard convention. This section describes how to change the conventions for naming and

locating views, naming, locating and associating view models with views.

For guidance on determining whether to use the View Model Locator or to wire your view and view

model together using MEF, see Implementing the MVVM Pattern. As background, the Stock Trader

reference implementation uses MEF to wire the view and the view model.

Changing the View Model Locator Conventions

The ViewModelLocationProvider provides a static method called

SetDefaultViewTypeToViewModelTypeResolver that can be used to provide your own convention for

associating views to view models.

C#

ViewModelLocationProvider.SetDefaultViewTypeToViewModelTypeResolver((viewType) =>

 {

 ...

 return viewModelType;

 });

By default, if located in the View namespace, the view will update the namespace to ViewModel and

append the "ViewModel" suffix to the view name. Prism will look for this view model in the same

assembly.

Configuring the ViewModelLocationProvider to Use a Container

The following example shows how to configure the ViewModelLocationProvider to construct a view

model using a container.

243

When bootstrapping your application use the SetDefaultViewModelFactory method to use your

container to resolve view model types. The following is an example using Microsoft's Unity dependency

injection container.

C#

IUnityContainer _container = new UnityContainer()

...

ViewModelLocationProvider.SetDefaultViewModelFactory((t)=> _container.Resolve(t));

The default strategy for creating the view models is using the Activator.CreateInstance method, which is

a valid approach if you have a default constructor in the view model and there are no dependencies to

be injected.

244

16: Code Samples
The code samples for the Prism Library for WPF are focused applications that illustrate specific Prism-

related concepts. The QuickStarts and Reference Implementation are an ideal starting point if you want

to gain an understanding of a key concept such as Modularity, MVVM, Commands, UI Composition,

Navigation, Event Aggregations, User Interactivity, and Composite Application. The Stock Trader

Reference Implementation demonstrates proven practices for implementing composite applications.

The samples include both source code and documentation.

In order to build and run the samples select the appropriate shortcut file and press F5 to build and run.

Installing Prism

This section describes how to install Prism. It involves the following three steps:

1. Install system requirements.

2. Extract the Prism source code and documentation.

3. Compile and run QuickStarts, Reference Implementation or Prism Library source code.

Step 1: Install System Requirements

Prism was designed to run on the Microsoft Windows 8 desktop, Microsoft Windows 7, Windows Vista,

or Windows Server 2008 operating system. WPF applications built using this guidance require the .NET

Framework 4.5.

Before you can use the Prism Library, the following must be installed:

 Microsoft .NET Framework 4.5 (installed with Visual Studio 2012) or Microsoft .NET

Framework 4.51.

 Microsoft Visual Studio 2012 Professional, Premium, or Ultimate editions or Microsoft Visual

Studio 2013 Professional, Premium, or Ultimate editions.

Note: Visual Studio 2013 Express Edition can be used to develop Prism applications using the

Prism Library.

Optionally, you should consider also installing the following:

 Microsoft Blend for Visual Studio 2013. A professional design tool for creating compelling

user experiences and applications for WPF.

http://www.microsoft.com/expression/products/Blend_Overview.aspx

245

Step 2: Extract the Prism Source Code, and Documentation

To install the Prism assets, right-click the downloaded file, and then click Run as administrator. This will

extract the source code and documentation into the folder of your choice. You may also need to right-

click the file and unblock before you can extract the contents.

Step 3: Compile and run QuickStarts, Reference Implementation or Prism Library source

code.

In order to build and run the code sample, select the appropriate shortcut file and press F5 to build and

run.

Name Code sample download from Code
Gallery

Category Summary

Stock Trader
Reference
Implementation

Download Stock Trader RI code Prism The Stock Trader RI

application is a reference

implementation that illustrates

the baseline architecture.

Within the application, you

will see solutions for

common, and recurrent,

challenges that developers

face when creating composite

WPF applications.

The Stock Trader RI

illustrates a fictitious, but

realistic financial investments

scenario. Contoso Financial

Investments (CFI) is a

fictional financial organization

that is modeled after real

financial organizations. CFI is

building a new composite

application to be used by their

stock traders.

Getting Started
Using the Prism
Library Hands-
on Lab

Download Hello World QuickStart code

Get Started The Hello World QuickStarts

are the ending solution for the

Getting Started Using the

Prism Library Hands-on Lab.

In this lab, you will learn the

basic concepts of Prism and

apply them to create a Prism

Library solution that you can

use as the starting point for

building a composite WPF.

http://aka.ms/prism-wpf-RICode
http://aka.ms/prism-wpf-QSHelloWorldCode

246

Name Code sample download from Code
Gallery

Category Summary

Modularity
QuickStarts Download Modularity QuickStart

code for Unity

 Download Modularity QuickStart
code for MEF

Modularity The Modularity
QuickStarts demonstrate
how to code, discover,
and initialize modules
using Prism. These
QuickStarts represent an
application composed of
several modules that are
discovered and loaded in
the different ways
supported by the Prism
Library using MEF and
Unity as the composition
containers.

Interactivity

QuickStart

Download Interactivity QuickStart code

Interactivity This QuickStart demonstrates

how to create a view and

view model that work together

when the view model needs

to interact with the user or

user gesture needs to raise

an event that invokes a

command. In each of these

scenarios the view model

should not need to know

about the view. The first

scenario is handled by using

InteractionRequests and

InteractionRequestTriggers.

The second scenario is

handled by

InvokeCommandAction.

MVVM
QuickStart

Download MVVM QuickStart code MVVM The MVVM QuickStart

demonstrates how to build a

very simple application that

implements the MVVM

pattern.

Commanding
QuickStart

Download Command QuickStart code Commanding The Commanding QuickStart

demonstrates how to build a

WPF UI that uses commands

provided by the Prism Library

to handle UI actions in a

decoupled way.

http://aka.ms/prism-wpf-QSModularityUnityCode
http://aka.ms/prism-wpf-QSModularityUnityCode
http://aka.ms/prism-wpf-QSModularityMEFCode
http://aka.ms/prism-wpf-QSModularityMEFCode
http://aka.ms/prism-wpf-QSInteractivityCode
http://aka.ms/prism-wpf-QSMVVMCode
http://aka.ms/prism-wpf-QSCommandingCode

247

Name Code sample download from
Code Gallery

Category Summary

UI Composition
QuickStart

Download UI Composition

QuickStart code
UI Composition This QuickStart demonstrates how

to build WPF UIs composed of

different views that are

dynamically loaded into regions

and that interact with each other in

a decoupled way. It illustrates how

to use both the view discovery and

view injection approaches for UI

composition.

State-Based
Navigation
QuickStart

State-Based Navigation QuickStart Navigation This QuickStart demonstrates an

approach to define the navigation

of a simple application. The

approach used in this QuickStart

uses the WPF Visual State

Manager (VSM) to define the

different states that the application

has and defines animations for

both the states and the transitions

between states.

View-Switching
Navigation
QuickStart

Download View-Switching

Navigation QuickStart code

Navigation This QuickStart demonstrates how

to use the Prism Region

Navigation API. The QuickStart

shows multiple navigation

scenarios, including navigating to

a view in a region, navigating to a

view in a region contained in

another view (nested navigation),

navigation journal support, just-in-

time view creation, passing

contextual information when

navigating to a view, views and

view models participating in

navigation, and using navigation

as part of an application built

through modularity and UI

composition.

Event
Aggregation
QuickStart

Download Event Aggregation

QuickStart code
Event Aggregation This QuickStart demonstrates how

to build a WPF application that

uses the Event Aggregator

service. This service enables you

to establish loosely coupled

communications between

components in your application.

http://aka.ms/prism-wpf-QSUICompositionCode
http://aka.ms/prism-wpf-QSUICompositionCode
http://aka.ms/prism-wpf-QSStateBasedNavCode
http://aka.ms/prism-wpf-QSViewSwitchNavCode
http://aka.ms/prism-wpf-QSViewSwitchNavCode
http://aka.ms/prism-wpf-QSEACode
http://aka.ms/prism-wpf-QSEACode

248

Stock Trader Reference

Implementation
Prism includes a sample called a reference implementation, which is a composite application that is

based on a real-world scenario. This intentionally incomplete application illustrates the composite

application baseline architecture. Within the application, you will see solutions for common, and

recurrent, challenges that developers face when creating composite applications. We solve many of the

challenges using design patterns such as Model-View-ViewModel (MVVM), Composite View, Event

Aggregator, Plug-In, and Dependency Injection that embody important architectural design principles

such as separation of concerns and loose coupling. Prism helps you to create a modular application

design and build applications using loosely coupled components that can evolve independently but that

can be easily and seamlessly integrated into the overall application.

The reference implementation is not a real-world application; however, it is based on real-world

challenges customers are facing. When you look at this application, do not look at it as a reference point

for building a stock trader application—instead, look at is as a reference for building a composite

application.

Note: When looking at this application, it may seem inappropriate to implement it in the way it was

implemented. For example, you might question why there are so many modules, and it may seem

overly complex. The focus of Prism is to address challenges around building composite applications.

For this reason, certain scenarios are used in the reference implementation to emphasize those

challenges.

The following illustration shows the desktop version of the Stock Trader Reference Implementation

(Stock Trader RI).

249

Stock Trader RI

You can use the reference implementation in different ways. You can step through a running example

that demonstrates application-specific code built on reusable guidance. You can also copy sections of

the source code that implement any particular guidance into your own applications.

The reference implementation was developed using a "test driven" approach and includes automated

(unit) tests for most of its components. You can modify the reference implementation and use the unit

tests to verify its functionality. The reference implementation for the Prism 5.0 release demonstrates

several key features of the updated Prism library:

 Managed Extensibility Framework (MEF) as the dependency injection container

 Modularity and user interface (UI) composition through custom attributes

 Model-View-ViewModel pattern (MVVM)

 Region-based navigation

Building and Running the Reference Implementation

The Stock Trader RI requires Visual Studio 2012 or later and the .NET Framework 4.5.1. The reference

implementation is compatible with Blend for Visual Studio 2013.

http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://www.microsoft.com/expression/products/Blend_Overview.aspx

250

To run the Stock Trader RI In Windows Explorer, double-click the following shortcut file to open the

solution in Visual Studio:

Open RI - StockTrader Reference Implementation.lnk

1. Press F5.

Interacting with the Reference Implementation

The features of the Stock Trader reference implementation are covered in greater detail later in the

Scenarios section. The following steps provide a quick introduction to the basic features.

To see the pie chart and line chart for each stock

1. Click the Position tab.

2. In the Position table, click the row that corresponds to the stock whose pie chart and line

chart you want to see.

To see a news item corresponding to a stock

1. Click the Position tab.

2. In the Position table, click a stock in that corresponds to the stock you want to learn more

about.

3. Click a news article. If you click the control in the upper-right corner, a News Reader dialog

box opens.

To add a stock to the watch list

1. In the Add to Watch List box, type the stock symbol for the stock you want to add to the

watch list. Valid values include STOCK0 through STOCK9 as the stock symbol.

2. Press ENTER.

To remove a stock from the watch list

1. Click the Watch List button.

2. In the watch list, click the X symbol next to the stock that you want to remove.

To buy or sell shares from a stock

1. In the Position area, click the + or – symbol next to the stock that you want to buy or sell.

2. In the Buy & Sell area, enter the following data:

a. In the Shares box, type the number of shares you want to buy or sell.

b. In the Price Limit box, type the appropriate price.

c. In the Order Type drop-down box, click Limit, Market, or Stop.

251

d. In the Term box, click End of day or Thirty days. Term is the length of time an order

will be active before it is carried out or it expires.

3. To submit the order, click the Submit button. To cancel the order, click the Cancel button.

To submit or cancel all your buy and sell orders

 If you have multiple orders that are ready to be bought or sold, the Submit All and Cancel All

buttons are enabled on the Buy & Sell area and on the main task bar. The Submit All button will

be enabled only if all individual orders are able to be submitted.

The following illustration shows the Stock Trader RI Buy & Sell tab.

Buy & Sell area in the Stock Trader RI

Acceptance Tests

The Stock Trader RI includes a separate solution that includes acceptance tests. The acceptance tests

describe how the reference implementation should perform when you follow a series of steps. You can

use the acceptance tests to explore the functional behavior of the application in a variety of scenarios.

Outcome

You should see the Stock Trader RI shell window and the tests automatically interact with the

application. At the end of the test pass, you should see that all tests have passed.

The Scenario

The Stock Trader RI illustrates a fictitious, but realistic financial investments scenario. Contoso Financial

Investments (CFI) is a fictional financial organization that is modeled after real financial organizations.

CFI is building a new composite application to be used by their stock traders. This topic contains a

252

summary of the scenario and demonstrates the business drivers that led to a series of technical

decisions that ultimately result in the use of Prism.

Contoso Financial Investments Scenario

Contoso Financial Investments (CFI) is a global investment firm with one hundred traders. Core to doing

business in CFI, there is a 15-year-old legacy trader application developed in Visual C++ with the

Microsoft Foundational Class Library that, over time, has become increasingly difficult to maintain.

Operating Environment

For the last several years, CFI's lack of maintainability has brought new development on the application

to a standstill—this has left the application in maintenance mode. To meet new customer requirements,

CFI adopted the Microsoft .NET Framework development platform and branched out, creating additional

applications that were each maintained by separate teams in a silo. The idea was that having separately

developed applications would actually result in the development effort being more efficient. Each team

developing in their own silo meant that CFI could remove any contention that might arise, and it would

pave the way for easily creating new teams. This would allow CFI to scale out their development teams

into several locations, including setting up several offshore teams.

The harsh reality is that the approach proved to be extremely inefficient on several levels. Because each

application was developed in a silo, the trader is now required to maintain multiple copies of the same

data throughout a growing suite of applications, including StockPortfolio, MarketView, and StockHist.

The data is not identical, but there are elements of the data that are duplicated. To do their jobs, traders

constantly jump back and forth between these various applications. To assist with this, CFI employed a

"launcher" that quickly launched all the applications from a central place. The launcher also passed the

user's logon credentials to the application to skip the logon screen for each application. The launcher is

more of a bandage than anything else. It did not greatly improve the overall workflow of the traders in

that the applications cannot integrate with one another, nor do they support a consistent UI.

Operational Challenges

Because of the lack of integration, getting a consolidated view of all the related data is not an easy task.

There is a customer-facing reporting site that can pull from each of the back-end systems to create this

"one" view, but it is littered with problems, the least of which is that if the data has not been properly

duplicated, the reports do not work. In addition, entering the duplicate data is extremely time

consuming and significantly impacts the number of orders that the trader is processing. Manually

entering the data caused many errors in the system. Attempts to automatically synchronize the different

systems have been too costly, because the schemas are very different and change frequently. With all

these problems, CFI, like many other businesses, has managed to continue to operate as a profitable

business. As customer demand has increased, CFI has invested the necessary funds to expand its

services. It has also consistently grown its trading force whose jobs have become more and more

difficult because of the inefficient operating conditions. Recently, however, this inefficiency has

increased to the point that the business is starting to lose money:

253

 The interaction time per transaction has greatly increased because of the time it takes to

navigate the suite of applications.

 The cost of employee training and in-house support has greatly increased because of the

high complexity and lack of consistency of the applications.

 Maintenance costs of the various applications are extremely prohibitive. For example, in a

recent instance, a logic bug that was detected required changes in seven different systems.

This critical bug took three weeks to fix because other parts of the system heavily depended

on the code where the bug resided. This greatly increased the cost of fixing it, testing it, and

deploying it—it brought the total price to $150,000. This included the effort to fix three

additional bugs that were created as part of the original fix.

 CFI has been unable to keep up with emerging technologies that can offer it a competitive

edge and reduced development costs.

Emerging Requirements

Currently, CFI is faced with a new challenge around Service-Oriented Architecture (SOA). Fabrikam Web

Traders, one of CFI's chief competitors, has offered its customers a rich client desktop experience for

managing their portfolios remotely and on-site. The client is able to access Fabrikam's back-end systems

through web services. Several large CFI customers are now requesting the same capabilities.

Although there is no immediate threat, in the long term, the business impact can be crippling. If CFI

continues with the current strategy and does not both improve its efficiency and adapt to changing

market conditions, it will lose business to its competition.

Meeting the Business and IT Objectives

The Chief Executive Officer (CEO) is an opportunist who sees this challenge as an opportunity for CFI to

rise to the occasion. Working with the Chief Information Officer (CIO) and Chief Technology Officer

(CTO), they devise a three-point strategy for moving CFI forward. The strategy is as follows:

 Reduce the cost of development. To do this, the new system should do the following:

◦ It should provide structure for teams to collaborate through a well-defined architecture.

◦ It should support distributed teams, including using some offshore developers.

◦ It should provide a shorter development life cycle—this improves the time to market.

◦ It should present data in ways that were previously prohibitive and time consuming to

implement.

◦ It should support Test-Driven Development (TDD).

◦ It should support automated acceptance tests.

◦ It should support integration with third-party systems.

254

 Improve trader efficiency. To accomplish this, the system should do the following:

◦ It should support better multitasking.

◦ It should provide a UI that is better adapted to the trader workflow.

◦ It should consolidate existing applications.

◦ It should provide shorter interaction time per transaction (data visualizations).

◦ It should provide better information flow (contextual UI queues).

◦ It should provide better use of screen area (also known as screen real estate).

◦ It should provide integration among the different components of the system and with

external components (services).

◦ It should present reduced training time.

◦ It should support users whether they are located remotely or are on-site.

◦ It should support corporate branding and UI styling.

◦ It should minimize the cost of adding new functionality to the system.

◦ It should support adding custom extensions provided by either the customer or third-

party companies.

 Create a new customer-facing product offering. This offering should do the following:

◦ It should include a rich client desktop experience for portfolio management.

◦ It should provide UI customization and corporate branding to beat out the competition.

◦ It should provide extensibility for third-party vendors.

The CTO has delivered these requirements to the senior architect, who is investigating various options

for delivering them.

Development Challenges

For the architect, this project represents one of the most significant changes in the technology

environment of CFI. Work will be spread across several software development teams, with additional

development being outsourced. In the past, cooperation between the development teams has been

limited, and development tended to occur on an ad-hoc basis. This was because he identified the

following problems that are a result of current development methodology:

 Inconsistency. Similar applications are developed in different ways. This results in higher

maintenance and training costs.

255

 Varying quality. Developers with varying levels of experience lack guidance on implementing

proven practices. This situation results in inconsistent quality among the applications they

produce.

 Poor productivity. In many cases, developers across the company repeatedly solve the same

problems in different applications, with little or no reuse of code. Because there was no

central design, it was very difficult to get the applications to communicate with one another.

The Solution: Prism

The senior architect needs a strategy to realize the architectural vision set forth and to resolve the

development challenges identified in the previous section. After significant research, he decides that the

best solution can be found in Prism offered by the Microsoft patterns & practices group.

Prism is a set of assets for building complex WPF applications. Prism enables designing a composite

application in the following ways:

 It provides infrastructure and support for developing and maintaining WPF composite

applications through non-invasive and lightweight APIs.

 It dynamically composes UI components.

 It supports application modules that are developed, tested, and deployed by separate teams.

 It allows incremental adoption.

 It provides an integrated and consistent user experience.

 It can be integrated with existing WPF applications.

 It supports a multi-targeted scenario.

Prism from Microsoft patterns & practices meets the requirements of CFI and should allow them to

achieve their goals by making development significantly more efficient and predictable. Support for

integrating with existing WPF applications is of particular interest to the architect because CFI recently

developed several WPF applications to address recent customer needs. He is confident that the

guidance will assist him in delivering an effective solution that is robust, reliable, based on proven

practices, and that can best use WPF . After presenting his findings to the CTO, the CTO agrees that

Prism will help to deliver an effective solution efficiently and cost-effectively. He gives approval for the

project to proceed.

Stock Trader RI Features

The CFI stock trader application is used for managing a trader's portfolio of investments. Using the stock

trader application, traders can see their portfolios, view trend data, buy and sell shares, manage items in

their watch lists, and view related news.

The Stock Trader RI supports the following actions:

256

 See the pie chart and line chart for each stock.

 See a news item that corresponds to a stock.

 Add a stock to the watch list.

 View the watch list.

 Remove a stock from the watch list.

 Buy or sell shares from a stock.

 Submit or cancel your entire buy and sell orders.

Logical Architecture

The following illustration shows a high-level logical architecture view of the Stock Trader RI.

Architectural view of the Stock Trader RI

The Stock Trader RIuses Prism Library for WPF.

The following describes the main elements of the Stock Trader RI architecture:

 Application. The application is lightweight and contains the shell that hosts each of the

different UI components within the reference implementation. It also contains the

StockTraderRIBootstrapper, which sets up the container and initializes module loading.

 Modules. The solution is divided into the following four modules, which are each maintained

by separate teams in different locations:

◦ Watch module. The Watch module contains the Watch List and Add To Watch List

functionality.

◦ News module. The News module contains the NewsFeedService, which handles

retrieving stock news items.

◦ Market module. The Market module handles retrieval of market trend data for the

trader's positions and notifies the UI when those positions change. It also handles

populating the Trend line for the selected position.

◦ Position module. The Position module handles populating the list of positions in the

trader's portfolio. It also contains the Buy/Sell order functionality.

257

 Infrastructure. The infrastructure contains functionality for both the Stock Trader RI and the

Prism core:

◦ Prism Library. This contains the core composition services and service interfaces for

handling regions, commanding, and module loading. It also contains the container

façade for the Unity Application Block (Unity) and MEF. The

StockTraderRIBootstrapper inherits from the MefBoostrapper.

◦ Stock Trader RI Infrastructure Library. This contains service interfaces specific to the

Stock Trader RI, shared models, and shared commands.

Implementation View

The Stock Trader RI is based on the Prism Library. The following illustration shows the Stock Trader RI

(Desktop version) Solution Explorer.

Stock Trader RI solution view

How the Stock Trader RI Works

The Stock Trader RI is a composite application, which is composed of a set of modules that are initialized

at run time. The following illustration shows the application's startup process, which includes the

initialization of modules. The next sections provide details about each of these steps.

258

Stock Trader RI startup process

The Stock Trader RI startup process is the following:

1. The application uses the StockTraderRIBootstrapper, which inherits from the Prism Library's

MefBootstrapper for its initialization.

2. The application initializes the Prism Library's MefServiceLocatorAdapter for use in the

modules.

3. The StockTraderRIBootstrapper creates and shows the shell view.

4. The Prism Library's ModuleCatalog finds all the modules the application needs to load.

5. The Prism Library's ModuleManager loads and initializes each module.

6. Modules use the Prism Library's RegionManager service to add a view to a region.

7. The Prism Library's Region displays the view.

Modules

A module is a logical unit of separation in the application. In the Stock Trader RI, each module exists in a

separate assembly, but this is not an absolute requirement. The advantage of having this separation is

that it makes the application more maintainable and enables distributed teams to work on different

modules with minimal overlap on the files being updated in the source control system.

The application does not directly insert views from each module into the shell; instead, each module

contributes content to the shell view and interacts with other modules. The final system is composed of

the aggregation of the modules' contributions. By using composition, you can create applications with

emergent behaviors—this refers to the application being able to scale up in complexity and

requirements as it grows.

259

The modules are loosely coupled. This means they do not directly reference each other, which promotes

separation of concerns and allows modules to be individually developed, tested, and deployed by

different teams.

Services and Containers

This is possible through a set of application services that the modules have access to. Modules do not

directly reference one another to access these services. In the Stock Trader RI, a dependency injection

container (referred to as the container) injects these services into modules during their initialization (the

Stock Trader RI uses the MEF container).

Note: For an introduction to dependency injection and Inversion of Control, see the article, Loosen Up

- Tame Your Software Dependencies for More Flexible Apps, by James Kovacs in MSDN Magazine.

Bootstrapping the Application

Modules get initialized during a bootstrapping process by a class named MefBootstrapper. The

MefBootstrapper is responsible for starting the core composition services used in an application created

with the Prism Library. The following code from the MefBootstrapper class shows how the Module

Manager is located from the container.

C#

// MefBootstrapper.cs

protected override void InitializeModules()

{

 IModuleManager manager = this.Container.GetExportedValue<IModuleManager>();

 manager.Run();

}

The Module Manager manages the process of validating the module catalog, retrieving modules if they

are remote, loading the modules into the application domain, and calling the IModule.Initialize method.

Configuring the Aggregate Catalog

The StockTraderRIBootstrapper class configures the AggregateCatalog in code. In this case, the shell

has direct references to all the modules, so the StockTraderRIBootstrapper can directly add them to the

AggregateCatalog. The StockTraderRIBootstrapper also adds its own assembly to the catalog so that

types exported within the application are available in the container.

C#

// StockTraderRIBootstrapper.cs

protected override void ConfigureAggregateCatalog()

{

 this.AggregateCatalog.Catalogs.Add(new

AssemblyCatalog(typeof(StockTraderRIBootstrapper).Assembly));

 this.AggregateCatalog.Catalogs.Add(new

AssemblyCatalog(typeof(StockTraderRICommands).Assembly));

http://msdn.microsoft.com/en-us/magazine/cc337885.aspx
http://msdn.microsoft.com/en-us/magazine/cc337885.aspx

260

 this.AggregateCatalog.Catalogs.Add(new

AssemblyCatalog(typeof(MarketModule).Assembly));

 this.AggregateCatalog.Catalogs.Add(new

AssemblyCatalog(typeof(PositionModule).Assembly));

 this.AggregateCatalog.Catalogs.Add(new

AssemblyCatalog(typeof(WatchModule).Assembly));

 this.AggregateCatalog.Catalogs.Add(new

AssemblyCatalog(typeof(NewsModule).Assembly));

}

Module Loading

After the container is populated, the types contained in each module assembly are available.

Note: Each module class (for example, NewsModule) in the reference implementation is empty. The

use of MEF allows for discovery of types using declarative attributes, so there is not any work to be

done during module initialization. If a module needed to do additional work when it is loaded, the

module class should then implement IModule and perform this initialization in the Initialize method.

The ModuleManager would then discover, load, and initialize that module.

During this initialization process, the container will inject instances into types to resolve their

dependencies. The following code shows how the news feed service, region manager, and event

aggregator services are injected into the ArticleViewModel constructor.

C#

// ArticleViewModel.cs

[Export(typeof(ArticleViewModel))]

[PartCreationPolicy(CreationPolicy.Shared)]

public class ArticleViewModel : BindableBase

{

 [ImportingConstructor]

 public ArticleViewModel(INewsFeedService newsFeedService, IRegionManager

regionManager, IEventAggregator eventAggregator)

 {

 ...

 }

}

In addition, other types, such as services, are available so they can be accessed either by the same

module or other modules in a loosely coupled fashion.

Views

A view is any content that a module contributes to the UI. In the Stock Trader RI, views are discovered at

run time and added to regions. Regions are classes associated with a control container, such as

ContentControl or TabControl.

Note: In the Stock Trader RI, views are usually user controls. However, data templates in WPF are an

alternative approach to rendering a view.

261

View Registration in the Container

Views can be registered through declarative attributes, directly in code, or through configuration. The

Stock Trader RI uses MEF and the MVVM pattern to demonstrate the use of declarative attributes.

Views associate themselves with a region through a custom export attribute, as shown in the following

code example.

C#

// ArticleViewModel.cs

[ViewExport(RegionName = RegionNames.ResearchRegion)]

[PartCreationPolicy(CreationPolicy.Shared)]

public partial class ArticleView : UserControl

The AutoPopulateExportedViewsBehavior in the Stock Trader RI infrastructure discovers the views in

the container and automatically populates them into the associated region, as shown in the following

code example.

C#

// AutoPopulateExportedViewsBehavior.cs

[ImportMany(AllowRecomposition = true)]

public Lazy<object, IViewRegionRegistration>[] RegisteredViews { get; set; }

public void OnImportsSatisfied()

{

 AddRegisteredViews();

}

private void AddRegisteredViews()

{

 if (this.Region != null)

 {

 foreach (var viewEntry in this.RegisteredViews)

 {

 if (viewEntry.Metadata.RegionName == this.Region.Name)

 {

 var view = viewEntry.Value;

 if (!this.Region.Views.Contains(view))

 {

 this.Region.Add(view);

 }

 }

 }

 }

}

262

Model-View-ViewModel

The Stock Trader RI uses the MVVM pattern to separate UI, presentation logic, and the data model.

Using MVVM allows the view model to be unit tested because it has no direct knowledge of the view.

The Prism Library provides the BindableBase class that the view models in the Stock Trader RI use to

notify the user interface of property changes. BindableBase makes implementing

INotifyPropertyChanged much easier.

In the Stock Trader RI, the view and view model are connected through view discovery. The view is

discovered by the AutoPopulateExportedViewsBehavior and instantiated through the container.

Because the view declares an import of the view model, the container then instantiates the view model

and injects it into the view, as shown in the following code example.

C#

// ArticleView.xaml.cs

[Import]

ArticleViewModel ViewModel

{

 set

 {

 this.DataContext = value;

 }

}

For more information about view discovery, see Composing the User Interface.

Commands

Views can communicate with presenters and services in a loosely coupled fashion by using commands.

The Add To Watch List control, as shown in the following illustration, uses the AddWatchCommand,

which is a DelegateCommand, to notify the WatchListService whenever a new watch item is added.

Note: The DelegateCommand is one kind of command that the Prism Library provides. For more

information about commands in Prism, see "Commands" in Implementing the MVVM Pattern.

Add To Watch List control

Using a DelegateCommand allows the service to delegate the command's Execute method to the

service's AddWatch method, as shown in the following code example.

C#

// WatchListService.cs

263

public WatchListService(IMarketFeedService marketFeedService)

{

 ...

 AddWatchCommand = new DelegateCommand<string>(AddWatch);

 ...

}

private void AddWatch(string tickerSymbol)

{

 ...

}

The WatchListService is also injected into the AddWatchViewModel, which exposes the command to

the view.

C#

// AddWatchViewModel.cs

public class AddWatchViewModel : BindableBase

 {

 private string stockSymbol;

 private IWatchListService watchListService;

 [ImportingConstructor]

 public AddWatchViewModel(IWatchListService watchListService)

 {

 if (watchListService == null)

 {

 throw new ArgumentNullException("service");

 }

 this.watchListService = watchListService;

 }

 public string StockSymbol

 {

 get { return stockSymbol; }

 set

 {

 SetProperty(ref stockSymbol, value);

 }

 }

 public ICommand AddWatchCommand { get { return

this.watchListService.AddWatchCommand; } }

}

The AddWatchButton in the view then binds to the AddWatchViewModel command through the

DataContext.

264

XAML

<!--AddWatchView.xaml -->

<StackPanel Orientation="Horizontal">

 <TextBox Name="AddWatchTextBox" MinWidth="100" Style="{StaticResource

CustomTextBoxStyle}"

 Infrastructure:ReturnKey.Command="{Binding Path=AddWatchCommand}"

 Infrastructure:ReturnKey.DefaultTextAfterCommandExecution="Add to Watch List"

 Text="Add to Watch List"

 AutomationProperties.AutomationId="TextBoxBlock" Margin="5,0,0,0"/>

</StackPanel>

This is using an attached behavior on the Add To Watch List text box, so when the user enters a stock

symbol and then presses ENTER, the AddWatchCommand will be invoked, thereby passing the stock

symbol to the WatchListService.

Event Aggregator

The Event Aggregator pattern channels events from multiple objects through a single object to simplify

registration for clients. In the Prism Library, a variation of the Event Aggregator pattern allows multiple

objects to locate and publish or subscribe to events.

In the Stock Trader RI, the event aggregator is used to communicate between modules. The subscriber

tells the event aggregator to receive notifications on the UI thread. For example, when the user selects a

symbol on the Position tab, the PositionSummaryViewModel in the Position module raises an event

that specifies the symbol that was selected, as shown in the following code example.

C#

// PositionSummaryViewModel.cs

eventAggregator.GetEvent<TickerSymbolSelectedEvent>().Publish(CurrentPositionSummaryI

tem.TickerSymbol);

The ArticleViewModel in the News module listens to the event to display the news related to the

selected symbol, as shown in the following code example.

C#

// ArticleViewModel.cs

eventAggregator.GetEvent<TickerSymbolSelectedEvent>().Subscribe(OnTickerSymbolSelecte

d, ThreadOption.UIThread);

Note: The notification of the event is on the UI thread to safely update the UI and avoid a WPF

exception.

265

Technical Challenges

The Stock Trader Reference Implementation (Stock Trader RI) demonstrates how you can address

common technical challenges that you face when you build composite applications in WPF. The

following table describes the technical challenges that the Stock Trader RI addresses.

Technical challenge Feature in the

Stock Trader RI

Example of where feature is demonstrated

Views and composite UI

Regions: The use of regions

for placing the views without

having to know how the layout

is implemented.

Regions defined in the shell

and position module's orders

view.

StockTraderRI\Shell.xaml

StockTraderRI.Modules.Position\Orders\OrdersVie

w.xaml

Composite view: Shows how

a composite view

communicates with its child

view.

Order screen StockTraderRI.Modules.Position\Orders\OrderCom

positeViewModel.cs

StockTraderRI.Modules.Position\Orders\OrderDetai

lsViewModel.cs

StockTraderRI.Modules.Position\Orders\OrderCom

mandsView.xaml.cs

Compose UI across

modules: Shows how a

module can have views in

different parts of the shell that

interact with each other.

The Watch module has a

view and also is a part of the

toolbar.

StockTraderRI.Modules.Watch\AddWatch\AddWatc

hView.xaml

StockTraderRI.Modules.Watch\WatchList\WatchLis

tView.xaml

The News module has an

article list view and a popup

article reader view that shows

the same articles.

StockTraderRI.Modules.News\Article\ArticleView.xa

ml

StockTraderRI.Modules.News\Article\NewsReader.

xaml

Decoupled communication

Commands: Shows the

Command pattern. The

command to buy or sell a

stock is a delegate command.

Each row in the list uses the

same command instance but

with a different parameter

corresponding to the stock.

This decouples the invoker

from the receiver and shows

passing additional data with

the command.

Buy and Sell command

invokers in

PositionSummaryView and

handlers in OrdersController

StockTraderRI.Modules.Position\Controllers\Orders

Controller.cs

StockTraderRI.Modules.Position\PositionSummary\

PositionSummaryView.xaml

Composite commands: Use

composite commands to

broadcast all of the

Submit All and Cancel All

buttons

StockTraderRI.Infrastructure\StockTraderRIComma

nds.cs

StockTraderRI.Modules.Position\Orders\OrderDetai

266

commands. The Submit All

or Cancel All commands

execute all the individual

instances of the Submit or

Cancel commands.

lsViewModel.cs

StockTraderRI.Modules.Position\Controllers\Orders

Controller.cs

Event Aggregator pattern:

Publish and Subscribe to

events across decoupled

modules. Publisher and

Subscriber have no contract

other than the event type.

Show relevant news content:

When the user selects a

position in the position list,

the communication to the

news module uses the

EventAggregator service.

StockTraderRI.Modules.Position\PositionSummary\

PositionSummaryPresentationModel.cs

StockTraderRI.Modules.News\Controllers\NewsCo

ntroller.cs

Market feed updates: The

consumers of the market feed

service subscribe to an event

to be notified when new feeds

are available; the consumers

then update the model behind

the UI.

StockTraderRI.Modules.Market\Services\MarketFe

edService.cs

StockTraderRI.Modules.Position\PositionSummary\

ObservablePosition.cs

StockTraderRI.Modules.Watch\WatchList\WatchLis

tViewModel.cs

Services: Services are also

used to communicate

between modules. Services

are more contractual and

flexible than commands.

Several service

implementations in module

assemblies

Services:

StockTraderRI.Modules.Market\Services\MarketFe

edService.cs

StockTraderRI.Modules.Market\Services\MarketHis

toryService.cs

StockTraderRI.Modules.News\Services\NewsFeed

Service.cs

StockTraderRI.Modules.Watch\Services\WatchList

Service.cs

StockTraderRI.Modules.Position\Services\Account

PositionService.cs

StockTraderRI.Modules.Position\Services\XmlOrde

rsService.cs

Other technical challenges

WPF: Use WPF for the user

interface

Shell and module views The starting point for Stock Trader RI - Desktop

version is in the StockTraderRI\App.xaml.cs

Bootstrapper: The use of a

bootstrapper to initialize the

application with global

services.

Created bootstrapper with

MEF and configuring global

services, such as logging and

defining the module catalog.

Bootstrapper:

StockTraderRI\StockTraderRIBootstrapper.cs

Unit and Acceptance Tests

The Stock Trader RI includes unit tests within the solution. Unit tests verify whether individual units of

source code work as expected.

To run the Stock Trader RI unit tests

267

 On the Test menu, point to Run, and then click All Tests in Solution.

The Stock Trader RI includes a separate solution that includes acceptance tests. The acceptance tests

describe how the application should perform when you follow a series of steps; you can use the

acceptance tests to explore the functional behavior of the application in a variety of scenarios.

To run the Stock Trader RI acceptance tests

1. In Visual Studio, open the solution file StockTrader

RI\StockTraderRI.Tests.AcceptanceTest\StockTraderRI.Tests.AcceptanceTest.sln.

2. Build the solution.

3. Open Test Explorer.

4. After building the solution, the test will be found. Click the Run All button to run the acceptance

tests.

Outcome

You should see the reference implementation window and the tests automatically interact with the

application. At the end of the test run, you should see that all tests have passed.

268

Modularity QuickStarts
Modulatiry QuickStarts source code:

 Download Unity version

 Download MEF version

The QuickStarts included in this topic provide code samples that demonstrate how to create a modular

WPF application using the Prism library. The samples demonstrate how to code, discover, and initialize

modules:

 Creating modules. Modules are classes that implement the IModule interface. Declarative

attributes can be used to name modules, control initialization, and define dependencies.

 Registering modules. Modules can be registered in the following ways:

◦ Directly in code. Modules can be directly registered in the module catalog in the

application code. Using this approach, you can use conditional logic to determine

which module should be included in your application. Modules added in code are

referenced by the application instead of being loaded at run time.

◦ Using configuration. Prism can register modules with the module catalog by loading

a configuration file. Declaring the modules in configuration allows the modules to be

loaded and initialized independent of the application.

◦ Using directory inspection. A directory can be specified and inspected to load

assemblies in the directory and discover modules.

 Registering module dependencies. Modules can have dependencies on other modules. Prism

provides dependencies management, including cyclic dependencies and duplicate module

detection.

 Initializing modules. Prism supports the following two initialization modes:

◦ When available. Modules can be initialized as soon as they are available. Modules

downloaded with the application are initialized during startup. Modules set to

download in the background are initialized immediately after downloading

completes.

◦ On-demand. Modules can be initialized when the application code requests it.

Modules downloaded in the background start downloading when the application

requests the module, and then they initialize immediately after downloading

completes.

http://aka.ms/prism-wpf-QSModularityUnityCode
http://aka.ms/prism-wpf-QSModularityMEFCode

269

 Downloading modules in the background. Although downloading in the background is most

useful to Silverlight applications, desktop applications can now take advantage of the same

progress and completion events as assemblies are discovered and loaded:

◦ Displaying progress. An application can subscribe to a progress-changed event to

display byte count and percentage progress as modules are downloaded.

◦ Action on download complete. An application can subscribe to a load module–

completed event to take additional action after a module loads and initializes.

 Leveraging different dependency injection containers. Traditionally, the QuickStarts have

demonstrated using the Unity container, while the core library code remained container-

agnostic. With the addition of Managed Extensibility Framework (MEF) to the .NET Framework

4, there are two QuickStarts, each of which uses a different container:

◦ ModularityWithMef. This QuickStart demonstrates modularity when using the MEF

as the dependency injection container. Prism leverages MEF's declarative attribute

model to integrate the ModuleCatalog and MEF's ComposablePartsCatalog.

◦ ModularityWithUnity. This QuickStart demonstrates modularity when using Unity as

the dependency injection container.

Scenarios

This section describes the scenarios included in both modularity QuickStarts. Each QuickStart is

composed of six modules: ModuleA, ModuleB, ModuleC, ModuleD, ModuleE, and ModuleF. Each

module demonstrates an aspect of how modules are discovered, downloaded, and initialized.

Module Defined in Initialized Downloaded Depends on

A Code When available With application D

B Directory On demand In background

C Code On demand With application

D Directory When available In background

E Configuration On demand In background

F Configuration On demand In background E

Each QuickStart displays each module as a control. The module control indicates whether it has been

initialized, displays downloading progress, and on-demand modules can be clicked to request

initialization. The control also provides a tooltip that shows its current initialization state and discovery

information. At the bottom of each QuickStart page is a text box that displays the log entries from the

bootstrapping sequence and module-loading details. The following illustration shows the main page of

the Modularity with MEF QuickStart.

270

Modularity QuickStart user interface

Building and Running the QuickStarts

This QuickStart requires Microsoft Visual Studio 2012 or later with .NET Framework 4.5.1.

To build and run the ModularityWithMef QuickStart

1. In Visual Studio, open the solution file

Quickstarts\Modularity\Desktop\ModularityWithMef\ModularityWithMef.Desktop.sln.

2. In the Build menu, click Rebuild Solution.

3. Press F5 to run the QuickStart.

271

To build and run the ModularityWithUnity QuickStart

1. In Visual Studio, open the +solution file

Quickstarts\Modularity\Desktop\ModularityWithUnity\ModularityWithUnity.Desktop.sln.

2. In the Build menu, click Rebuild Solution.

3. Press F5 to run the QuickStart.

Note: Both QuickStarts have post-build events configured on each module project to automatically

store the modules' assemblies in a folder after a successful build. Modules B and D are copied into a

DirectoryModules folder and Modules E and F are copied into the same location as the application

executable.

To see the post-build events configuration, right-click a module project, and then click Properties. In

the Properties dialog box, click the Build Events tab.

The following code shows the post-build event command in the Post-build event command line text

box.

xcopy "$(TargetDir)*.*"

"$(SolutionDir)ConfigurationModularity\bin\$(ConfigurationName)\DirectoryModules\" /Y

Walkthrough

To explore the scenario, perform the steps to build and run the QuickStart:

1. The main window shows a set of modules, each of which displays the module's initialization

state, as shown in the following illustration. As the application starts, Module D and Module A

are discovered and initialized.

272

Main page of Modularity with MEF QuickStart

Module D is discovered by directory inspection at application startup. Module A is initialized

when it is available and depends on Module D. After Module D loads, Module A is initialized. The

trace window at the bottom shows messages as the application is initialized.

Note: If no dependencies are specified, the module load order is non-deterministic.

2. Hover over the Module A control. When the mouse hovers over the Module A control, a

descriptive tooltip is displayed, as shown in the following illustration.

273

Module Information tooltip

As you hover the pointer over a module, a tooltip displays that shows information about its

status, discovery, initialization, download timing, and dependencies.

3. Click the Module B and Module C controls. As each module initialization state changes, the

visual control is updated. When either the Module B control or the Module C control is clicked,

that module gets loaded, as shown in the following illustration.

274

Screen shot of module loaded

Module B is discovered by directory inspection, and Module C is referenced by the application.

Both modules are loaded on demand.

4. Click the Module F control. When the Module F control is clicked, Module E and Module F get

loaded, as shown in the following illustration.

275

Screen shot of Module E getting loaded to load Module F

Notice that Module F completes its initialization first, but is not initialized until after Module E

initializes because of the dependency.

Implementation Details

The QuickStarts highlight the key components in modularity. The following sections describe the key

artifacts the QuickStarts.

The Bootstrapper overrides several methods from either the MefBootstrapper or the

UnityBootstrapper to support the specifics of the application. These sections describe important

differences between dependency injection containers.

276

Application Startup

The application uses the QuickStartBootstrapper to start the application and initialize the main window.

C#

protected override void OnStartup(StartupEventArgs e)

{

 base.OnStartup(e);

 // The bootstrapper will create the Shell instance, so the App.xaml

 // does not have a StartupUri.

 QuickStartBootstrapper bootstrapper = new QuickStartBootstrapper();

 bootstrapper.Run();

}

The Bootstrapper overrides CreateShell and InitializeShell methods to create and show the main

window.

C#

protected override DependencyObject CreateShell()

 {

 return ServiceLocator.Current.GetInstance<Shell>();

 }

protected override void InitializeShell()

{

 base.InitializeShell();

 Application.Current.MainWindow = (Window)this.Shell;

 Application.Current.MainWindow.Show();

}

Creating Modules

In this QuickStart, six modules are created by implementing the IModule interface. Attributes are added,

depending on the dependency injection container chosen (that is, Unity or MEF).

C#

// when using Unity

[Module(ModuleName = WellKnownModuleNames.MyModule)]

[ModuleDependency(WellKnownModuleNames.DependentModule)]

public class MyModule: IModule

{

 ...

}

277

When using Unity, attributes can be used to name the module and specify dependencies.

C#

// when using MEF

[ModuleExport(typeof(ModuleA), DependsOnModuleNames = new string[] { "ModuleD" })]

public class ModuleA : IModule

{

 ...

}

When using MEF, the ModuleExport attribute allows MEF to discover the appropriate type deriving

from the IModule interface; in addition, it provides the ability to specify additional module metadata.

Registering Modules

In this QuickStart, some modules are directly referenced by the application, discovered by inspecting a

directory, or registered by loading a configuration file.

The QuickStartBootstrapper overrides CreateModuleCatalog and ConfigureModuleCatalog methods to

register modules.

C#

// when using Unity

protected override IModuleCatalog CreateModuleCatalog()

{

 return new AggregateModuleCatalog();

}

C#

// when using Unity

protected override void ConfigureModuleCatalog()

{

 // Module A is defined in the code.

 Type moduleAType = typeof(ModuleA);

 ModuleCatalog.AddModule(new ModuleInfo(moduleAType.Name,

moduleAType.AssemblyQualifiedName));

 // Module C is defined in the code.

 Type moduleCType = typeof(ModuleC);

 ModuleCatalog.AddModule(new ModuleInfo()

 {

 ModuleName = moduleCType.Name,

 ModuleType = moduleCType.AssemblyQualifiedName,

 InitializationMode = InitializationMode.OnDemand

 });

 // Module B and Module D are copied to a directory as part of a post-build step.

 // These modules are not referenced in the project and are discovered by

 // inspecting a directory.

 // Both projects have a post-build step to copy themselves into that directory.

278

 DirectoryModuleCatalog directoryCatalog = new DirectoryModuleCatalog() {

ModulePath = @".\DirectoryModules" };

 ((AggregateModuleCatalog)ModuleCatalog).AddCatalog(directoryCatalog);

 // Module E and Module F are defined in configuration.

 ConfigurationModuleCatalog configurationCatalog = new

ConfigurationModuleCatalog();

 ((AggregateModuleCatalog)ModuleCatalog).AddCatalog(configurationCatalog);

 }

Note: To demonstrate multiple ways of using the ModuleCatalog, the QuickStart using Unity

implements an AggregateModuleCatalog that derives from IModuleCatalog. This class is not intended

to be used in a shipping application.

When using MEF, the AggregateCatalog provides module and type discovery. In this case, the

QuickStartBootstrapper overrides the ConfigureAggregateCatalog template method and registers

assemblies with MEF. The ModuleCatalog is still used for registering modules by loading a configuration

file.

C#

// when using MEF

protected override IModuleCatalog CreateModuleCatalog()

{

 // When using MEF, the existing Prism ModuleCatalog is still the place to

 // configure modules via configuration files.

 return new ConfigurationModuleCatalog();

}

C#

// when using MEF

protected override void ConfigureAggregateCatalog()

{

 base.ConfigureAggregateCatalog();

 // Add this assembly to export ModuleTracker.

 this.AggregateCatalog.Catalogs.Add(new

AssemblyCatalog(typeof(QuickStartBootstrapper).Assembly));

 // Module A is referenced in in the project and directly in code.

 this.AggregateCatalog.Catalogs.Add(new

AssemblyCatalog(typeof(ModuleA).Assembly));

 this.AggregateCatalog.Catalogs.Add(new

AssemblyCatalog(typeof(ModuleC).Assembly));

 // Module B and Module D are copied to a directory as part of a post-build step.

 // These modules are not referenced in the project and are discovered by

 // inspecting a directory.

 // Both projects have a post-build step to copy themselves into that directory.

 DirectoryCatalog catalog = new DirectoryCatalog("DirectoryModules");

279

 this.AggregateCatalog.Catalogs.Add(catalog);

}

Loading Modules

This QuickStart demonstrates both loading modules at startup and on demand, displaying progress, and

handling dependencies between modules.

Note: This QuickStart has additional classes that help to track module initialization state. These classes

are for demonstration purposes only and are not intended for shipping applications.

The Shell user interface contains a ModuleControl for each module. The Shell also has the

ModuleTracker class as its DataContext.

The ModuleTracker contains a ModuleTrackingState for each module. ModuleControl data binds to

ModuleTrackingState and uses a custom style to visually display the downloading and initialized state

of the module.

The Shell responds to a request from the user interface (UI) to load a module and call the

ModuleManager.LoadModule method.

C#

private void ModuleC_RequestModuleLoad(object sender, EventArgs e)

{

 // The ModuleManager uses the Async Events pattern.

 this.moduleManager.LoadModule(WellKnownModuleNames.ModuleC);

}

The Shell is notified of download progress by subscribing to the

ModuleManager.ModuleDownloadProgressChanged event.

C#

this.moduleManager.ModuleDownloadProgressChanged +=

this.ModuleManager_ModuleDownloadProgressChanged;

C#

void ModuleManager_ModuleDownloadProgressChanged(object sender,

 ModuleDownloadProgressChangedEventArgs e)

{

 this.moduleTracker.RecordModuleLoading(e.ModuleInfo.ModuleName, e.BytesReceived,

 e.TotalBytesToReceive);

}

The Shell is notified when the module is downloaded and initialized by subscribing to the

ModuleManager.LoadModuleCompleted event.

280

C#

this.moduleManager.LoadModuleCompleted += this.ModuleManager_LoadModuleCompleted;

C#

void ModuleManager_LoadModuleCompleted(object sender, LoadModuleCompletedEventArgs e)

{

 this.moduleTracker.RecordModuleLoaded(e.ModuleInfo.ModuleName);

}

Key Modularity Classes

The following are some key classes used in the modularity QuickStarts:

 ModuleCatalog. This class is responsible for cataloging the metadata for modules and module

groups in the application.

 ModuleManager. This class coordinates the initialization of the modules. It manages the

retrieval and the subsequent initialization of the modules.

 ModuleInitializer. This class assists the ModuleManager in creating instances of modules.

 IModuleTypeLoader. This is the interface for derived types (for example, the

XapModuleTypeLoader class) to retrieve modules from the file system or a remote server.

 Bootstrapper/MefBootstrapper/UnityBootstrapper. This class assists applications in starting

and initializing a modular Prism application.

Acceptance Tests

The Modularity QuickStarts include a separate solution with acceptance tests for both Unity and MEF

QuickStarts. Acceptance tests describe how an application should perform when you follow a series of

steps; you can use the acceptance tests to explore the functional behavior of the applications in a

variety of scenarios.

To run the Modularity QuickStarts acceptance tests

1. In Visual Studio, open one of the following solution files:

◦ QuickStarts\Modularity\ModularityWithUnity.Tests.AcceptanceTest\ModularityWithUni

ty.Tests.AcceptanceTest.sln

◦ QuickStarts\Modularity\ModularityWithMEF.Tests.AcceptanceTest\ModularityWithMEF

.Tests.AcceptanceTest.sln

2. Build the solution.

3. Open Test Explorer.

281

4. After building the solution, Visual Studio finds the tests. Click the Run All button to run the

acceptance tests.

Outcome

When you run the acceptance tests, you should see the QuickStarts windows and the tests automatically

interact with the user interface. At the end of the test pass, you should see that all tests have passed.

More Information

To learn more about modularity, see Modular Application Development.

Interactivity QuickStart
The Interactivity QuickStart demonstrates how views and view models can interact with the user. This

includes interactions triggered from the view model and interactions fired by controls located in the

view. To handle these different interactions the Prism library provides InteractionRequests and

InteractionRequestTriggers, along with the custom InvokeCommandAction action.

InvokeCommandAction is used to connect a trigger including events to a WPF command.

Scenarios

This section describes the scenarios included in the interactivity QuickStart. The QuickStart is composed

of three tabs: Introduction, Interaction Requests, and InvokeCommandAction.

The Introduction tab, contains information about the purposes of the QuickStart. The Interaction

Requests tab, which includes four different scenarios, describes the usage of InteractionRequests and

InteractionRequestTriggers when a view model needs to interact with the user. Lastly, the

InvokeCommandAction tab, demonstrates how a command can be invoked in response to an event

raised by a control in the view.

The following illustration shows the main page of the Interactivity QuickStart.

282

Interactivity QuickStart user interface

Building and Running the QuickStart

This QuickStart requires the .Net Framework 4.5.1, Microsoft Visual Studio 2012 or later, and Blend for

Visual Studio 2013.

To build and run the Interactivity QuickStart:

1. In Visual Studio, open the solution file QuickStart\Interactivity\InteractivityQuickstart.sln.

2. In the Build menu, click Rebuild Solution.

3. Press F5 to run the QuickStart.

Implementation Details

The QuickStart highlights the key components in user interactions. The following sections describe the

key artifacts of the QuickStart.

In MVVM applications, there are scenarios where the view or the view model need to cooperate to

interact with the user.

283

When the view model needs to interact with the user, it needs to delegate this interaction to the view,

since the view model should not manipulate the UI. Prism provides Interaction Requests and

Interaction Request Triggers to cover these scenarios.

When the user performs an action in the UI that raises an event that should trigger business logic, this

business logic should be delegated to the view model, which is in charge of handling the application

logic. Prism provides InvokeCommandAction to help with this scenario.

Interaction Requests

Prism provides Interaction Requests as a method to handle interactions initiated by a view model where

the user should respond to.

Notification Interactions

A view model should define a property that holds the InteractionRequest instance; in this example it is

called NotificationRequest and is typically initialized in the view model's constructor. Notice that the

InteractionRequest is of type INotification, which represents an interaction request used for

notifications.

C#

public InteractionRequest<INotification> NotificationRequest { get; private set; }

The view model will trigger the interaction when the RaiseNotificationCommand invokes the

RaiseNotification method. The interaction is raised using the Raise method of the InteractionRequest

instance, which receives an implementation of the INotification interface as well as a callback that will

be executed when the interaction finishes. In this example, the default implementation of the

INotification interface— the Notification class — is used.

C#

private void RaiseNotification()

{

 this.NotificationRequest.Raise(

 new Notification { Content = "Notification Message", Title = "Notification" },

 n => { InteractionResultMessage = "The user was notified."; });

}

When creating the instance of the Notification class, the Content and Title properties are specified.

Content is the message of the notification, and Title is the popup window caption.

To use interaction requests you need to define the corresponding InteractionRequestTrigger in the

view's XAML code, as shown in the following code.

XAML

<prism:InteractionRequestTrigger SourceObject="{Binding NotificationRequest,

Mode=OneWay}">

 <prism:PopupWindowAction IsModal="True" CenterOverAssociatedObject="True"/>

</prism:InteractionRequestTrigger>

284

Note that the InteractionRequestTrigger has a SourceObject property that is bound to the

InteractionRequest property in the view model.

The InteractionRequestTrigger has an associated PopupWindowAction provided by Prism that will

execute when the view model raises the interaction request. This action will display a pop-up window

using some of the out-of-the-box views, or you can specify custom pop-up views. The IsModal property

will display this pop-up window as a modal when set to true, and the CenterOverAssociatedObject

property will display the pop-up window in the center of the parent view if set to true.

As no custom window was specified in the example, the out-of-the-box popup window for Notifications

will be used, as shown in the following figure.

Default Notification View

Confirmation Interactions

Confirmation Interactions display a message to the user, showing two buttons to either accept or cancel

the interaction.

To send a Confirmation Interaction, declare an InteractionRequest property of type IConfirmation when

you declare the property that will hold the InteractionRequest instance, as seen in the following code.

C#

public InteractionRequest<IConfirmation> ConfirmationRequest { get; private set; }

 To raise the confirmation, the code is similar to notification Interactions, but this time you will pass a

Confirmation class instance to the Raise method. The Confirmation class is the default implementation

of the IConfirmation interface.

C#

private void RaiseConfirmation()

{

 this.ConfirmationRequest.Raise(

 new Confirmation { Content = "Confirmation Message", Title = "Confirmation"

},

 c => { InteractionResultMessage = c.Confirmed ? "The user accepted." : "The

user cancelled."; });

}

Notice that in the callback, different actions can be performed depending on the user's choice.

285

As this example uses the default popup window, the XAML definition is similar to the Notification

Interaction, as you can see in the following code.

XAML

<prism:InteractionRequestTrigger SourceObject="{Binding ConfirmationRequest,

Mode=OneWay}">

 <prism:PopupWindowAction IsModal="True" CenterOverAssociatedObject="True"/>

</prism:InteractionRequestTrigger>

The following figure shows the default Confirmation popup window.

Default Confirmation view

Custom pop-up windows

To use custom popup windows instead of those provided out-of-the-box, use the WindowContent

property of the PopupWindowAction action in the XAML definition of the Interaction, setting it to an

instance of your custom popup window. This is demonstrated in the following code snippet.

XAML

<prism:InteractionRequestTrigger SourceObject="{Binding CustomPopupViewRequest,

Mode=OneWay}">

 <prism:PopupWindowAction>

 <prism:PopupWindowAction.WindowContent>

 <views:CustomPopupView />

 </prism:PopupWindowAction.WindowContent>

 </prism:PopupWindowAction>

</prism:InteractionRequestTrigger>

The call to the Raise method of the interaction request instance is the same as a regular notification. In

this case, we are passing a simple notification as a parameter. The custom popup view does not have a

DataContext of its own; therefore, it will inherit the notification object passed as the DataContext of the

window shown in the following code.

286

C#

private void RaiseCustomPopupView()

{

 this.InteractionResultMessage = "";

 this.CustomPopupViewRequest.Raise(

 new Notification { Content = "Message for the CustomPopupView", Title =

"Custom Popup" });

}

The following figures shows the custom pop-up window in action, which uses the Notification instance

properties.

A custom popup view

Complex Custom Popup Windows

If you want to show a custom popup window that contains a more complex functionality, you can set a

custom view model to your popup view.

In the following example, the PopupWindowAction action defines a custom view. When this action is

executed the view will be shown inside a new window.

287

XAML

<prism:InteractionRequestTrigger SourceObject="{Binding ItemSelectionRequest,

Mode=OneWay}">

 <prism:PopupWindowAction>

 <prism:PopupWindowAction.WindowContent>

 <views:ItemSelectionView />

 </prism:PopupWindowAction.WindowContent>

 </prism:PopupWindowAction>

</prism:InteractionRequestTrigger>

Note: Take into account that the view and its view model are created only once and will be reused

each time the action is executed.

Your custom popup view model needs to implement the IInteractionRequestAware interface in order to

get the notification object from the interaction request as well as an action that can be invoked to finish

the interaction. You can see the interface members in the following code.

C#

public interface IInteractionRequestAware

{

 INotification Notification { get; set; }

 Action FinishInteraction { get; set; }

}

The custom view model class will implement this interface, as shown in the code snippet.

C#

public class ItemSelectionViewModel : BindableBase, IInteractionRequestAware

{

 private ItemSelectionNotification notification;

 public ItemSelectionViewModel()

 {

 this.SelectItemCommand = new DelegateCommand(this.AcceptSelectedItem);

 this.CancelCommand = new DelegateCommand(this.CancelInteraction);

 }

 public Action FinishInteraction { get; set; }

 public INotification Notification

 {

 get

 {

 return this.notification;

 }

 set

 {

288

 if (value is ItemSelectionNotification)

 {

 this.notification = value as ItemSelectionNotification;

 this.OnPropertyChanged(() => this.Notification);

 }

 }

 }

 public string SelectedItem { get; set; }

 public ICommand SelectItemCommand { get; private set; }

 public ICommand CancelCommand { get; private set; }

 public void AcceptSelectedItem()

 {

 if (this.notification != null)

 {

 this.notification.SelectedItem = this.SelectedItem;

 this.notification.Confirmed = true;

 }

 this.FinishInteraction();

 }

 public void CancelInteraction()

 {

 if (this.notification != null)

 {

 this.notification.SelectedItem = null;

 this.notification.Confirmed = false;

 }

 this.FinishInteraction();

 }

}

In the preceding code, note that the Notification property raises the OnPropertyChanged event when

its value is updated.

To pass information to the custom popup view model, a custom Confirmation class is created. The

Confirmation class is used instead of the Notification class, to take advantage of the Confirmed

property to be able to determine if the user selected an item or closed the dialog. Think of this class as a

Data Transfer Object (DTO). It will contain the properties that the popup view needs.

289

C#

public class ItemSelectionNotification : Confirmation

{

 public ItemSelectionNotification()

 {

 this.Items = new List<string>();

 this.SelectedItem = null;

 }

 public ItemSelectionNotification(IEnumerable<string> items)

 : this()

 {

 foreach(string item in items)

 {

 this.Items.Add(item);

 }

 }

 public IList<string> Items { get; private set; }

 public string SelectedItem { get; set; }

}

When you define the interaction request property in your view model, you will define it as the

ItemSelectionNotification type, or whichever custom notification type you need, as seen in the

following code.

C#

public InteractionRequest<ItemSelectionNotification> ItemSelectionRequest { get;

private set; }

Lastly, when you raise the interaction request, you will create an instance of your custom Notification

(the ItemSelectionNotification class in this example) and add the required data for it to work. In this

case, note that the items that populate the list are added to the corresponding Items property.

C#

private void RaiseItemSelection()

{

 ItemSelectionNotification notification = new ItemSelectionNotification();

 notification.Items.Add("Item1");

 notification.Items.Add("Item2");

 notification.Items.Add("Item3");

 notification.Items.Add("Item4");

 notification.Items.Add("Item5");

 notification.Items.Add("Item6");

 notification.Title = "Items";

290

 this.InteractionResultMessage = "";

 this.ItemSelectionRequest.Raise(notification,

 returned =>

 {

 if (returned != null && returned.Confirmed && returned.SelectedItem !=

null)

 {

 this.InteractionResultMessage = "The user selected: " +

returned.SelectedItem;

 }

 else

 {

 this.InteractionResultMessage = "The user cancelled the operation or

didn't select an item.";

 }

 });

}

The custom popup view has its own view model which implements the IInteractionRequestAware

interface; therefore, its Notification property will be automatically populated with this notification by

the PopupWindowAction.

This way the parent view's view model and the popup window's view model are able to exchange data

without direct references to each other.

In the following figure, you can see a custom popup view that provides a more complex functionality.

291

A custom popup view with a more complex interaction

InvokeCommandAction

When you need to invoke a command in response to an event raised by a control located in the view,

you can use Blend's InvokeCommandAction.

The InvokeCommandAction allows you to execute a command in response to a triggered event.

However, you cannot pass all or part of the EventArgs as a command parameter. Prism provides a

custom InvokeCommandAction action that can help you in this case. It has an additional property called

TriggerParameterPath, which is used to specify the member of the EventArgs of the fired event that will

be passed as the command parameter. The InvokeCommandAction also sets the IsEnabled property of

the associated control based on the value returned from CanExecute of the command.

To use the InvokeCommandAction action, in the view, you will register a trigger, such as EventTrigger,

that will execute the InvokeCommandAction when the event is raised by the control. This action will

execute a command passing the specfied parameter of the event that triggered the action. You can see

this in the following code.

292

XAML

<ListBox Grid.Row="1" Margin="5" ItemsSource="{Binding Items}"

SelectionMode="Single">

 <i:Interaction.Triggers>

 <i:EventTrigger EventName="SelectionChanged">

 <!-- This action will invoke the selected command in the view model and

pass the parameters of the event to it. -->

 <prism:InvokeCommandAction Command="{Binding SelectedCommand}"

TriggerParameterPath="AddedItems" />

 </i:EventTrigger>

 </i:Interaction.Triggers>

</ListBox>

In the preceding code the trigger will activate on the SelectionChanged event of the Listbox control, and

the InvokeCommandAction will execute the SelectedCommand command, passing the AddedItems

property of the SelectionChangedEventArgs as the command parameter. If the TriggerParameterPath

property is not set, the SelectionChangedEventArgs instance will be directly passed to the command. If

the CommandParameter property is set, the trigger parameter will be ignored.

Key Interactivity Classes

The following are some key classes used in the Interactivity QuickStart:

 IInteractionRequest. Interface that represents a request for user interaction. View models can

expose interaction request objects through properties and raise them when user interaction is

required so that views associated with the view models can materialize the user interaction

using an appropriate mechanism.

 InteractionRequest<T>. Implementation of the IInteractionRequest interface.

 INotification. Interface that represents an interaction request used for notifications.

 Notification. Basic implementation of INotification containing the Title and Content properties.

 IConfirmation. Represents an interaction request used for confirmations. It contains the

Confirmed property, which indicates if the confirmation was accepted or not.

 Confirmation. Basic implementation of IConfirmation. It also inherits from the Notification

class.

 IInteractionRequestAware. Interface used by the PopupWindowAction class. If the

DataContext object of a view that is shown with this action implements this interface, it will be

populated with the INotification data of the interaction request as well as an Action to finish

the request upon invocation.

 InvokeCommandAction. Trigger action that executes a command when invoked. It contains the

TriggerParameterPath property that is parsed to identify the child property of the trigger

parameter that will be used as the command parameter.

293

Acceptance Tests

The Interactivity QuickStart include a separate solution with acceptance tests. Acceptance tests describe

how an application should perform when you follow a series of steps; you can use the acceptance tests

to explore the functional behavior of the applications in a variety of scenarios.

To run the Interactivity QuickStart acceptance tests

1. In Visual Studio, open the QuickStarts\Interactivity\Interactivity.Tests.AcceptanceTest\

Interactivity.Tests.AcceptanceTest.sln solution file.

2. Build the solution.

3. Open Test Explorer.

4. After building the solution, Visual Studio finds the tests. Click the Run All button to run the

acceptance tests.

Outcome

When you run the acceptance tests, you should see the QuickStart window and the tests automatically

interact with the user interface. At the end of the test pass, you should see that all tests have passed.

More Information

To learn more about interactivity, see Composing the User Interface.

294

MVVM QuickStart
The Model-View-ViewModel (MVVM) QuickStart provides sample code that demonstrates how to

separate the state and logic that support a view into a separate class named ViewModel using the Prism

Library. The view model sits on top of the application data model to provide the state or data needed to

support the view, insulating the view from needing to know about the full complexity of the application.

The view model also encapsulates the interaction logic for the view that does not directly depend on the

view elements themselves. This QuickStart provides a tutorial on implementing the MVVM pattern.

A common approach to designing the views and view models in an MVVM application is the first sketch

out or storyboard for what a view looks like on the screen. Then you analyze that screen to identify what

properties the view model needs to expose to support the view, without worrying about how that data

will get into the view model. After you define what the view model needs to expose to the view and

implement that, you can then dive into how to get the data into the view model. Often, this involves the

view model calling to a service to retrieve the data, and sometimes data can be pushed into a view

model from some other code such as an application controller.

This QuickStart leads you through the following steps:

 Analyzing the view to decide what state is needed from a view model to support it

 Defining the view model class with the minimum implementation to support the view

 Defining the bindings in the view that point to view model properties

 Attaching the view to the view model

Business Scenario

The main window of the Basic MVVM Application QuickStart represents a subset of a survey application.

In this window, an empty survey with different types of questions is shown; and there is a button to

submit the questionnaires. The following illustration shows the QuickStart main window.

295

MVVM QuickStart user interface

Building and Running the QuickStart

This QuickStart requires Microsoft Visual Studio 2012 or later and the .NET Framework 4.5.1.

To build and run the MVVM QuickStart

1. In Visual Studio, open the solution file

Quickstarts\BasicMVVMQuickstart_Desktop\BasicMVVMQuickstart_Desktop.sln.

2. In the Build menu, click Rebuild Solution.

3. Press F5 to run the QuickStart.

Implementation Details

The QuickStart highlights the key elements and considerations to implement the MVVM pattern in a

basic application.

Analyzing What Properties Are Needed on the View Model

Open the Views\MainWindow view in the designer. The list of color selections will be dynamically

populated. When analyzing a view to define a view model, you want to identify each individual item of

data and behavior that you need. In this case, assuming the questions are fixed and will not be

dynamically driven, you need the following properties exposed from your view model:

 Name: string

296

 Age: int

 Quest: string

 FavoriteColor: string

 Submit: Command

 Reset: Command

Because the first four properties are related to questionnaires, a questionnaire class is created to store

them. The questionnaire class will be the model of the application, and the view model will only expose

a property of type Questionnaire to support them.

Note that even things like buttons represent something that needs support from the view model. You

can either expose a command, as shown in this QuickStart, or you can expose a method. With the

former, you will need a property exposed from the view model with an object that implements the

ICommand interface; with the latter, you need a behavior that can target a method.

Note: For button clicks, you have the choice of commands or behaviors. For more information, see

Command-Enabled Controls vs. Behaviors in Advanced MVVM Scenarios. In this topic, you will use a

command. To do that, you need a command implementation, which does not exist in a form

compatible with view models in the .NET Framework. Prism provides the DelegateCommand class that

is perfect for hooking up views to view models with commands.

As we want to demonstrate parent-child view model composition, the application UI is composed by

two views: MainWindow, which contains the Reset and Submit buttons and an instance of the second

view, which is the QuestionnaireView that includes the questionnaire's questions.

The QuestionnaireView is directly instantiated in the XAML code, as seen in the following code.

XAML

<Window x:Class="BasicMVVMQuickstart_Desktop.Views.MainWindow" ...>

 <Grid x:Name="LayoutRoot"

 Background="{StaticResource MainBackground}">

 <Grid MinWidth="300" MaxWidth="800">

 ...

 <views:QuestionnaireView Grid.Row="1"

 DataContext="{Binding QuestionnaireViewModel}"

 Height="246" VerticalAlignment="Top">

 </views:QuestionnaireView>

 ...

 </Grid>

 </Grid>

</Window>

297

In order to populate this child view with its corresponding view model, its DataContext is set to a

property of the MainWindow's view model that contains an instance of the child QuestionnaireView's

view model.

Implementing the View Model to Support the View

Open the QuestionnaireViewModel.cs file. The view model implements the Questionnaire and AllColors

properties and derives from the BindableBase class.

C#

public class QuestionnaireViewModel : BindableBase

{

 private Questionnaire questionnaire;

 public QuestionnaireViewModel()

 {

 this.Questionnaire = new Questionnaire();

 this.AllCollors = new[] { “Red”, “Blue”, “Green” };

 }

 public Questionnaire Questionnaire

 {

 get { return this.questionnaire; }

 set { SetProperty(ref this.questionnaire, value); }

 }

 public IEnumerable<string> AllCollors { get; private set; }

}

The INotifyPropertyChanged interface is implemented on the BindableBase base class. The property

changed notification is added to the whole Questionnaire property, using the SetProperty method of

the BindableBase class as shown in the following code.

C#

public Questionnaire Questionnaire

{

 get { return this.questionnaire; }

 set { SetProperty(ref this.questionnaire, value); }

}

Note: The view model class typically derives from the BindableBase class. In some cases, the model

can derive from BindableBase, when the property that needs to update the view when its value is

changed is stored in the model.

To support INotifyPropertyChanged, your class needs to derive from the BindableBase class, and the

property setter needs to call the SetProperty method of the BindableBase class.

The following code shows how the BindableBase class implements the INotifyPropertyChanged

interface. Note that the SetProperty method updates the property’s value and fires the

PropertyChanged event when a property changes its value. Alternatively, you can use the

298

OnPropertyChanged method, passing a lambda expression that references the property, to fire the

PropertyChanged event. This is useful for when one property update triggers another property update.

And also provides backward compatibility with the previous version of Prism.

C#

public abstract class BindableBase : INotifyPropertyChanged

{

 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual bool SetProperty<T>(ref T storage, T value, [CallerMemberName]

string propertyName = null)

 {

 if (object.Equals(storage, value)) return false;

 storage = value;

 this.OnPropertyChanged(propertyName);

 return true;

 }

 protected void OnPropertyChanged(string propertyName)

 {

 var eventHandler = this.PropertyChanged;

 if (eventHandler != null)

 {

 eventHandler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 protected void OnPropertyChanged<T>(Expression<Func<T>> propertyExpression)

 {

 var propertyName = PropertySupport.ExtractPropertyName(propertyExpression);

 this.OnPropertyChanged(propertyName);

 }

}

The method is used so that when the questionnaire property changes its value and updates the user

interface. In any view where the data might change in the view model and you want those changes to be

reflected on the screen, you need to implement this pattern for all the properties in the view model.

The questionnaire property, the collection property, and the command property are initialized in the

view model class constructor.

C#

public QuestionnaireViewModel()

{

 this.questionnaire = new Questionnaire();

 this.AllColors = new[] { "Red", "Blue", "Green" };

}

299

Collection properties should always be initialized to either an empty collection or, if it is appropriate, to

populate the collection in the constructor, you can do so, typically by calling a service. If you do that,

make sure you do so in a way that will not break the designer.

Additionally, if you expose ICommand properties that the view can bind command properties to, you

need to create an instance of a command object. In this case, because you will use the

DelegateCommand type from Prism, you need to create an instance of that and point it to a handling

method. DelegateCommand also has the ability to carry along a strongly typed parameter if the

CommandParameter property of a source control is also set. This is not used in the QuickStart, so the

argument type is just specified as object.

The following code shows the OnSubmit handler method, located in the MainWindowViewModel class.

C#

private void OnSubmit(object obj)

{

 Debug.WriteLine(BuildResultString());

}

To keep the solution simple, this handler method returns the values entered for the questions to the

Output window in Visual Studio with the help of a helper method that is already implemented in the

view model class. A real implementation of a command handler would typically do something like call

out to a service to save the results to a repository or retrieve data if it was a Load type of operation. It

might also cause navigation to another view to occur by calling to a navigation service.

Wiring Up the View Elements to the View Model

The bindings in the view elements point to the view model properties, as shown in the following table.

Note that these bindings are located in both the MainWindow view and in the QuestionnaireView view.

Element name Property Value

NameTextBox Text {Binding Path= Questionnaire.Name, Mode=TwoWay}

AgeTextBox Text {Binding Path=Questionnaire.Age, Mode=TwoWay}

Question1Response Text {Binding Path=Questionnaire.Quest, Mode=TwoWay}

ColorRun Foreground {Binding Questionnaire.FavoriteColor, TargetNullValue=Black}

Colors ItemsSource {Binding Path=AllColors}

Colors SelectedItem {Binding Questionnaire.FavoriteColor, Mode=TwoWay}

SubmitButton Command {Binding SubmitCommand}

ResetButton Command {Binding ResetCommand}

300

Creating the View and View Model and Hooking Them Up

There are several ways of hooking up the view model with the view. You can create the view model in

the view's code behind and set it in its DataContext property or set it declaratively in the view's Xaml

code. To instantiate the view model in XAML, the view model class must have a default constructor.

Another approach, is creating a component that can locate the corresponding view model and put it in

the DataContext automatically, this component is typically called View Model Locator.

Prism provides an implementation of the View Model Locator pattern, which is an attached property.

Open MainWindow.xaml and look for the code where the view model locator property is attached. The

attached property is shown in the last line of the following code.

XAML

<Window x:Class="BasicMVVMQuickstart_Desktop.Views.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:basicMvvmQuickstartDesktop="clr-namespace:BasicMVVMQuickstart_Desktop"

 xmlns:viewModel="clr-

namespace:Microsoft.Practices.Prism.Mvvm;assembly=Microsoft.Practices.Prism.Mvvm.Desk

top"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:views="clr-namespace:BasicMVVMQuickstart_Desktop.Views"

 mc:Ignorable="d"

 Title="Basic MVVM Quickstart"

 Height="350"

 Width="525"

 d:DataContext="{d:DesignInstance

basicMvvmQuickstartDesktop:QuestionnaireViewDesignViewModel,

IsDesignTimeCreatable=True}"

 viewModel:ViewModelLocator.AutoWireViewModel="True">

Prism's view model locator is an attached property that when set to true it will try to locate the view

model of the view, and then set the view's data context to an instance of the view model. To locate the

corresponding view model, the view model locator uses two approaches. First it will look for the view

model in a view name/view model registration mapping. If a registration is not found, it will fall back to a

convention-based approach, that will locate the view models, by replacing “.View” from the view

namespace with “.ViewModel” and appending ‘’ViewModel’’ to the view’s name. For more information

about ways to hook up views to view models; see Implementing the MVVM Pattern.

Adding Design-Time Support

When you use the view model locator, your view models are created at runtime. Therefore, when you

are designing your view, the view model is not yet constructed and you will not see the view model data

at design time.

301

To solve this situation, you can use the d:DataContext designer property and set it to a view model

created specifically for design time. This view model will be constructed only at design time, it is a

simplification on the real view model, and may contain mock data.

You can see how this property is used in the MainWindow page, in the following code.

XAML

d:DataContext="{d:DesignInstance

basicMvvmQuickstartDesktop:QuestionnaireViewDesignViewModel,

IsDesignTimeCreatable=True}"

Note that you need to specify the class that will be used as the DesignInstance, and then set the

IsDesignTimeCreatable property to true. The design view model class used as DesignInstance is a class

that must have a default constructor.

You can see how the design view model for the QuickStart is defined, in the following code:

C#

public class QuestionnaireViewDesignViewModel

{

 public QuestionnaireViewDesignViewModel()

 {

 this.QuestionnaireViewModel = new QuestionnaireViewModel();

 }

 public QuestionnaireViewModel QuestionnaireViewModel { get; set; }

}

This design view model just has to initialize the properties used in the view for binding and populate

them with mock data. As it is used only for design, it is not necessary to derive from BindableBase, nor

implement the INotifyPropertyChanged interface.

More Information

For more information about implementing the MVVM pattern, see the following topics:

 Implementing the MVVM Pattern

 Advanced MVVM Scenarios

302

Commanding QuickStart
The Commanding QuickStart sample demonstrates how to build a Windows Presentation Foundation

(WPF) application that uses delegate and composite commands provided by the Prism Library to handle

UI actions in a decoupled way. This is useful when implementing the Model-View-ViewModel (MVVM)

pattern. The Prism Library also provides an implementation of the ICommand interface.

Business Scenario

The Commanding QuickStart is based on a fictitious product ordering system. The main window

represents a subset of a larger system. In this window, the user can place customer orders and submit

them. The following illustration shows the QuickStart's main window.

Commanding QuickStart

Building and Running the QuickStart

This QuickStart requires Visual Studio 2012 or later and the .NET Framework 4.5.1 to run.

To build and run the QuickStart

1. In Visual Studio, open the solution file Quickstarts\Commanding\Commanding_Desktop.sln.

2. On the Build menu, click Rebuild Solution.

3. Press F5 to run the QuickStart.

303

Implementation Details

The QuickStart highlights the key implementation details of an application that uses commands. The

following illustration shows the key artifacts in the application.

Commanding QuickStart conceptual view

Note: The QuickStart contains a number of TODO comments to help navigate the important concepts in

the code. Use the Task List window in Visual Studio to see a list of these important areas of code. Make

sure you select Comments in the dropdown box. If you double-click an item in the list, the code file will

open in the appropriate line.

Delegate Commands

By using the DelegateCommand command, you can supply delegates for the Execute and CanExecute

methods. This means that when the Execute or CanExecute methods are invoked on the command, the

delegates you supplied are invoked.

In the Commanding QuickStart, the Save button on each order form is associated to a delegate

command. The delegates for the Execute and CanExecute methods are the Save and CanSave methods

of the OrderViewModel class, respectively (this class is the view model for an order; for the class

definition, see the file Commanding.Modules.Order.Desktop\ViewModels\OrderViewModel.cs).

The following code shows the constructor of the OrderViewModel class. In the method body, a delegate

command named SaveOrderCommand is created—it passes delegates for the Save and CanSave

methods as parameters.

C#

public OrderViewModel(Services.Order order)

{

 _order = order;

 //TODO: 01 - Each Order defines a Save command.

 this.SaveOrderCommand = new DelegateCommand<object>(this.Save, this.CanSave);

304

 // Track all property changes so we can validate.

 this.PropertyChanged += this.OnPropertyChanged;

 this.Validate();

}

The following code shows the implementation of the Save and CanSave methods.

C#

private bool CanSave(object arg)

{

 //TODO: 02 - The Order Save command is enabled only when all order data is valid.

 // Can only save when there are no errors and

 // when the order quantity is greater than zero.

 return this.errors.Count == 0 && this.Quantity > 0;

}

private void Save(object obj)

{

 // Save the order here.

 Console.WriteLine(

 String.Format(CultureInfo.InvariantCulture, "{0} saved.", this.OrderName));

 // Notify that the order was saved.

 this.OnSaved(new DataEventArgs<OrderPresentationModel>(this));

}

The following code shows the OnPropertyChanged method implementation. This method is an event

handler for the PropertyChanged event, which gets raised whenever the user changes a value in the

order form. This method updates the order's total, validates the data, and raises the

CanExecuteChanged event of the SaveOrderCommand command to notify the command's invokers

about the state change.

C#

private void OnPropertyChanged(object sender, PropertyChangedEventArgs e)

{

 // Total is a calculated property based on price, quantity and shipping cost.

 // If any of these properties change, then notify the view.

 string propertyName = e.PropertyName;

 if (propertyName == "Price" || propertyName == "Quantity" || propertyName ==

"Shipping")

 {

 this.NotifyPropertyChanged("Total");

 }

 // Validate and update the enabled status of the SaveOrder

 // command whenever any property changes.

 this.Validate();

305

 this.SaveOrderCommand.RaiseCanExecuteChanged();

}

The following code, located in the file

Commanding.Modules.Order.Desktop\Views\OrdersEditorView.xaml, shows how the Save button is

bound to the SaveOrderCommand command.

XAML

<Button AutomationProperties.AutomationId="SaveButton" Grid.Row="6" Grid.Column="1"

Content="Save" Command="{Binding SaveOrderCommand}"></Button>

Composite Commands

A CompositeCommand is a command that has multiple child commands. A CompositeCommand is used

in the Commanding QuickStart for the Save All button on the main toolbar. When you click the Save All

button, the SaveAllOrdersCommand composite command executes, and in consequence, all its child

commands—SaveOrderCommand commands—execute for each pending order.

The SaveAllOrdersCommand command is a globally available command, and it is defined in the

OrdersCommands class (the class definition is located at

Commanding.Modules.Order.Desktop\OrdersCommands.cs). The following code shows the

implementation of the OrdersCommands static class.

C#

public static class OrdersCommands

{

 public static CompositeCommand SaveAllOrdersCommand = new CompositeCommand();

}

The following code, extracted from the file

Commanding.Modules.Order.Desktop\ViewModels\OrdersEditorViewModel.cs, shows how child

commands are registered with the SaveAllOrdersCommand command. In this case, a proxy class is used

to access the command. For more information, see "Proxy Class for Global Commands" later in this

topic.

C#

private void PopulateOrders()

{

 _orders = new ObservableCollection<OrderPresentationModel>();

 foreach (Services.Order order in this.ordersRepository.GetOrdersToEdit())

 {

 // Wrap the Order object in a presentation model object.

 var orderPresentationModel = new OrderViewModel(order);

 _orders.Add(orderPresentationModel);

 // Subscribe to the Save event on the individual orders.

 orderPresentationModel.Saved += this.OrderSaved;

306

 //TODO: 04 - Each Order Save command is registered with the application's

SaveAll command.

 commandProxy.SaveAllOrdersCommand.RegisterCommand(

orderPresentationModel.SaveOrderCommand);

 }

}

When an order is saved, the SaveOrderCommand child command for that particular order must be

unregistered. The following code shows how this is done in the implementation of the OrderSaved

event handler, which executes when an order is saved.

C#

private void OrderSaved(object sender, DataEventArgs<OrderViewModel> e)

{

 if (e != null && e.Value != null)

 {

 OrderViewModel order = e.Value;

 if (this.Orders.Contains(order))

 {

 order.Saved -= this.OrderSaved;

this.commandProxy.SaveAllOrdersCommand.UnregisterCommand(order.SaveOrderCommand);

 this.Orders.Remove(order);

 }

 }

}

The following XAML markup code shows how the SaveAllOrdersCommand command is bound to the

SaveAllToolBarButton button in the toolbar. This code is located at

Commanding.Modules.Order.Desktop\OrdersToolBar.xaml.

XAML

<ToolBar>

 <Button AutomationProperties.AutomationId="SaveAllToolBarButton" Command="{x:Static

inf:OrdersCommands.SaveAllOrdersCommand}">Save All Orders</Button>

 <Separator />

</ToolBar>

Proxy Class for Global Commands

To create a globally available command, you typically create a static instance of a CompositeCommand

class and expose it publicly through a static class. This approach is straightforward, because you can

access the command instance directly from your code. However, this approach makes your classes that

use the command hard to test in isolation, because your classes are tightly coupled to the command.

When testability is a concern in an application, a proxy class can be used to access global commands. A

proxy class can be easily replaced with mock implementations when writing unit tests.

The Commanding QuickStart implements a proxy class named OrdersCommandProxy to encapsulate

the access to the SaveAllOrdersCommand (the class definition is located at

307

Commanding.Modules.Order.Desktop\OrdersCommands.cs). The class, shown in the following code,

implements a public property to return the SaveAllOrdersCommands command instance defined in the

OrdersCommands class.

C#

public class OrdersCommandProxy

{

 public virtual CompositeCommand SaveAllOrdersCommands

 {

 get { return OrdersCommands.SaveAllOrdersCommand; }

 }

}

In the preceding code, note that the SaveAllOrdersCommands property can be overwritten in a mock

class to return a mock command.

For more information about creating globally available commands, see Binding to a Globally Available

Command in Communicating Between Loosely Coupled Components.

Acceptance Tests

The Commanding QuickStart includes a separate solution that includes acceptance tests. The acceptance

tests describe how the application should perform when you follow a series of steps; you can use the

acceptance tests to explore the functional behavior of the application in a variety of scenarios.

To run the Commanding QuickStart acceptance tests

1. In Visual Studio, open the solution file

QuickStarts\Commanding\Commanding.Tests.AcceptanceTest\Commanding.Tests.AcceptanceT

est.sln.

2. Build the solution.

3. Open Test Explorer.

4. After building the solution, Visual Studio finds the tests. Click the Run All button to run the

acceptance tests.

You should see the QuickStart window and the tests interact with the application. At the end of the test

run, you should see that all tests have passed.

More Information

For more information about commands, see the following topics:

 Implementing the MVVM Pattern

 Communicating Between Loosely Coupled Components

308

UI Composition QuickStart
The UI Composition QuickStart sample illustrates how to use both the view discovery and view injection

approaches for user interface (UI) composition with the Prism Library for WPF. When using view

discovery, modules can register views (or presentation models) against a particular named location.

When that location is displayed at run time, any views that have been registered for that location will be

automatically created and displayed within it. In the view injection approach, views are

programmatically added or removed from a named location by the modules that manage them. To

enable this, the application contains a registry of named locations in the UI, and a module can look up

one of the locations using the registry and then programmatically inject views into it.

Business Scenario

The UI Composition QuickStart is based on a fictitious resource management system. The main window

represents a subset of a larger system. In this window, the user can review detailed information about

employees of a company, update their contact information, and view the projects each employee is

assigned to. The following illustration shows the QuickStart's main window.

UI Composition QuickStart

Building and Running the QuickStart

This QuickStart requires Visual Studio 2012 or later and the .NET Framework 4.5.1 to run.

309

To build and run the QuickStart

1. In Visual Studio, open the solution file QuickStarts\UIComposition_Desktop

\UICompositionQuickstart_Desktop.sln.

2. In the Build menu, click Rebuild Solution.

3. Press F5 to run the QuickStart.

Implementation Notes

The QuickStart highlights the key implementation details of an application that uses regions, using both

the view discovery and view injection approaches to composition. The following illustration shows the

key artifacts in the application.

UI Composition QuickStart conceptual view

The following artifacts are illustrated in the preceding figure:

 Shell view. This is the application's main window. This window contains both the left and main

regions.

 Left region. This region contains the view that includes the list of employees, through view

discovery.

 Employees List view. This view displays a list of employees.

310

 Main region. This region has the employee summary view injected into it.

 Employee Summary view. This view displays information for an employee and contains a tab

region. It is added to the application via view injection.

 Tab region. The tab region resides in the employee summary view, and has the employee

details and projects views added via view discovery.

 Employee Details view. This view shows the details about the selected employee.

 Employees Projects view. This view displays the list of projects an employee is working on.

Note: The QuickStart contains TODO comments to help navigate the important concepts in the code.

Use the Task List window in Visual Studio to see a list of these important areas of code. Make sure that

Comments is selected in the dropdown box of the Task List window. If you double-click an item in the

list, the code file will open in the appropriate line.

Composing the User Interface

The UI Composition QuickStart shows both view discovery and view injection in one application.

The regions are set up in XAML code:

 The Shell defines the two regions LeftRegion and MainRegion in ShellView.xaml.

 The EmployeeSummaryView contains a Tab control, which defines a region named TabRegion

in EmployeeSummaryView.xaml.

 The TabRegion defines a RegionContext, which provides a reference to the currently selected

employee to all child views, also in EmployeeSummaryView.xaml.

The application determines what views to display in the following manner:

1. The OnStartup method in App.xaml.cs creates and runs the QuickStart's bootstrapper.

2. In the bootstrapper's ConfigureModuleCatalog method, the module catalog is loaded. This

module catalog defines a single EmployeeModule implemented in the ModuleInit class that is

loaded by Prism as soon as it is available.

3. In the EmployeeModule, the ModuleInit class's Initialize method is called by the bootstrapper.

This method does a variety of things, including registering an IEmployeeDataService (a

repository of employee data) and creating an instance of the MainRegionController. Using

lambda expressions, the Initialize method also registers an EmployeeListView with the

LeftRegion, and both an EmployeeDetailView and EmployeeProjectsView with the TabRegion

as an example of view discovery. At this point, these regions have not been created.

4. A bit later in the bootstrapping process, the bootstrapper's CreateShell method is called,

creating an instance of the ShellView, which includes the LeftRegion and MainRegion.

311

5. In the process of creating the LeftRegion, Prism determines that a view has been registered

with the region and uses the registered lambda expression to create an instance of the

EmployeeListView. This view is activated and displayed.

6. Because there are no views registered with the MainRegion, nothing is shown here.

When an employee is selected from the EmployeesListView, the following occurs:

 The MainRegionController's EmployeeSelected method is called because of an event

subscription to the EmployeeSelectedEvent through the EventAggregator. This event is

published by the SelectedEmployeeChanged method in the EmployeeListViewModel class.

In the EmployeeSelected method, the following occurs:

1. The selected employee is retrieved from the EmployeeDataService.

2. The MainRegion is retrieved from the RegionManager, and the method attempts to find a view

named EmployeeSummaryView. Because this view has not been created, it retrieves an

instance from the container and explicitly injects the view into the MainRegion, showing view

injection.

3. When the EmployeeSummaryView is created, the TabRegion it contains is also created. This

region has a RegionContext bound to the CurrentEmployee (in EmployeeViewSummary.xaml).

When this happens, several other things occur:

a. Prism determines that the TabRegion has multiple views registered with it, and it

creates instances of the EmployeeDetailsView and EmployeeProjectsView and

displays them, showing another example of view discovery. Both of these views

subscribe to the RegionContext's PropertyChanged event.

b. The binding on the RegionContext is updated, and the PropertyChanged event is

triggered.

c. Both the EmployeeDetailsView and EmployeeProjectsView are notified of the

RegionContext property change and the associated view models are updated,

causing the current employee to be displayed.

Applying View Discovery and View Injection

The view discovery approach allows pulling views inside regions, based on a registry where modules

store a collection of pairs (such as views type, region name). This registry is named the

RegionViewRegistry. When a region is created, it looks for all the view types associated with its region

name in the RegionViewRegistry. The matching views are created and pulled into the region. When

using this approach, the region instance does not have to be found explicitly by name to create the view

and inject it into the region.

312

Typically, views that host other views have context that needs to be available to its child views. For

example, if you have a view to select an employee to show its details, dynamically loaded child views

probably need to know which employee is currently selected.

The view injection approach allows pushing views into a region that already exists. This requires creating

an instance of the view, getting a reference to the region, and associating the two in the

RegionViewRegistry using the region's Add method.

Typically, view injection is used when explicit control of the views in a region is necessary or when the

view to display is determined algorithmically.

View Discovery Approach vs. View Injection Approach

The following are some aspects of the QuickStart that illustrate points to consider when deciding which

approach you should use in different situations:

 The view discovery model does not have timing issues. For example, a module can try to add a

view to a region that might not be created yet.

 It is simpler to show multiple instances of the same region because you do not need to know

about scoped region managers to find the specific region instance to inject your views into.

 You could query the RegionViewRegistry class using the GetContents method to get all the

views associated with a particular region. For example, this list can be bound to a menu.

In view discovery composition, a region is populated as soon as it gets added to the visual tree,

so you have less control over when views are added to a particular region. If you want to load a

view at a certain time, it will be difficult to achieve this with view discovery composition.

 You should not use view discovery composition if you need scoped region managers, such as to

have multiple instances of the same view that contains a region at the same time. Because a

region gets registered with a region manager, the name has to be unique.

Registering Views

The RegionViewRegistry class in the Prism Library is responsible of registering and retrieving the (region

name, view type) pairs. Typically, application modules register their views in their Initialize method

using a RegionViewRegistry instance. The following code example shows the registration of the

EmployeeListView with the LeftRegion in the Initialize method of the ModuleInit class in the

EmployeeModule module.

C#

this.regionManager.RegisterViewWithRegion(

 RegionNames.LeftRegion,

 () => this.container.Resolve<EmployeeListView>());

The RegisterViewWithRegion method of the Prism Library's RegionViewRegistry class is used to register

the region name with its associated view in the registry. There are two ways to access this method:

313

 From the RegionViewRegistry directly.

 From a RegionManager instance, because this is an extension method of that class for easy

access.

Note: This extension method is on the RegionManager for easy access, but it does not register

the view with that instance of the region manager only. When a region with the specified

name is created, regardless of which scoped region manager is registered, the view will be

pulled into it.

The RegisterViewWithRegion method has two overloads:

 RegisterViewWithRegion(string regionName, Type viewType);

 RegisterViewWithRegion(string regionName, Func<object> getContentDelegate);

If you want to register a view directly, use the first overload. If you want to provide a delegate, such as

to resolve the presenter that is responsible for creating the view in a "presenter first" or "ViewModel-

first" approach, as seen in the earlier Initialize method, use the second overload.

When a region is created, it looks for its associated views in the registry. The matching views are pulled

and loaded inside the region. If the first overload is used, a new instance of the view is created using the

Service Locator.

Sharing Context Between Views

The RegionContext attached property is useful when you want to share context from a parent view that

hosts a region to its child views. This attached property can hold any simple or complex object.

In the UI Composition QuickStart, the RegionContext is used to pass the selected employee ID to the

ProjectListView view to obtain the projects the selected employee worked on.

The following code, located in the EmployeesSummaryView.xaml file (in the Views directory of the

UIComposition.EmployeeModule project), shows how the RegionContext attached property is used in

XAML.

XAML

<TabControl Grid.Row="1"

 AutomationProperties.AutomationId="EmployeeSummaryTabControl"

 Margin="8"

 regions:RegionManager.RegionName="TabRegion"

 regions:RegionManager.RegionContext="{Binding CurrentEmployee}"

 Width="Auto"

 Height="Auto"

 HorizontalAlignment="Stretch"

 ItemContainerStyle="{StaticResource HeaderStyle}">

</TabControl>

314

To obtain the RegionContext in a view, the GetObservableContext static method of the RegionContext

class is used; it passes the view as a parameter and accesses its Value property, as shown in the

following code example.

C#

// EmployeeDetailsView.xaml.cs

employeeDetailsViewModel.CurrentEmployee =

 RegionContext.GetObservableContext(this).Value as Employee;

The value of the RegionContext can be changed by simply assigning a new value to its Value property.

You can also subscribe to an event to detect when the RegionContext property changes, as shown in the

following code example, which subscribes its PropertyChanged event to the RegionContextChanged

event handler.

C#

// EmployeeDetailsView.xaml.cs

RegionContext.GetObservableContext(this).PropertyChanged += (s, e)

 =>

 employeeDetailsViewModel.CurrentEmployee =

 RegionContext.GetObservableContext(this).Value

 as Employee;

Note: The DataContext property is not used to share context because the DataContext property is

typically used for storing the view model of the view.

Acceptance Tests

The UI Composition QuickStart includes a separate solution that includes acceptance tests. The

acceptance tests describe how the application should perform when you follow a series of steps; you

can use the acceptance tests to explore the functional behavior of the application in a variety of

scenarios.

To run the UI Composition QuickStart acceptance tests

1. In Visual Studio, open the solution file

QuickStarts\UIComposition_Desktop\UIComposition.Tests.AcceptanceTest\UIComposition.Test

s.AcceptanceTest.sln.

2. Build the Solution.

3. Open Test Explorer.

4. After building the solution, Visual Studio finds the tests. Click the Run All button to run the

acceptance tests.

Outcome

You should see the QuickStart window and the tests automatically interact with the application. At the

end of the test pass, you should see that all tests have passed.

315

More Information

For more information about UI composition, see Composing the User Interface.

State-Based Navigation QuickStart
The State-Based Navigation QuickStart sample demonstrates navigation using the WPF Visual State

Manager (VSM) with the Model-View-ViewModel (MVVM) pattern and the Prism Library. This approach

uses the Visual State Manager to define the different application states that the application has, define

animations for both the states and the transitions between states; the animations associated to states

are active while the state is active for the duration of the specified timeline.

One important aspect of application design is getting the navigation right. To define the navigation of

the application, you need to design the screens, interaction, and the visual appearance of the

application.

Business Scenario

The main window of the State-Based Navigation QuickStart represents a subset of a chat application.

This window shows the list of contacts of the user. The user can alternate among different views of their

contacts: list, icons, or contact detail. The messages from the user's contacts are displayed as they

arrive. In the detail view of a contact, you can send a message to that contact. The following illustration

shows the QuickStart main window.

State-Based Navigation QuickStart user interface

316

Building and Running the QuickStart

The QuickStart ships as source code—this means you must compile it before you run it. This QuickStart

requires Microsoft Visual Studio 2012 or later and the .NET Framework 4.5.1.

To build and run the State-based Navigation QuickStart

1. In Visual Studio, open the solution file Quickstarts\State-Based Navigation_Desktop\State-

Based Navigation.sln.

2. In the Build menu, click Rebuild Solution.

3. Press F5 to run the QuickStart.

Implementation Details

The QuickStart highlights the key elements and considerations to implement an approach for navigation

that uses the VSM. For more information about the VSM, see VisualStateManager Class on MSDN. In this

QuickStart, most of the UI is in a few classes (the ChatView and SendMessagePopupView classes), and

the visual states determine what is shown and how to go from one state to another. Some states change

visibility of elements within the view, some states change enablement, and some states activate

components. This section describes the key artifacts of the QuickStart, which are shown in the following

illustration.

http://msdn.microsoft.com/en-us/library/system.windows.visualstatemanager.aspx

317

State-Based Navigation QuickStart conceptual view

Notice that the Extensible Application Markup Language (XAML) file contains several states (you can

compare states to views) grouped in visual state groups. There can be only one active state in each

group. Therefore, the state of the application is a combination of four visual states (one of each visual

state group). The different transitions are driven by the view. In the preceding illustration, the

conditions represented over each transition arrow are the ones that trigger the transition from one

state to another. The definition of the animations associated to the transitions and the behaviors that

trigger them is also defined in the view's XAML file.

Note: In the QuickStart, there are only two states per VisualStateGroup. This is not mandatory;

however, if you have more states, the transition logic could be more complex.

318

The following illustration shows states of the application and what visual states are active to create

them.

Application states and their active visual states

Logical Views (States)

Typically, the logical views are a form of a UI element that lets users interact with the application. In this

application, the logical views are really just states to which the single physical view transitions. A state

can involve a single user control or any complex set of user controls. The State-Based Navigation

QuickStart has the following states: The list view, the icons view, and the contact view. Additionally, the

QuickStart has the send message child view.

Most of these logical view definitions are contained in the Views/ChatViews.xaml file. The following

code shows the different logical views within the XAML file.

XAML

<ContentControl x:Name="MainPane"

 HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch"

 Grid.Row="2">

 <Grid>

 ...

 <!-- Buttons (shared between all views) -->

 <Grid x:Name="ButtonsPanel" Grid.Row="0">

 ...

 <RadioButton x:Name="ShowAsListButton" ... />

 <RadioButton x:Name="ShowAsIconsButton" ... />

 <Button x:Name="ShowDetailsButton" ... />

 </Grid>

 <!-- Contacts view-->

 <ListBox x:Name="Contacts"

 ItemsSource="{Binding ContactsView}"

 Style="{Binding Source={StaticResource ContactsList}}"

 HorizontalAlignment="Stretch" VerticalAlignment="Stretch"

Grid.Row="2" Grid.RowSpan="3" Visibility="Collapsed"/>

319

 <!-- Avatars view-->

 <ListBox x:Name="Avatars"

 ItemsSource="{Binding ContactsView}"

 Style="{Binding Source={StaticResource AvatarsList}}"

 HorizontalAlignment="Stretch" VerticalAlignment="Stretch"

Grid.Row="2" Grid.RowSpan="3" Visibility="Collapsed"

 AutomationProperties.AutomationId="AvatarsView"/>

 <!-- Details view -->

 <Grid x:Name="Details"

 Background="White" Visibility="Collapsed"

 HorizontalAlignment="Stretch" VerticalAlignment="Stretch"

Grid.RowSpan="5">

 ...

 </Grid>

 </Grid>

</ContentControl>

Notice that the views have their Visibility property set to Collapsed. This means that the controls that

compose each view will not be shown and no space will be reserved for them. In this way, navigation

between the different views will consist of all views initially collapsed, and navigating into the associated

visual state will trigger an animation that will change their visibility to Visible (and the animation for the

previous state will be stopped, resulting in the visibility for its associated logical view to be reset to the

original Collapsed value).

Transitions Between Visual States

Transitions determine how to go from one view to another. The DataStateBehavior behavior is used to

switch between two visual states based on whether a conditional property binding evaluates to True or

to False. With the DataStateBehavior behavior, you can compare two values. One value comes from a

binding. You can declare the other value to compare to explicitly. If the two values are equal, the visual

state specified for True is activated. If the two values are not equal, the visual state specified for False is

activated. The following code shows the behaviors defined in the chat view.

XAML

<i:Interaction.Behaviors>

 <ei:DataStateBehavior Binding="{Binding ShowDetails}"

 Value="True"

 TrueState="ShowDetails" FalseState="ShowContacts"/>

 <ei:DataStateBehavior Binding="{Binding IsChecked, ElementName=ShowAsListButton}"

 Value="True"

 TrueState="ShowAsList" FalseState="ShowAsIcons"/>

 <ei:DataStateBehavior Binding="{Binding ConnectionStatus}"

 Value="Available"

 TrueState="Available" FalseState="Unavailable"/>

 <ei:DataStateBehavior Binding="{Binding SendingMessage}"

 Value="True"

http://msdn.microsoft.com/en-us/library/ff723952(Expression.40).aspx

320

 TrueState="SendingMessage"

FalseState="NotSendingMessage"/>

</i:Interaction.Behaviors>

Notice that depending on the value of the bound property, different states are shown. Apart from the

contact list, icons, and details view, there are states for enabling or disabling the application (when the

service is not available) and for activating or deactivating the busy indicator (when the application is

busy).

Typically, an animation is triggered to make the transition smooth from one state to another. When

navigating to a different state, the source view is hidden and the target one is shown. The animation

associated to states is permanent. The following code example shows the flipping animation that occurs

during a transition. The animation associated to transitions is transient.

XAML

<VisualStateGroup x:Name="VisualizationStates">

 <VisualStateGroup.Transitions>

 <VisualTransition From="ShowAsIcons" To="ShowAsList">

 <Storyboard SpeedRatio="2">

 ...

 <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="Angle"

Storyboard.TargetName="rotate">

 <EasingDoubleKeyFrame KeyTime="0:0:0" Value="360"/>

 <EasingDoubleKeyFrame KeyTime="0:0:0.5" Value="270"/>

 <EasingDoubleKeyFrame KeyTime="0:0:0.5" Value="90"/>

 <EasingDoubleKeyFrame KeyTime="0:0:1" Value="0"/>

 </DoubleAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames

Storyboard.TargetProperty="(FrameworkElement.Visibility)"

Storyboard.TargetName="Avatars">

 <DiscreteObjectKeyFrame KeyTime="0:0:0.5" >

 <DiscreteObjectKeyFrame.Value>

 <Visibility>Collapsed</Visibility>

 </DiscreteObjectKeyFrame.Value>

 </DiscreteObjectKeyFrame>

 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames

Storyboard.TargetProperty="(FrameworkElement.Visibility)"

Storyboard.TargetName="Contacts">

 <DiscreteObjectKeyFrame KeyTime="0:0:0.5">

 <DiscreteObjectKeyFrame.Value>

 <Visibility>Visible</Visibility>

 </DiscreteObjectKeyFrame.Value>

 </DiscreteObjectKeyFrame>

321

 </ObjectAnimationUsingKeyFrames>

 </Storyboard>

 </VisualTransition>

 <VisualTransition From="ShowAsList" To="ShowAsIcons" ... />

 </VisualStateGroup.Transitions>

 ...

</VisualStateGroup>

The states are grouped in different visual state groups. Only one state in a state group can be displayed

at a time. For that reason, the ShowAsList state (contact list view), and the ShowAsIcon state (icons

view) are mutually exclusive. The ShowingDetails and NotShowingDetails states belong to a different

group; therefore, the application can be on the ShowAsIcons and ShowingDetails state at the same

time. In this case, the ShowingDetails state goes to the foreground and overlaps the icons view; when

transitioning to the NotShowingDetails states, the details view is collapsed, and the previous view, icons

view, is shown. In this way, you do not have to store the previous state for returning because it is active

in the background.

Interaction Requests

Interaction requests provide an abstract approach for view models to request interaction with the user.

For more information about interaction requests, see Using Interaction Request Objects in Advanced

MVVM Scenarios.

The QuickStart uses interaction requests for two different situations: receiving and sending messages:

 Receiving messages. The code in the view models create the objects that support the

interactions (by raising an event with a payload to communicate with the view) and expose

them through properties so they can be consumed by views. In the following code example

from the ChatViewModel class, notice that the ShowReceivedMessageRequest property is

defined and then used on the OnMessageReceived event handler to raise the Message

instance.

C#

public IInteractionRequest ShowReceivedMessageRequest

{

 get { return this.showReceivedMessageRequest; }

}

private void OnMessageReceived(object sender, MessageReceivedEventArgs a)

{

 this.showReceivedMessageRequest.Raise(a.Message);

}

322

On the view side, it should detect an interaction request and then present an appropriate

display for the request. The custom InteractionRequestTrigger automatically subscribes to the

Raised event of the bound IInteractionRequest. The following code example, located in the

ChatView.xaml file, shows this.

C#

<prism:InteractionRequestTrigger SourceObject="{Binding

ShowReceivedMessageRequest}">

 <cb:ShowNotificationAction TargetName="NotificationList" />

</prism:InteractionRequestTrigger>

In the State-Based Navigation QuickStart, the custom ShowNotificationAction class is used to

temporarily add the received message to a collection and sets this collection as the DataContext

of a pop-up window. In this manner, the messages will be displayed in a non-modal window for

a determined amount of time before disappearing.

 Sending messages. To display the send message window, the SendMessageRequest interaction

request is used. The Raise method of this interaction request is invoked in the SendMessage

method shown in the following code example from the ChatViewModel.

C#

public IInteractionRequest SendMessageRequest

{

 get { return this.sendMessageRequest; }

}

public void SendMessage()

{

 var contact = this.CurrentContact;

 SendMessageViewModel viewModel = new SendMessageViewModel();

 viewModel.Title = "Send message to " + contact.Name;

 this.sendMessageRequest.Raise(

 viewModel,

 sendMessage =>

 {

 if (sendMessage.Confirmed)

 {

 this.SendingMessage = true;

 this.chatService.SendMessage(

 contact,

 sendMessage.Message,

 result =>

 {

 this.SendingMessage = false;

 });

 }

323

 });

}

On the view side, when the interaction request is detected, the PopupWindowAction displays

the SendMessagePopView pop-up window, as shown in the following code example from the

ChatView.xaml file.

C#

<prism:InteractionRequestTrigger SourceObject="{Binding SendMessageRequest}">

 <prism:PopupWindowAction IsModal="True">

 <prism:PopupWindowAction.WindowContent>

 <vs:SendMessagePopupView />

 </prism: PopupWindowAction.WindowContent>

 </prism:PopupWindowAction>

</prism:InteractionRequestTrigger>

Note that the IsModal property of the PopupWindowAction action is set to true to specify that

this interaction should be modal. To specify the view that will be displayed when the interaction

occurs, use the WindowContent property.

Chat Service

The chat service is used for retrieving the contacts and their data; it is also used for sending and

receiving messages from other users. The following code example shows the service interface.

C#

public interface IChatService

{

 event EventHandler ConnectionStatusChanged;

 event EventHandler<MessageReceivedEventArgs> MessageReceived;

 bool Connected { get; set; }

 void GetContacts(Action<IOperationResult<IEnumerable<Contact>>> callback);

 void SendMessage(Contact contact, string message, Action<IOperationResult>

callback);

}

The service contains the following members:

 The Connected property. This property stores the state of the service:

Connected/Disconnected.

 The ConnectionStatusChanged event handler. This event handler reacts to changes in the

connection status.

 The MessageReceived event handler. This event handler reacts when a new message is

received.

 The GetContacts method. This method retrieves the contacts of the user.

 The SendMessage method. This method sends messages to the users' contacts.

324

The service has a timer to simulate incoming messages from other users. On every tick of the timer,

there is a 33 percent chance that a message will be received based on a random draw. Additionally, the

timer is also used to simulate connection drops; however, the chance of this happening is quite low

(1/150). You can see this in the following code example that shows the OnTimerTick event handler.

C#

private void OnTimerTick(object sender, EventArgs args)

{

 if (this.Connected)

 {

 var coinToss = this.random.Next(3);

 if (coinToss == 0)

 {

 this.ReceiveMessage(

this.GetRandomMessage(this.random.Next(receivedMessages.Length)),

this.GetRandomContact(this.random.Next(this.contacts.Count)));

 }

 else

 {

 coinToss = this.random.Next(150);

 if (coinToss == 0)

 {

 this.Connected = false;

 }

 }

 }

}

Custom Behaviors

Behaviors are a self-contained unit of functionality. There are two types of behaviors:

 Behaviors that do not have the concept of invocation; instead, it acts more like an add-on to an

object.

 Triggers and actions that are closer to the invocation model.

Additional functionality can be easily attached to an object in the XAML or through the designer. They

can react to handle an event or a trigger in the UI. The following behaviors are used and defined in the

QuickStart (located in the Infrastructure/Behaviors folder):

 ShowNotificationAction. This custom behavior allows a view model to push notifications into a

target element in the UI. In the QuickStart, it is used to display the chat messages that are

received by the user in the lower-right corner of the UI.

325

The following behaviors are part of the Prism Library Prism.Interactivity project:

 PopupWindowAction. This concrete implementation displays a specified window or the default

one configured with a data template.

Acceptance Tests

The State-Based Navigation QuickStart includes a separate solution that includes acceptance tests. The

acceptance tests describe how the application should perform when you follow a series of steps; you

can use the acceptance tests to explore the functional behavior of the application in a variety of

scenarios.

To run the State-Based Navigation QuickStart acceptance tests

1. In Visual Studio, open the solution file Quickstarts\State-Based Navigation_Desktop\State-

Based Navigation.Tests.AcceptanceTest\State-Based Navigation.Tests.AcceptanceTest.sln.

2. Build the Solution.

3. Open Test Explorer.

4. After building the solution, Visual Studio finds the tests. Click the Run All button to run the

acceptance tests.

Outcome

You should see the QuickStart window and the tests automatically interact with the application. At the

end of the test run, you should see that all tests have passed.

More Information

To learn about other navigation topics included with Prism, see the following topics:

 Navigation

 View-Switching Navigation QuickStart

326

View-Switching Navigation QuickStart
The View-Switching Navigation QuickStart sample demonstrates how to use the Prism Region Navigation

API with the Model-View-ViewModel (MVVM) pattern. The Prism Region Navigation utilizes a Uniform

Resource Identifier (URI) approach to switch between views. The QuickStart simulates the navigation of

a simple email, contacts, and calendar application. The left region provides navigation to each of the

main views. The views demonstrate backward navigation and asynchronous dialog interactions.

The View-Switching Navigation QuickStart is more complex than a typical QuickStart because it

demonstrates multiple navigation scenarios. Navigation supports just-in-time view creation, and

therefore, interacts with the dependency injection container. Additionally, to be compatible with the

Model-View-ViewModel (MVVM) approach, navigation interacts with views and with view models (via

the DataContext property).

This QuickStart demonstrates the following navigation capabilities:

 Navigating to a view in a region

 Navigating to a view in a region contained in another view (nested navigation)

 Navigation journal support

 Just-in-time view creation

 Passing contextual information when navigating to a view

 Views and view models participating in navigation, including confirming or canceling navigation

 Using navigation as part of an application built through modularity and user interface (UI)

composition

Business Scenario

The main window of the View-Switching Navigation QuickStart shows a simple email client application.

In this window, the navigation pane is located on the left of the screen and provides direct access to the

application's features. These features are Mail, Calendar, and Contacts (which has the Details and the

Avatars view). In the main pane, the selected feature is shown. Notice that the Mail feature is selected

when the application starts. This is coordinated by the shell when the Email module is loaded.

Because the modules do not have dependencies between them, they are loaded and initialized in

random order. To make sure that the items in the left pane are ordered, a ViewSortHint attribute is

applied to each of the views. For more information about the ViewSortHint attribute, see The Contacts

Module (Navigation to a Nested View) section.

The following illustration shows the QuickStart main window.

327

View-Switching Navigation QuickStart user interface

Note: The UI of the QuickStart has information icons. You can click them to display or hide information

and implementation notes about the different pieces of the QuickStart.

Building and Running the QuickStart

This QuickStart requires Microsoft Visual Studio 2012 or later and the .NET Framework 4.5.1.

To build and run the View-Switching Navigation QuickStart

1. In Visual Studio, open the solution file Quickstarts\View-Switching Navigation_Desktop\

ViewSwitchingNavigation.sln.

2. In the Build menu, click Rebuild Solution.

3. Press F5 to run the QuickStart.

Implementation Details

The QuickStart highlights the key elements that you should consider when you use the navigation

features provided by the Prism Library to implement navigation in a composite application. In this

approach, the user interface is divided among different modules. Each module populates the navigation

region on the left side, and participates in navigation to coordinate the view in the main content region

on the right side. This section describes the key artifacts of the QuickStart. The following figure shows

the workflow that occurs when a user navigates from one location to another.

328

Prism Region Navigation Workflow

Navigation Support in the Prism Library

The Prism Library supports navigation through the use of regions. Navigation classes and components

are located in the Microsoft.Practices.Prism.Regions namespace. Each region implements the

INavigateAsync interface, as shown in the following code example.

329

C#

public interface IRegion : INavigateAsync, INotifyPropertyChanged

{

 ...

}

The IRegion interface provides the NavigationService property to allow navigation between regions.

Each region has its own NavigationService, and each NavigationService has its own Journal, or record of

the current, past, and future navigation within the region. The NavigationService returns an

IRegionNavigationService. The IRegionNavigationService interface is shown in the following code

example.

C#

public interface IRegionNavigationService : INavigateAsync

{

 IRegion Region { get; set; }

 IRegionNavigationJournal Journal { get; }

 event EventHandler<RegionNavigationEventArgs> Navigating;

 event EventHandler<RegionNavigationEventArgs> Navigated;

 event EventHandler<RegionNavigationFailedEventArgs> NavigationFailed;

}

The NavigationService has a reference to the region to which it belongs and a reference to the

navigation journal. Additionally, it contains the Navigating and Navigated events. The Navigating event

is triggered during navigation to a page, and the Navigated event is raised when the region is navigated

to content.

The method from the service that is used to navigate is RequestNavigate. This method requires the

navigation target and a callback that will be invoked when the navigation is complete.

This method initiates the workflow described in the preceding figure, where it calls the DoNavigate

method of the service with the source and the callback. It then calls

RequestCanNavigateOnCurrentlyActiveViews. The callback is invoked when navigation ends, whether

or not the navigation is successful. After the callback, the active views and their view models are queried

to determine if they implement the IConfirmNavigationRequest interface. If they implement this

interface, the user will be prompted when he or she navigates away from that view. Finally, the

ExecuteNavigation method is invoked. This method is shown in in the following code example.

C#

private void ExecuteNavigation(NavigationContext navigationContext, object[]

activeViews, Action<NavigationResult> navigationCallback)

{

330

 try

 {

 NotifyActiveViewsNavigatingFrom(navigationContext, activeViews);

 object view = this.regionNavigationContentLoader.LoadContent(this.Region,

navigationContext);

 // Raise the navigating event just before activing the view.

 this.RaiseNavigating(navigationContext);

 this.Region.Activate(view);

 // Update the navigation journal before notifying others of navigaton

 IRegionNavigationJournalEntry journalEntry =

this.serviceLocator.GetInstance<IRegionNavigationJournalEntry>();

 journalEntry.Uri = navigationContext.Uri;

 this.journal.RecordNavigation(journalEntry);

 // The view can be informed of navigation

 InvokeOnNavigationAwareElement(view, (n) =>

n.OnNavigatedTo(navigationContext));

 navigationCallback(new NavigationResult(navigationContext, true));

 // Raise the navigated event when navigation is completed.

 this.RaiseNavigated(navigationContext);

 }

 catch (Exception e)

 {

 this.NotifyNavigationFailed(navigationContext, navigationCallback, e);

 }

}

The preceding method notifies the active views that the user is navigating away from them, acquires the

target view through the content loader, activates the target view, and then updates the journal. The

view and the view model are then informed that the user is navigating to them, the callback is invoked,

and the navigation completed event is raised.

The Journal

The journal is a stack that maintains the history of the navigated views. It stores the forward, current,

and backward history of visited pages. The RecordNavigation method is used for registering the current

view in the stack. The journal avoids adding a view to the stack if you are internally navigating the

journal views.

Note: It is important that you carefully define your application Uniform Resource Identifier (URI)

structure before you implement navigation.

331

Using the Prism Library for Navigation

This section describes how the QuickStart uses the Prism Library to demonstrate navigation. The Shell

view has two regions: the navigation region and the main region. You can see the region definition in the

following code located in the ViewSwitchingNavigation\Shell.xaml file.

XAML

<Grid x:Name="LayoutRoot"

 Background="{StaticResource MainBackground}">

 ...

 <Border Grid.Column="0" Grid.Row="2" Background="LightGray" MinWidth="250"

Margin="5,0,0,5">

 <ItemsControl x:Name="NavigationItemsControl"

prism:RegionManager.RegionName="MainNavigationRegion" Grid.Column="0" Margin="5"

Padding="5" />

 </Border>

 <ContentControl prism:RegionManager.RegionName="MainContentRegion"

 Grid.Column="1" Grid.Row="2" Margin="5,0,5,5"

HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch"/>

 </Grid>

</Grid>

Each QuickStart module (Mail, Calendar, and Contacts) registers the navigation buttons in the navigation

region, and the corresponding views (the ones that hold the specific feature) in the main content region.

The shell contains code that ensures that the email view is navigated to when the email module is

loaded. Because of this, the email view is shown when the application starts. The section of the

following code that appears in bold demonstrates this.

C#

[Export]

public partial class Shell : UserControl, IPartImportsSatisfiedNotification

{

 private const string EmailModuleName = "EmailModule";

 private static Uri InboxViewUri = new Uri("/InboxView", UriKind.Relative);

 public Shell()

 {

 InitializeComponent();

 }

 [Import(AllowRecomposition = false)]

 public IModuleManager ModuleManager;

 [Import(AllowRecomposition = false)]

 public IRegionManager RegionManager;

 public void OnImportsSatisfied()

332

 {

 this.ModuleManager.LoadModuleCompleted +=

 (s, e) =>

 {

 if (e.ModuleInfo.ModuleName == EmailModuleName)

 {

 this.RegionManager.RequestNavigate(

 RegionNames.MainContentRegion,

 InboxViewUri);

 }

 };

 }

}

The Calendar Module (Cross-Navigation to Other Modules)

The Calendar module shows cross-navigation to another area/module. The following code example

shows the Initialize method of the Calendar module.

C#

public void Initialize()

{

 this.regionManager.RegisterViewWithRegion(RegionNames.MainNavigationRegion,

typeof(CalendarNavigationItemView));

}

The Initialize method registers the CalendarNavigationItemView view, which is the button used for

displaying the calendar feature. The CalendarView view could have been registered here, but we are

using a different mechanism to make the view available to the region (through just-in-time creation

during navigation).

The event handler of this button uses the region manager to call the RequestNavigate method, passing

the name of the region, and the URI to navigate to, as shown in the following code example.

C#

private void Button_Click(object sender, RoutedEventArgs e)

{

 this.regionManager.RequestNavigate(RegionNames.MainContentRegion,

calendarViewUri);

}

When the navigation is completed—that is, when calendar view is loaded in the main region and the

Navigated event is triggered—the button is checked to inform the user that the view displayed in the

main region is the calendar. This is shown in the following code example. Every module of the QuickStart

has similar code to perform these tasks.

C#

public void MainContentRegion_Navigated(object sender, RegionNavigationEventArgs e)

{

333

 this.UpdateNavigationButtonState(e.Uri);

}

private void UpdateNavigationButtonState(Uri uri)

{

 this.NavigateToCalendarRadioButton.IsChecked = (uri == calendarViewUri);

}

Because this QuickStart implements the MVVM pattern, the logic is located in the view model classes

(except for the navigation item views). You can construct URIs that use a query string to pass context to

a view or view model. For example, in the view model class of the Calendar view, when a user clicks a

meeting, a query string is used to identify the email message to display. You can see the building of the

URI and the request to navigate in the following code example.

C#

private void OpenMeetingEmail(Meeting meeting)

{

 var parameters = new NavigationParameters();

 parameters.Add(EmailIdName,

meeting.EmailId.ToString(GuidNumericFormatSpecifier));

 this.regionManager.RequestNavigate(RegionNames.MainContentRegion, new

Uri(EmailViewName + parameters, Urikind.Relative));

}

In the preceding code, using Prism's NavigationParameters class, the ID of a specific mail is specified.

This class forms query parameters to be added to the queries by taking the name and the value of the

parameter. The ToString method of this class is overridden to create a query string with all the specified

parameters. This example shows how to use the NavigationParameters class to pass string parameters

using the Query String, but it can also be used to pass object parameters, using an overload of the

RequestNavigate method. Finally, the query is appended to the name of the view. The result will be

similar to that shown in the following illustration.

A complex URI structure

Finally, using the RequestNavigate method, the region will navigate to the created Uri.

334

The Contacts Module (Navigation to a Nested View)

The Contacts module demonstrates navigation to a view nested within another view's region. The views

in this module implement the INavigationAware interface to participate in the navigation. The contacts

view has a region in which a sub-view is displayed.

There are two navigation item views for the contact module: one for displaying contact details and the

other to display contact avatars. Each option has a different URI and click event handler, as shown in the

following code located in the

ViewSwitchingNavigation.Contacts\Views\ContactsDetailNavigationItemView.xaml.cs file.

C#

[Export]

[ViewSortHint("03")]

public partial class ContactsDetailNavigationItemView : UserControl,

IPartImportsSatisfiedNotification

{

 private const string mainContentRegionName = "MainContentRegion";

 private static Uri contactsDetailsViewUri = new Uri("ContactsView?Show=Details",

UriKind.Relative);

 ...

 private void NavigateToContactDetailsRadioButton_Click(object sender,

RoutedEventArgs e)

 {

 this.regionManager.RequestNavigate(mainContentRegionName,

contactsDetailsViewUri);

 }

}

In the preceding code, the ViewSortHint attribute is used to specify the order in which views will be

shown. In this case, the ContacstViewNavigationItem is placed third in the list. An alphanumeric

comparison of the sort hints occurs to determine the order. This is used for placing the navigation

buttons of the QuickStart in the same order in every run.

A view or a view model should implement the INavigationAware interface when it needs to be notified

of navigation activities and so that it can receive the URI query. This interface provides the following

navigation events.

 IsNavigationTarget. Called to determine if this instance can handle the navigation request.

 OnNavigatedFrom. Called when the implementer is being navigated away from.

 OnNavigatedTo. Called when the implementer has been navigated to.

335

The contact view implements the INavigationAware interface. When the contact view is navigated to,

using any of the navigation buttons or by going back, the OnNavigatedTo event is used to determine

which sub-view will be loaded, based on the URI query. This can be seen in the following code, extracted

from the ViewSwitchingNavigation.Contacts\Views\ContactsView.xaml.cs file.

C#

void INavigationAware.OnNavigatedTo(NavigationContext navigationContext)

{

 // Navigating an inner region based on context

 // The ContactsView will navigate an inner region based on the

 // value of the 'Show' query parameter. If the value is 'Avatars'

 // we will navigate to the avatar view otherwise we'll use the details view.

 NavigationParameters parameters = navigationContext.Parameters;

 if (parameters != null && string.Equals(parameters[ShowParameterName].ToString(),

AvatarsValue))

 {

 regionManager.RequestNavigate(ContactsRegionNames.ContactDetailsRegion, new

Uri(ContactAvatarViewName, UriKind.Relative));

 }

 else

 {

 regionManager.RequestNavigate(ContactsRegionNames.ContactDetailsRegion, new

Uri(ContactDetailViewName, UriKind.Relative));

 }

}

In the preceding code, the view that will be loaded in the inner region of the contact view depends on

the value of the Show parameter of the URI query.

The first time you navigate to any of these views, the specified view will be created by the

NavigationService.

The Email Module

The Email feature demonstrates navigation to a view that handles additional navigation based on user

activity. The view models in this module implement the INavigationAware interface to participate in the

navigation.

In the Email module, most of the work is performed by the view models. This module is composed of

three views: mail list (InboxView view), open mail (EmailView view), and compose email

(ComposeEmailView view). The following code example shows the methods that handle the New,

Reply, and Open button actions. Notice that they just create a query string and then navigate to the

corresponding view in the main region.

C#

private void ComposeMessage(object ignored)

{

 this.regionManager.RequestNavigate(RegionNames.MainContentRegion,

ComposeEmailViewUri);

336

}

private void ReplyMessage(object ignored)

{

 var currentEmail = this.Messages.CurrentItem as EmailDocument;

 if (currentEmail != null)

 {

 var parameters = new NavigationParameters();

 parameters.Add(ReplyToKey, currentEmail.Id.ToString("N"));

this.regionManager.RequestNavigate(RegionNames.MainContentRegion, ComposeEmailViewKey

+ parameters);

 }

}

private bool CanReplyMessage(object ignored)

{

 return this.Messages.CurrentItem != null;

}

private void OpenMessage(EmailDocument document)

{

 NavigationParameters parameters = new NavigationParameters();

 parameters.Add(EmailIdKey, document.Id.ToString("N"));

this.regionManager.RequestNavigate(RegionNames.MainContentRegion, new

Uri(EmailViewKey + parameters, UriKind.Relative));

}

The ComposeEmailViewModel implements the IConfirmNavigationRequest interface used for

determining whether the view or view model accepts being navigated away from. This interface has the

ConfirmNavigationRequest method that allows the cancelation of a navigation request. In the compose

email screen, the user might start writing a message, but not send it. Therefore, the user should be

prompted to confirm that he or she wants to discard the message before navigating away. The following

code shows the implementation of the ConfirmNavigationRequest method in the

ComposeEmailViewModel class. The view model uses the InteractionRequest to prompt the user, and if

the user confirms that he or she wants to navigate away, the navigation continues when

continuationCallback is passed as a parameter.

Note: You must invoke the continuationCallback action or you will halt this current navigation request

and no further processing of this request will take place.

C#

void IConfirmNavigationRequest.ConfirmNavigationRequest(NavigationContext

navigationContext, Action<bool> continuationCallback)

{

 if (this.sendState == NormalStateKey)

 {

 this.confirmExitInteractionRequest.Raise(

337

 new Confirmation { Content =

Resources.ConfirmNavigateAwayFromEmailMessage, Title =

Resources.ConfirmNavigateAwayFromEmailTitle },

 c => { continuationCallback(c.Confirmed); });

 }

 else

 {

 continuationCallback(true);

 }

}

In the ComposeEmailViewModel class, the OnNavigatedTo method is used to determine if the user is

composing a new email message or replying to an existing one. The navigation context offers the

context information through the Parameters property, which is a string/object dictionary built from the

parameters passed in the RequestNavigate method or through the navigation URI. In the following code

example, if the ReplyTo parameter contains a value, the relevant information from the email service will

be retrieved to populate the response values. If not, an empty email will be displayed.

C#

void INavigationAware.OnNavigatedTo(NavigationContext navigationContext)

{

 var emailDocument = new EmailDocument();

 var parameters = navigationContext.Parameters;

 var replyTo = parameters[ReplyToParameterKey];

 Guid replyToId;

 if (replyTo != null && Guid.TryParse(replyTo, out replyToId))

 {

 var replyToEmail = this.emailService.GetEmailDocument(replyToId);

 if (replyToEmail != null)

 {

 emailDocument.To = replyToEmail.From;

 emailDocument.Subject = Resources.ResponseMessagePrefix +

replyToEmail.Subject;

 emailDocument.Text =

 Environment.NewLine +

 replyToEmail.Text

 .Split(Environment.NewLine.ToCharArray())

 .Select(l => l.Length > 0 ? Resources.ResponseLinePrefix + l : l)

 .Aggregate((l1, l2) => l1 + Environment.NewLine + l2);

 }

 }

 else

 {

 var to = parameters[ToParameterKey];

 if (to != null)

 {

 emailDocument.To = to;

338

 }

 }

 this.EmailDocument = emailDocument;

 this.navigationJournal = navigationContext.NavigationService.Journal;

}

Notice that navigation journal is instantiated at the end of the preceding code. The journal is used to

navigate to the previous view. The journal provides the GoBack method for navigating backwards in the

navigating history. This is used after the user sends or cancels the composition of an email message. You

can see this method's usage in the following code example.

C#

private void CancelEmail()

{

 if (this.navigationJournal != null)

 {

 this.navigationJournal.GoBack();

 }

}

Unit and Acceptance Tests

The View-Switching Navigation QuickStart includes unit tests within the solution. Unit tests verify if

individual units of source code work as expected.

To run the View-Switching Navigation QuickStart unit tests

1. Build the Solution.

2. Open Test Explorer.

3. After building the solution, Visual Studio finds the tests. Click the Run All button to run the unit

tests.

The View Switching Navigation QuickStart includes a separate solution that includes acceptance tests.

The acceptance tests describe how the application should perform when you follow a prescribed series

of steps. You can use the acceptance tests to explore the functional behavior of the application in a

variety of scenarios.

To run the View-Switching Navigation QuickStart acceptance tests

1. In Visual Studio, open the solution file QuickStarts\View-Switching

Navigation_Desktop\ViewSwitchingNavigation.Tests.AcceptanceTest\ViewSwitching

Navigation.Tests.AcceptanceTest.sln.

2. Build the Solution.

3. Open Test Explorer.

339

4. After building the solution, Visual Studio finds the tests. Click the Run All button to run the

acceptance tests.

Outcome

You should see the QuickStart window and the tests automatically interact with the application. At the

end of the test run, you should see that all tests have passed.

More Information

To learn about other aspects of navigation in Prism, see the following topics:

 Navigation

 State-Based Navigation QuickStart

340

Event Aggregation QuickStart
The Event Aggregation QuickStart sample demonstrates how to build a composite application that uses

the Prism Library’s Event Aggregator service. This service enables you to establish loosely coupled

communications between components in your application. The Event Aggregator is a Portable Class

Library (PCL) so it can be used on WPF, Windows Phone 8, and Windows Store apps.

Business Scenario

The main window of the Event Aggregation QuickStart represents a subset of a fictitious financial

system. In this window, users can add funds to customers and see the activity log for each customer.

The following illustration shows the QuickStart main window.

Event Aggregation QuickStart user interface

Building and Running the QuickStart

This QuickStart requires Visual Studio 2012 or later and the .NET Framework 4.5.1 to run.

To build and run the Event Aggregation QuickStart

341

1. In Visual Studio, open the solution file

Quickstarts\EventAggregation\EventAggregation_Desktop.sln.

2. On the Build menu, click Rebuild Solution.

3. Press F5 to run the QuickStart.

Implementation Details

The QuickStart highlights the key elements that interact when using the Event Aggregator service. This

section describes the key artifacts of the QuickStart, which are shown in the following illustration.

Event Aggregation QuickStart conceptual view

The FundAddedEvent Event

The FundAddedEvent event is raised when the user adds a fund for a customer. This event is used by

the modules ModuleA and ModuleB to communicate in a loosely coupled way. The following code

shows the event class signature; the class extends the PubSubEvent<TPayload> class, specifying

FundOrder as the payload type. This code is located at

EventAggregation.Infrastructure.Dektop\FundAddedEvent.cs.

C#

public class FundAddedEvent : PubSubEvent<FundOrder>

{

}

The following code is the class definition for the FundOrder class; this class represents a fund order and

specifies the ticker symbol and the customer's identifier. This code is located at

EventAggregation.Infrastructure.Desktop\FundOrder.cs.

C#

342

public class FundOrder

{

 public string CustomerId { get; set; }

 public string TickerSymbol { get; set; }

}

Event Publishing

When the user adds a fund for a customer, the event FundAddedEvent is published by the

AddFundPresenter class (located at ModuleA.Desktop\AddFundPresenter.cs). The following code shows

how the FundAddedEvent is published.

C#

void AddFund(object sender, EventArgs e)

{

 FundOrder fundOrder = new FundOrder();

 fundOrder.CustomerId = View.Customer;

 fundOrder.TickerSymbol = View.Fund;

 if (!string.IsNullOrEmpty(fundOrder.CustomerID) &&

!string.IsNullOrEmpty(fundOrder.TickerSymbol))

 eventAggregator.GetEvent<FundAddedEvent>().Publish(fundOrder);

}

In the preceding code, first a FundOrder instance is created and set up. Then, the FundAddedEvent is

retrieved from the Event Aggregator service and the Publish method is invoked on it; this supplies the

recently created FundOrder instance as the FundAddedEvent event's parameter.

Event Subscription

The ModuleB module contains a view named ActivityView. An instance of this view shows the activity

log for a single customer. The ModuleB initializer class creates two instances of this view, one for

Customer1 and one for Customer2, as shown in the following code (this code is located at

ModuleB.Desktop\ModuleB.cs).

C#

public void Initialize()

{

 ActivityView activityView1 = Container.Resolve<ActivityView>();

 ActivityView activityView2 = Container.Resolve<ActivityView>();

 activityView1.CustomerId = "Customer1";

 activityView2.CustomerId = "Customer2";

 IRegion rightRegion = RegionManager.Regions["RightRegion"];

 rightRegion.Add(activityView1);

 rightRegion.Add(activityView2);

}

343

When an instance of the ActivityView view is created, its presenter subscribes an event handler to the

FundAddedEvent event using a filter expression. This filter expression defines a condition that the

event's argument must meet for the event handler to be invoked. In this case, the condition is satisfied if

the fund order corresponds to the customer associated to the view. The event handler contains code to

display the new fund added to the customer in the user interface.

The following code shows the CustomerId property of the ActivityPresenter class. In the property

setter, an event handler for the FundAddedEvent event is subscribed using the Event Aggregator

service.

C#

public string CustomerId

{

 get { return _customerId; }

 set

 {

 _customerId = value;

 FundAddedEvent fundAddedEvent = eventAggregator.GetEvent<FundAddedEvent>();

 if (subscriptionToken != null)

 {

 fundAddedEvent.Unsubscribe(subscriptionToken);

 }

 subscriptionToken = fundAddedEvent.Subscribe(FundAddedEventHandler,

ThreadOption.UIThread, false, FundOrderFilter);

 View.Title = string.Format(CultureInfo.CurrentCulture,

Resources.ActivityTitle, CustomerId);

 }

}

The following line, extracted from the preceding code, shows how the event handler is subscribed to the

FundAddedEvent event.

C#

subscriptionToken = fundAddedEvent.Subscribe(FundAddedEventHandler,

ThreadOption.UIThread, false, FundOrderFilter);

In the preceding line, the following parameters are passed to configure the subscription:

 The FundAddedEventHandler action. This event handler is executed when the Add button is

clicked and the filter condition is satisfied.

 The ThreadOption.UIThread option. This option specifies that the event handler will run on the

user interface thread.

344

 The KeepSubscriberReferenceAlive flag. This flag is false and indicates that the lifetime of the

subscriber's reference is not managed by the event. This is set to false because the lifetime of

the subscriber, the presenter class, is managed by its view, which contains a reference to it.

 The filter predicate. This filter is a condition that specifies that the event handler is invoked only

when the fund is added to the view's corresponding customer.

Unit and Acceptance Tests

The Event Aggregator QuickStart includes unit tests within the solution. Unit tests verify if individual

units of source code work as expected.

Unit Tests

To run the Event Aggregator QuickStart unit tests

 On the Test menu of Visual Studio, point to Run, and then click All Tests.

Outcome

You should see the Test Results pane in Visual Studio indicating that all the unit tests passed.

Acceptance Tests

The Event Aggregator QuickStart includes a separate solution that includes acceptance tests. The

acceptance tests describe how the application should perform when you follow a series of steps; you

can use the acceptance tests to explore the functional behavior of the application in a variety of

scenarios.

To run the Event Aggregator QuickStart acceptance tests

1. In Visual Studio, open the solution file

QuickStarts\EventAggregation\EventAggregation.Tests.AcceptanceTest\EventAggregation.Tests

.AcceptanceTest.sln.

2. Open Test Explorer.

3. After building the solution, Visual Studio finds the tests. Click the Run All button to run the

acceptance tests.

Outcome

You should see the QuickStart window and the tests automatically interact with the application. At the

end of the test run, you should see that all tests have passed.

More Information

For more information about event aggregation, see Communicating Between Loosely Coupled

Components.

345

17: Getting Started Using the Prism

Library Hands-on Lab
In this lab and associated sample, you will learn the basic concepts of modular application development

using the Prism Library, and apply them to create a solution that you can use as the starting point for

building a composite Windows Presentation Foundation (WPF) application. After completing this lab,

you will be able to do the following:

 You will create a new solution based on the Prism Library.

 You will create and load a module.

 You will create a view and show it in the shell window.

System Requirements

This guidance was designed to run on the Microsoft Windows 8, Windows 7, Windows Vista, Windows

Server 2012, or Windows Server 2008 operating system. WPF applications built using this guidance

require the .NET Framework 4.5.

Before you can use the Prism Library, the following must be installed:

• Microsoft Visual Studio 2013 Professional, Premium, or Ultimate editions

• Microsoft .NET Framework 4.5 (installed with Visual Studio 2013)

• Optional tool:

o Microsoft Blend for Visual Studio 2013

Preparation

This topic requires you to have the following Prism Library and Unity Application Block (Unity)

assemblies which can be downloaded from NuGet:

 Prism

 Prism.UnityExtensions

Note: This hands-on lab uses the Unity container, but you can also use the Managed Extensibility

Framework (MEF) with the Prism Library.

This hands-on lab assumes that you understand Prism basic concepts. For more information, see Prism

Key Concepts in Introduction.

http://www.microsoft.com/expression/products/Blend_Overview.aspx
http://aka.ms/prism-wpf-Prism50Nuget
http://aka.ms/prism-wpf-Prism50UnityExtensionsNuget

346

Procedures

This lab includes the following tasks:

 Task 1: Creating a Solution Using the Prism Library

 Task 2: Adding a Module

 Task 3: Adding a View

The next sections describe each of these tasks.

Note: The instructions for this hands-on lab are based on the HelloWorld solution. To open the

solution in Visual Studio, run the file Desktop only - Open QS - Hello World QuickStart.lnk.

Task 1: Creating a Solution Using the Prism Library

In this task, you will create a solution using the Prism Library. You will be able to use this solution as a

starting point for your composite WPF application. The solution includes recommended practices and

techniques and is the basis for the procedures in Prism. To create a solution with the Prism Library, the

following tasks must be performed:

1. Create a solution with a shell project. In this task, you create the initial Visual Studio

solution and add a WPF Application project that is the basis of solutions built using Prism

Library. This project is known as the shell project.

2. Set up the shell window. In this task, you set up a window, the shell window, to host

different user interface (UI) components in a decoupled way.

3. Set up the application's bootstrapper. In this task, you set up code that initializes the

application.

The following procedure describes how to create a solution with a shell project. A shell project is the

basis of a typical application built using the Prism Library—it is a WPF Application project that contains

the application's startup code, known as the bootstrapper, and a main window where views are typically

displayed (the shell window).

To create a solution with a shell project

1. In Visual Studio, create a new WPF application. To do this, point to New on the File menu,

and then click Project. In the Project types list, select Windows inside the Visual C# node. In

the Templates box, click WPF Application. Finally, set the project's name to

HelloWorld.Desktop, specify a valid location, and then click OK.

Visual Studio will create the HelloWorld project, as shown in the following illustration. This

project will be the shell project of your application.

347

HelloWorld project

2. In the HelloWorld Project, add references to the following NuGet packages:

◦ Prism. In the NuGet Package Manager search for Prism. This package contains the

implementation of the Prism Library composition components such as modularity,

logging services, communication services, and definitions for several core interfaces. It

also contains the implementation of Prism Library components that target WPF

applications, including regions, events, and MVVM.

◦ Prism.UnityExtensions. In the NuGet Package Manager search for

Prism.UnityExtensions. This package includes the Microsoft.Practices.UnityExtensions

assembly which contains utility classes you can reuse in applications built with the Prism

Library that consume the Unity Application Block. For example, it contains a

bootstrapper base class, the UnityBootstrapper class, that creates and configures a

Unity container with default Prism Library services when the application starts.

The shell window is the top-level window of an application based on the Prism Library. This window is a

place to host different UI components that exposes a way for itself to be dynamically populated by

others, and it may also contain common UI elements, such as menus and toolbars. The shell window

sets the overall appearance of the application.

The following procedure explains how to set up the shell window.

http://www.msdn.com/unity

348

To set up the shell window

1. In Solution Explorer, rename the file MainWindow.xaml to Shell.xaml.

2. Open the code-behind file Shell.xaml.cs and rename the MainWindow class to Shell using

the Visual Studio refactoring tools. To do this, right-click MainWindow in the class signature,

point to Refactor, and then click Rename, as shown in the following illustration. In the

Rename dialog box, type Shell as the new name, and then click OK. If the Preview Changes –

Rename dialog box appears, click Apply.

MainWindow renaming using Visual Studio refactoring tools

3. In XAML view, open the Shell.xaml file, and then set the following attribute values to the

Window root element:

◦ x:Class = "HelloWorld.Desktop.Shell" (this matches the code behind class's name)

◦ Title = "Hello World"

Your code should look like the following.

XAML

<Window x:Class="HelloWorld.Desktop.Shell"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Hello World" Height="300" Width="300">

 <Grid>

 </Grid>

</Window>

349

Regions

The following procedure describes how to add an ItemsControl control to the shell window and

associate a region to it. In a subsequent task, you will dynamically add a view to this region.

To add a region to the shell window

1. In the Shell.xaml file, add the following namespace definition to the root Window element.

You need this namespace to use an attached property for regions that is defined in the Prism

Library.

XAML

xmlns:prism="http://www.codeplex.com/prism"

2. Replace the Grid control in the shell window with an ItemsControl control named

MainRegion, as shown in the following code.

XAML

<Window x:Class="HelloWorld.Desktop.Shell"

 xmlns:prism="http://www.codeplex.com/prism"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Hello World" Height="300" Width="300">

 <ItemsControl Name="MainRegion"/>

</Window>

The following illustration shows the shell window in the Design view.

350

Shell window with an ItemsControl control

3. In the ItemsControl control definition, set the attached property

prism:RegionManager.RegionName to "MainRegion", as shown in the following code. This

attached property indicates that a region named MainRegion is associated to the control.

XAML

<ItemsControl Name="MainRegion" prism:RegionManager.RegionName="MainRegion"/>

Note: When the shell window is instantiated, WPF resolves the value of the

prism:RegionManager.RegionName attached property and invokes a callback in the

RegionManager class. This callback creates a region and associates it with the ItemsControl

control.

Bootstrapper

The bootstrapper is responsible for the initialization of an application built using the Prism Library. The

Prism Library includes UnityBootstrapper and MefBootstrapper classes, which implement most of the

functionality necessary to use either Unity or MEF as the container in your application. If you are using a

container other than Unity or MEF, you should write your own container-specific bootstrapper.

The following procedure explains how to set up the application's bootstrapper.

To set up the application's bootstrapper

1. Add a new class file named Bootstrapper.cs to the HelloWorld project.

2. Add the following using statements at the top of the file. You will use them to refer to

elements referenced in the UnityBootstrapper class.

C#

using System.Windows;

using Microsoft.Practices.Prism.Modularity;

using Microsoft.Practices.Prism.UnityExtensions;

using Microsoft.Practices.Unity;

3. Update the Bootstrapper class's signature to inherit from the UnityBootstrapper class.

C#

class Bootstrapper : UnityBootstrapper

{

}

4. Override the CreateShell method in the Bootstrapper class. In this method, create an

instance of the shell window and return it, as shown in the following code.

C#

protected override DependencyObject CreateShell()

{

 return new Shell();

351

}

Note: You return the shell object to have the UnityBootstrapper base class attach an instance

of the region manager service to it. The region manager service is a service included in the

Prism Library that manages regions in the application. By having a region manager instance

attached to the shell window, you can declaratively register regions from XAML code that will

exist in the scope of the shell window and child views.

5. Override the InitializeShell method in the Bootstrapper class. In this method, display the

shell to the user.

C#

protected override void InitializeShell()

{

 base.InitializeShell();

 Application.Current.MainWindow = (Window)this.Shell;

 Application.Current.MainWindow.Show();

}

6. Override the ConfigureModuleCatalog method. In this template method, you populate the

module catalog with modules. The module catalog interface is

Microsoft.Practices.Prism.Modularity.IModuleCatalog, and it contains metadata for all the

modules in the application. Because the application contains no modules at this point, the

implementation of the ConfigureModuleCatalog method should simply call the base

implementation and return. You can paste the following code in your Bootstrapper class to

implement the method.

C#

protected override void ConfigureModuleCatalog()

{

 base.ConfigureModuleCatalog();

}

More details about module loading and module catalogs are described Task 2: Adding a Module

later in this topic.

7. Open the file App.xaml.cs and initialize the Bootstrapper in the handler for the Startup event

of the application, as shown in the following code. By doing this, the bootstrapper code will

we executed when the application starts.

C#

public partial class App : Application

{

 protected override void OnStartup(StartupEventArgs e)

 {

 base.OnStartup(e);

 Bootstrapper bootstrapper = new Bootstrapper();

352

 bootstrapper.Run();

 }

}

8. Open the App.xaml file and remove the attribute StartupUri. Because you are manually

instantiating the shell window in your bootstrapper, this attribute is not required. The code

in the App.xaml file should look like the following.

C#

<Application x:Class="HelloWorld.Desktop.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Application.Resources>

 </Application.Resources>

</Application>

9. Build and run the application. You should see an empty Hello World window, as shown in the

following illustration.

Hello World window

353

Task 2: Adding a Module

In this task, you will create a module and add it to your solution. A module in Prism is a logical unit in

your application. Adding a module to your solution involves the following tasks:

1. Creating a module. In this task, you create a module project with a module class.

2. Configuring how the module is loaded. In this task, you configure your application to load

the module.

The following procedure describes how to create a module.

To create a module

1. Add a new class library project to your solution. To do this, right-click the

HelloWorld.Desktop solution node in Solution Explorer, point to Add, and then click New

Project. In the Project types list, select Windows in the Visual C# node. In the Templates

box, click Class Library. Finally, set the project's name to HelloWorldModule, and then click

OK. The following illustration shows your solution.

Solution with a module named HelloWorldModule

2. Add references in your module to the following WPF assemblies. To do this, right-click the

HelloWorldModule project in Solution Explorer, and then click Add Reference. In the Add

Reference dialog box, select the Assemblies tab, then select the following assemblies, and

then click OK:

◦ PresentationCore.dll

354

◦ PresentationFramework.dll

◦ WindowsBase.dll

◦ System.Xaml.dll

3. Add references in your module to the following Prism Library assemblies. To do this, right-

click the HelloWorld.Desktop solution in Solution Explorer, and then click Manage NuGet

Packages for Solution. Click the Installed Packages button, select the following assemblies,

and then click Manage:

◦ Prism

In the Selected Projects dialog, select HelloWorldModule, and then click OK. Finally, close the

Manage NuGet Packages window by clicking Close.

4. Rename the Class1.cs file to HelloWorldModule.cs. To do this, right-click the file in Solution

Explorer, click Rename, type the new name, and then press ENTER. In the dialog box that

asks if you want to perform a rename of all references to your class, click Yes.

5. Open the file HelloWorldModule.cs and add the following using statement at the top of the

file. You will use it to refer to modularity elements provided by the Prism Library.

C#

using Microsoft.Practices.Prism.Modularity;

6. Change the class signature to implement the IModule interface, as shown in the following

code.

C#

public class HelloWorldModule : IModule

{

}

7. In the HelloWorldModule class, add an empty definition of the Initialize method, as shown

in the following code.

C#

public void Initialize()

{

}

8. Add a Views folder to the HelloWorldModule project. In this folder, you will store your view

implementations. To do this, right-click the HelloWorldModule project in Solution Explorer,

point to Add, and then click New Folder. Change the folder name to Views.

This step is recommended to organize your projects; this is useful when a module contains

several artifacts. The following are other common folders that you can add to your module:

◦ Services. In this folder, you store service implementations and service interfaces.

355

◦ ViewModels. In this folder, you store view models.

The following illustration shows the solution with the HelloWorldModule module.

Solution with the HelloWorldModule

9. Build the solution.

At this point, you have a solution based on the Prism Library with a module. However, the module is not

being loaded into the application. The following section describes module loading and how you can load

modules with the Prism Library.

Module in the Application Life Cycle

Modules go through a three-step process during application startup:

1. Modules are discovered by the module catalog. The module catalog contains a collection of

metadata about those modules. This metadata can be consumed by the module manager

service.

2. The module manager service coordinates the modules initialization. It manages the retrieval

and the subsequent initialization of the modules. It loads modules—retrieving them if

necessary—and validates them.

3. Finally, the module manager instantiates the module and calls the module's Initialize

method.

356

Populating the Module Catalog

The Prism Library provides several ways to populate the module catalog. In WPF, you can populate the

module catalog from code, from a XAML file, from a configuration file, or from a directory. The following

procedure explains how to populate the catalog from code to load the HelloWorldModule module into

the HelloWorld.Desktop application.

To populate the module catalog with the HelloWorld module from code

1. In your shell project, add a reference to the module project. To do this in Solution Explorer,

right-click the HelloWorld.Desktop project, and then click Add Reference. In the Reference

Manager dialog box, click the Solution tab, select the HelloWorldModule project, and then

click OK.

2. Open the Bootstrapper.cs file and explore the ConfigureModuleCatalog method. The

method implementation is shown in the following code.

C#

protected override void ConfigureModuleCatalog()

{

 base.ConfigureModuleCatalog();

}

The ModuleCatalog class is used to define the application's modules from code—it implements

the methods included in the IModuleCatalog interface and adds an AddModule method for

developers to manually register modules that should be loaded in the application. The signature

of this method is shown in the following code.

C#

public ModuleCatalog AddModule(Type moduleType, InitializationMode

initializationMode, params string[] dependsOn)

The AddModule method returns the same module catalog instance and takes the following

parameters:

◦ The module initializer class's type of module to load. This type must implement the

IModule interface.

◦ The Initialization mode. This parameter indicates how the module will be initialized. The

possible values are InitializationMode.WhenAvailable and

InitializationMode.OnDemand.

◦ An array containing the names of the modules that the module depends on, if any.

These modules will be loaded before your module to ensure your module dependencies

are available when it is loaded.

3. Update the ConfigureModuleCatalog method to register the HelloWorldModule module

with the module catalog instance. To do this, you can replace the ConfigureModuleCatalog

implementation with the following code.

357

C#

protected override void ConfigureModuleCatalog()

{

 base.ConfigureModuleCatalog();

 ModuleCatalog moduleCatalog = (ModuleCatalog)this.ModuleCatalog;

 moduleCatalog.AddModule(typeof(HelloWorldModule.HelloWorldModule));

}

Note: In this example, the modules are directly referenced by the shell. That is why this

example is able to use typeof(Module) to add modules to the catalog. But keep in mind that

modules whose type is not already available can also be added to the catalog.

The WhenAvailable initialization mode is the default value if no initialization mode is specified.

4. Build and run the solution. To verify that the HelloWorldModule module gets initialized, add

a breakpoint to the Initialize method of the HelloWorldModule class. The breakpoint should

be hit when the application starts.

Task 3: Adding a View

In this task, you will create and add a view to the HelloWorldModule module. Views are objects that

contain visual content. Views are often user controls, but they do not have to be user controls. Adding a

view to your module involves the following tasks:

1. Creating the view. In this task, you implement the view by creating the visual content and

writing code to manage the UI elements in the view.

2. Showing the view in a region. In this task, you obtain a reference to a region and add the

view to it.

The following procedure describes how to create a view.

To create a view

1. Add a new WPF user control to your module. To do this, right-click the Views folder in

Solution Explorer, point to Add, and then click New Item. In the Add New Item dialog box,

select the User Control (WPF) template, set the name to HelloWorldView.xaml, and then

click Add.

2. Add a "Hello World" text block to the view. To do this, you can replace your code in the file

HelloWorldView.xaml with the following code.

XAML

<UserControl x:Class="HelloWorldModule.Views.HelloWorldView"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Grid>

358

 <TextBlock Text="Hello World" Foreground="Green"

HorizontalAlignment="Center" VerticalAlignment="Center" FontFamily="Calibri"

FontSize="24" FontWeight="Bold"></TextBlock>

 </Grid>

</UserControl>

3. Save the file.

Note: To keep this hands-on lab simple, the procedure did not explain how to create a view following

the Model-View-ViewModel (MVVM) pattern. For more information about the MVVM pattern, see

Implementing the MVVM Pattern.

Region Manager

The region manager service is responsible for maintaining a collection of regions and creating new

regions for controls. This service implements the Microsoft.Practices.Prism.Regions.IRegionManager

interface. Typically, you interact directly with this service to locate regions in a decoupled way through

their name and add views those regions. By default, the UnityBootstrapper base class registers an

instance of this service in the application container. This means that you can obtain a reference to the

region manager service in the HelloWorld application by using dependency injection.

The following procedure explains how to obtain an instance of the region manager and add the

HelloWorldView view to the shell's main region.

To show the view in the shell

1. Open the HelloWorldModule.cs file.

2. Add the following using statement to the top of the file. You will use it to refer to the region

elements in the Prism Library.

C#

using Microsoft.Practices.Prism.Regions;

3. Create a private read-only instance variable to hold a reference to the region manager. To do

this, paste the following code inside the class body.

C#

private readonly IRegionManager regionManager;

4. Add the constructor of the HelloWorldModule class to obtain a region manager instance

through constructor dependency injection and store it in the regionManager instance

variable. To do this, the constructor has to take a parameter of type

Microsoft.Practices.Prism.Regions.IRegionManager. You can paste the following code inside

the class body to implement the constructor.

C#

public HelloWorldModule(IRegionManager regionManager)

{

359

 this.regionManager = regionManager;

}

5. In the Initialize method, invoke the RegisterViewWithRegion method on the

RegionManager instance. This method registers a region name with its associated view type

in the region view registry; the registry is responsible for registering and retrieving of these

mappings.

The RegisterViewWithRegion method has two overloads. When you want to register a view

directly, you use the first overload that requires two parameters, the region name and the type

of the view. This is shown in the following code.

C#

public void Initialize()

{

 regionManager.RegisterViewWithRegion("MainRegion",

typeof(Views.HelloWorldView));

}

The UI composition approach used in the preceding code is known as view discovery. When

using this approach, you specify the views and the region where the views will be loaded. When

a region is created, it asks for its associated views and automatically loads them.

The region's name must match the name defined in the RegionName attribute of the region.

6. Build and run the application. You should see the Hello World window with a "Hello World"

message, as shown in the following illustration.

360

Hello World message

Note: To open the solution that results from performing the steps in this Hands-on Lab in Visual

Studio, run the file Desktop only - Open QS - Hello World QuickStart.lnk.

361

18: Publishing and Updating

Applications Using the Prism Library

Hands-on Lab
In this lab, you will learn how to publish, deploy, and update a composite Prism Windows Presentation

Foundation (WPF) application that uses dynamic module loading with ClickOnce. After completing this

lab, you will be able to do the following:

 Publish an existing WPF Prism shell application project with ClickOnce.

 Add dynamically loaded modules to the published application for deployment.

 Deploy the application to a client computer.

 Publish an update to the application.

 Deploy the update to a client computer.

System Requirements

This guidance was designed to run on the Microsoft Windows 8, Windows 7, Windows Vista, Windows

Server 2012, or Windows Server 2008 operating system. WPF applications built using this guidance

require the .NET Framework 4.5.

Before you can use the Prism Library, the following must be installed:

• Microsoft Visual Studio 2013 Professional, Premium, or Ultimate editions

• Microsoft .NET Framework 4.5 (installed with Visual Studio 2013)

• Optional tool:

o Microsoft Blend for Visual Studio 2013

Preparation

This topic requires you to have Prism and the Prism QuickStarts in the default installed directory

structure. This lab uses the ModularityWithUnity.Desktop QuickStart that is included with the Prism

installed source code.

Note: This hands-on lab uses the QuickStart that uses a Unity container, but you can also use the

Managed Extensibility Framework (MEF) variant of the QuickStart.

http://www.microsoft.com/expression/products/Blend_Overview.aspx

362

To compile the solution

1. Open the solution file

\Quickstarts\Modularity\Desktop\ModularityWithUnity\ModularityWithUnity.Desktop.sln.

2. Build the solution.

Additionally, this lab uses the Manifest Manager Utility, which is available on the Prism CodePlex site at

http://compositewpf.codeplex.com/releases/view/14771 in the Download section. You will need to

download and extract the source code for that utility, and build it to use it later in the lab. You can either

run it from a separate instance of Visual Studio or you can build once and just run the binaries for the

second task in this lab.

Note: This hands-on lab assumes that you understand Prism modularity and deployment concepts. For

more information, see Modular Application Development and Deploying Applications.

Procedures

This lab includes the following tasks:

 Task 1: Publishing an initial version of the shell application

 Task 2: Updating the manifests to include dynamically loaded module assemblies

 Task 3: Deploying the initial version to a client machine

 Task 4: Publishing an updated version of the application and updating the manifests

 Task 5: Deploying the updated version to a client computer

The next sections describe each of these tasks.

Note: The instructions for this hands-on lab are based on the ModularityWithUnity.Desktop solution.

Task 1: Publishing an Initial Version of the Shell Application

In this task, you will publish the initial version of the shell application project using Visual Studio. The

following steps will be performed:

1. Set the ClickOnce publish settings. In this task, you review and configure the project settings for

the shell project that determine the ClickOnce deployment behavior.

2. Add a publisher certificate. In this task, you create a test publisher certificate to enable

ClickOnce publishing and associate it with the application.

3. Publish the application. In this task, you physically publish the shell application from Visual

Studio to a target deployment directory.

4. Verify the published output. In this task, you verify the output of the publication in the target

directory.

http://compositewpf.codeplex.com/releases/view/14771

363

The following procedure describes how to configure the ClickOnce publish settings within the shell

project. These settings alter the behavior of ClickOnce, both at initial installation time and when setting

the update policies for the application. The publish settings are only relevant for the shell project itself

because it is the launch application executable, which determines the deployment behavior of the

application as a whole in a ClickOnce deployed application.

To set the ClickOnce publish settings

5. In Visual Studio, open the project properties for the ModularityWithUnity.Desktop WPF project.

To do this, right-click the project in Solution Explorer, and then click Properties. In the project

settings, click the Publish tab. The ClickOnce publishing settings will be shown, as in the

following illustration.

ClickOnce publish settings

6. Change the publishing folder location to http://localhost/PrismDeploymentHOL if you have IIS

on your local computer. If you do not, you can publish to another IIS computer for which you

have administrator permissions to create a new virtual directory, or you can use a fully qualified

Universal Naming Convention (UNC) file path (such as

\\mymachinename\c$\PrismDeploymentHOL) if you first create that directory. The address

used is the one that will be used to install the application later in the lab, so make sure you note

364

the address. This address is the physical address you use to push the ClickOnce manifests and

application files to the deployment server when you publish.

7. The installation folder URL can be used if the externally exposed address used for installation of

the application will be different from the one used for publishing (for example, if you are

publishing via FTP to one of your servers, but users will install the application based on an

externally visible HTTP path to that server). This path represents the installation address on the

deployment server to the users. If the path is not supplied, it is assumed you can launch the

application using the same address you used to publish.

8. The install mode and settings provide you fine-grained options for configuring the way the

application installs, what files it is composed of, if there are prerequisite installations that need

to happen first (such as installing the .NET Framework 4.5), how updates are performed, and a

number of other options. For this lab, you will use the default settings, which configures the

application to install for offline use (meaning it can at least be launched even if you are not

connected to the deployment server, but it depends on what your application does after launch

as to whether it will function properly). The default settings also set the application to

automatically update before launch if a new version is detected on the deployment server.

9. Click the Updates button, and then select check box labeled The application should check for

updates, as shown in the following illustration.

365

Application Updates dialog box

10. Click the Options button. In the Options dialog box, click Manifests in the left pane, and then

select the check box labeled Create desktop shortcut.

366

Publish Options dialog box

11. The publish version drives detection of updates for installed ClickOnce applications. Generally,

you want to be in explicit control over this version in a real deployment. For this lab, you will

allow Visual Studio to automatically increment this version number each time you publish.

The following procedure explains how to set up the certificate used for signing the published

application. To ensure that your application cannot be replaced on the deployment server with a

tampered version, ClickOnce requires you to digitally sign the ClickOnce manifests using an X509 code

signing certificate. For development purposes, Visual Studio can generate a test certificate for your use.

For putting your application into production, it is not recommended to use a test certificate. You should

either obtain a certificate from a well-known (Trusted Root) certificate authority for public deployments

or obtain one from your domain administrators for an internal deployment. In this lab, you will simply

use the Visual Studio–generated test certificate.

To add a publisher certificate

1. In the shell project properties, click the Signing tab.

2. Select the check box labeled Sign the ClickOnce manifests. The certificate information will

initially be blank if you have not previously created or associated a certificate with the project.

367

ClickOnce Publish project property settings

3. Click the Create Test Certificate button. This opens the Create Test Certificate dialog box, as

shown in the following illustration.

Create Test Certificate password dialog box

4. Click OK to leave the test certificate without a password.

5. The certificate information should now be populated, and the certificate name and issuer will

be based on your logged-on Windows account information. If you have an existing certificate as

a file or already installed in your certificate stores, you can select the certificate using one of the

buttons next to the certificate information instead.

368

To publish the shell application

1. Build the application and make sure it builds as expected. Publishing the application will cause

the application to build, but it is easier to resolve any build errors with a normal build before

publishing.

2. In Visual Studio, click Publish ModularityWithUnity.Desktop on the Build menu.

3. The Publish Wizard dialog box displays the publish folder location address that you entered in

step 2, as shown in the following illustration. Click Finish to publish the application.

Publish Wizard dialog box

Note: Depending on the computer you publish to and the security settings, you may get a

warning that Visual Studio is unable to view the published application. This simply means it

was unable to launch a browser and navigate to the publish location URL. However, the

application is not really ready to install yet at this point because you need to add the dynamic

modules to the manifests in the next task.

369

Task 2: Updating the Manifests to Include Dynamically Loaded Module

Assemblies

In this task, you will edit the ClickOnce manifests of your deployed application to add the dynamic

module assemblies. This involves editing the application files list in the application manifest, saving and

re-signing the application manifest, updating the application manifest reference within the deployment

manifest, and saving and re-signing the deployment manifest. These steps can all be performed

individually using the .NET Framework SDK tool named the Manifest Generating and Editing tool (Mage).

However, the Manifest Manager Utility that you can download from the Prism CodePlex site automates

these steps into a single easy editor. To accomplish them, you will do the following:

1. Open the deployment manifest in the Manifest Manager Utility. In this task, you run the utility

to simplify editing of the manifests.

Important: You must run this utility as an administrator.

2. Add the dynamically loaded modules to the manifests. In this task, you locate and add the

dynamic module assemblies to the manifest and get them deployed to the publish location.

3. Save and sign the manifests. In this task, you select the publisher certificate used for signing the

ClickOnce manifests to save and re-sign the manifests.

The following procedure describes how to add the dynamic module assemblies to the ClickOnce

manifests.

To open the deployment manifest in the Manifest Manager Utility

1. If you have not already done so, download the most recent Manifest Manager Utility from

the Download section of the Prism CodePlex site at

http://compositewpf.codeplex.com/releases/view/14771 and unzip it to a working directory

on your computer.

2. In Visual Studio 2013, open the file ManifestManagerUtility.sln, build it, and run it.

Important: You must run this utility as an administrator. If you are running this from Visual

Studio, you must start Visual Studio as an administrator.

3. On the File menu, click Open, and then navigate to the publish folder location where you

published the QuickStart in the previous task. In that folder, select the deployment manifest file

ModularityWithUnity.Desktop.application, and then click Open.

http://compositewpf.codeplex.com/releases/view/14771

370

Open dialog box from Manifest Manager Utility in publish folder location

4. The deployment and linked application manifest files will be opened by the utility and will be

presented in the unified view of the utility, as shown in the following illustration. You can see

that the shell executable file and all referenced assemblies that are not part of the framework

are automatically included. Note that Modules A and C are included because they were

referenced for static loading by the QuickStart, but you will need to add the additional modules

using the utility.

Manifest Manager utility

To add the dynamically loaded modules to the manifest

371

1. On the Edit menu, click Add Files. In the Add Application Files dialog box, navigate to the build

output folder for Module B (such as C:\temp\ModularityWithUnity\ModuleB\bin\Debug\) and

select the module DLL (such as ModularityWithUnity.Desktop.ModuleB.dll). In the Add

Application Files dialog box, click Open to add the module DLL to the manifest.

2. When you click Open, a Browse For Folder dialog box appears. In this dialog box, you can

specify the destination folder to copy the module file to the publish folder. Modules B and D are

loaded in the QuickStart through directory scan, and the bootstrapper sets the folder it scans to

a relative path of .\DirectoryModules from the executable file. This means the files need to be

in that same relative path in the published application.

3. Select the version-specific Application Files folder, and then click the Make New Folder button

at the bottom of the dialog box.

4. Name the new folder DirectoryModules.

5. Make sure the new folder is selected, and then click OK. This copies the Module B DLL into the

DirectoryModules subfolder of the application files, as shown in the following illustration.

Browse For Folder dialog box with DirectoryModules subfolder selected

6. Repeat the preceding steps to add Module D to the manifest and place it in the

DirectoryModules subfolder.

372

7. Repeat the preceding steps to add Modules E and F to the manifest, but those both go in the

root Application Files folder (ModularityWithUnity.Desktop_1_0_0_0).

8. At this point, the additional modules should be listed in Manifest Manager Utility with the

relative path shown for Modules B and D, as shown in the following illustration (order does not

matter).

Manifest Manager utility with Modules B, D, E, and F added

To sign and save the manifests

1. Click the Save button on the toolbar of the utility. This opens the Select Publisher Certificate to

Sign Manifest dialog box.

Select Publisher Certificate to Sign Manifest dialog box

373

2. Click the Browse button, and then locate and select the

ModularityWithUnity.Desktop_TemporaryKey.pfx file that was generated when you added the

test certificate to the project in the first task of this lab.

3. Click the Save and Sign button, leaving the password blank again.

At this point, you have successfully published the application with modified manifest files and it is ready

to install.

Task 3: Deploying the Initial Version to a Client Computer

In this task, you will launch and install the application.

To launch and install the application

1. Open an Internet Explorer browser window and enter the address you used as the publish

folder location with the deployment manifest (.application file) path added to the end of it

(such as http://localhost/PrismDeploymentHOL/ModularityWithUnity.Desktop.application).

2. A Launching Application dialog box briefly appears as ClickOnce downloads the manifests for

the application, as shown in the following illustration.

ClickOnce Launching Application dialog box

3. A security warning appears, as shown in the following illustration. It notifies the user of who the

publisher of this application is. Because you are using a test certificate, it will show an unknown

publisher. To get a more friendly security warning, you will need a certificate issued from a

trusted root certification authority.

374

ClickOnce security warning

4. Click Install. While the rest of the application files are downloaded and launched, you will

briefly see a dialog box with a progress bar, as shown in the following illustration.

Install progress bar

5. The QuickStart should launch and you should see Modules A and D load when it starts. You can

click on the other squares to get the other modules to load on demand.

375

Modularity with Unity QuickStart running

Task 4: Publishing an Updated Version of the Application and Updating the

Manifests

In this task, you will make a simple visible change to the application and publish the new version. To

accomplish this, you will do the following:

1. Modify the title of the application. In this task, you will modify the large text at the top of the

application to indicate a modified version. This gives a simple visible change to the application

so you can verify the updated application launches in the next task.

2. Publish the new version of the application. In this task, you publish the application again with a

new publish version so that the ClickOnce update checking will see that there is a new version

of the application on the deployment server.

376

3. Update the manifests. In this task, you will use the manifest manager utility again to re-add

Modules B, D, E, and F to the deployment because each time you re-publish, the manifest is re-

generated by Visual Studio based on the referenced assemblies from the shell.

The following procedure describes how to publish the updated version.

To modify the title of the application

1. With the ModularityWithUnity.Desktop project open, open the Shell.xaml file in the designer.

2. Modify the Title property of the window to read Modularity with Unity QuickStart – Desktop –

Modified.

3. Save and build the solution.

To publish the new version of the application

1. On the Build menu, click Publish ModularityWithUnity.Desktop.

2. In the Publish Wizard, click Finish.

3. The new version will be published and the publish version number will be 1.0.0.1 because Visual

Studio auto-incremented the publish version when you first published in Task 1.

To update the manifests for the new version

1. Open Manifest Manager Utility again.

2. On the File menu, click Open, and then locate and open the

ModularityWithUnity.Desktop.application deployment manifest again (Manifest Manager Utility

should remember the location from the last time you opened a manifest). You should see that

the manifest version is now 1.0.0.1 and Modules B, D, E, and F are missing again.

3. On the Edit menu, click Add Files to select the Modules B assembly.

4. When the Browse For Folder dialog box appears, go to the new published version's Application

Files folder (ModularityWithUnity.Desktop_1_0_0_1), create a DirectoryModules subfolder, and

then select it to place Module B in that relative path.

5. Repeat steps 3 and 4 for Module D, also putting it into the DirectoryModules subfolder.

6. Repeat steps 3 and 4 for Modules E and F, but place them in the

ModularityWithUnity.Desktop_1_0_0_1 directory, not the DirectoryModules subfolder.

7. On the toolbar, click the Save button.

8. Manifest Manager Utility should remember the path to the publisher certificate file you used to

publish the first version, so you can just click the Save and Sign button.

The new version is published and ready to deploy.

377

Task 5: Deploying the Updated Version to a Client Computer

In this task, you will launch the application as the client computer and see that it automatically updates.

To deploy the updated version to a client computer

1. Locate the shortcut on your desktop that was created when you installed the initial version of

the application (ModularityWithUnity.Desktop), and then click it to launch the application from

the client computer.

2. The Update Available dialog box appears, as shown in the following illustration. Click OK to

accept the update.

Update Available dialog box

You should see the modified title on the application after it has launched.

378

Bibliography

General Links

To download Prism binaries, source code, and documentation, see the Prism home page on MSDN at

http://www.microsoft.com/Prism.

If you have comments on this guide, visit the Prism community site at http://www.codeplex.com/Prism.

1: Introduction

Prism assumes you have hands-on experience with WPF. If you need general information about WPF see

the following resources:

 Windows Presentation Foundation on MSDN.

 MacDonald, Matthew. Pro WPF in C# 2010: Windows Presentation Foundation in .NET 4,

Apress, 2010.

 Nathan, Adam. WPF 4 Unleashed. Sams Publishing, 2010.

2: Initializing Prism Applications

For more information about MEF, AggregateCatalog, and AssemblyCatalog, see Managed Extensibility

Framework Overview on MSDN.

3: Managing Dependencies Between Components

For information related to containers, see the following:

 Unity Application Block on MSDN.

 Unity community site on CodePlex.

 Managed Extensibility Framework Overview on MSDN.

 MEF community site on CodePlex

 Inversion of Control containers and the Dependency Injection pattern on Martin Fowler's

website.

 Design Patterns: Dependency Injection in MSDN Magazine.

 Loosen Up: Tame Your Software Dependencies for More Flexible Apps in MSDN Magazine.

 Castle Project

 StructureMap

 Spring.NET

http://www.microsoft.com/Prism
http://www.codeplex.com/Prism
http://msdn2.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://www.msdn.com/unity
http://www.codeplex.com/unity
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://mef.codeplex.com/
http://www.martinfowler.com/articles/injection.html
http://msdn.microsoft.com/en-us/magazine/cc163739.aspx
http://msdn.microsoft.com/en-us/magazine/cc337885.aspx
http://www.castleproject.org/container/index.html
http://structuremap.sourceforge.net/Default.htm
http://www.springframework.net/

379

4: Modular Application Development

To learn more about modularity in Prism, see the Modularity with MEF for WPF QuickStart or the

Modularity with Unity for WPF QuickStart. For more information about the QuickStarts, see Modularity

QuickStarts.

For information about the modularity features that can be extended in the Prism Library, see Modules in

Extending the Prism Library.

5: Implementing the MVVM Pattern

For more information about data binding in WPF, see Data Binding on MSDN.

For more information about binding to collections in WPF, see Binding to Collections in Data Binding

Overview on MSDN.

For more information about the Presentation Model pattern, see Presentation Model on Martin

Fowler's website.

For more information about data templates, see Data Templating Overview on MSDN.

For more information about MEF, see Managed Extensibility Framework Overview on MSDN.

For more information about Unity, see Unity Application Block on MSDN.

For more information about DelegateCommand and CompositeCommand, see Communicating

Between Loosely Coupled Components.

For more information about using MVVM in Windows Store Apps see Using the Model-View-ViewModel

(MVVM) pattern in a Windows Store business app using C#, XAML, and Prism.

6: Advanced MVVM Scenarios

For more information about the logical tree, see Trees in WPF on MSDN.

For more information about attached properties, see Attached Properties Overview on MSDN.

For more information about MEF, see Managed Extensibility Framework Overview on MSDN.

For more information about Unity, see Unity Application Block on MSDN.

For more information about DelegateCommand, see Implementing the MVVM Pattern.

For more information about using Microsoft Expression Blend behaviors, see Working with built-in

behaviors on MSDN.

For more information about creating custom behaviors with Microsoft Expression Blend, see Creating

Custom Behaviors on MSDN.

For more information about creating custom triggers and actions with Microsoft Expression Blend, see

Creating Custom Triggers and Actions on MSDN.

http://msdn.microsoft.com/en-us/library/ms750612.aspx
http://msdn.microsoft.com/en-us/library/ms752347.aspx#binding_to_collections
http://msdn.microsoft.com/en-us/library/ms752347.aspx
http://msdn.microsoft.com/en-us/library/ms752347.aspx
http://www.martinfowler.com/eaaDev/PresentationModel.html
http://msdn.microsoft.com/en-us/library/ms742521.aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://www.msdn.com/unity
http://msdn.microsoft.com/en-us/library/windows/apps/xx130657.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130657.aspx
http://msdn.microsoft.com/en-us/library/ms753391.aspx
http://msdn.microsoft.com/en-us/library/cc265152(VS.95).aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://www.msdn.com/unity
http://msdn.microsoft.com/en-us/library/ff724013(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ff724013(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ff724708(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ff724708(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ff724707(v=Expression.40).aspx

380

For more information about using the dispatcher in WPF , see Threading Model and The Dispatcher Class

on MSDN.

For more information about region navigation, see the section, View-Based Navigation in Navigation.

For more information about the Event-based Asynchronous pattern, see Event-based Asynchronous

Pattern Overview on MSDN.

For more information about the IAsyncResult design pattern, see Asynchronous Programming Overview

on MSDN.

7: Composing the User Interface

For more information about extending the Prism Library, see Extending the Prism Library.

For more information about commands, see Commands in Implementing the MVVM Pattern.

For more information about data binding, see Data Binding in Implementing the MVVM Pattern.

For more information about region navigation, see Navigation.

For more information about the guidelines discussed in this topic, see the following:

 Dependency Properties Overview on MSDN.

 Data binding; see:

◦ Data Binding Overview on MSDN.

◦ Data Binding in WPF in MSDN Magazine.

 Data Templating Overview on MSDN.

 Resources Overview on MSDN.

 UserControl Class on MSDN.

 VisualStateManager Class on MSDN.

 Customizing Controls For Windows Presentation Foundation in MSDN Magazine.

 ComponentResourceKey Markup Extension on MSDN.

 Design-Time Attributes in the WPF Designer on MSDN.

 Markup Extensions and WPF XAML on MSDN.

 Sample Data in the WPF and Silverlight Designer on MSDN.

 Learning the Visual Studio WPF and Silverlight Designer. This contains tutorials and articles on

layout, resources, data binding, sample data, debugging data bindings, object data sources, and

master-detail forms.

http://msdn.microsoft.com/en-us/library/ms741870.aspx
http://msdn.microsoft.com/en-us/library/ms615907(v=VS.95).aspx
http://msdn.microsoft.com/en-us/library/wewwczdw.aspx
http://msdn.microsoft.com/en-us/library/wewwczdw.aspx
http://msdn.microsoft.com/en-us/library/ms228963.aspx
http://msdn.microsoft.com/en-us/library/ms752914.aspx
http://msdn.microsoft.com/en-us/library/ms742521.aspx
http://msdn.microsoft.com/en-us/magazine/cc163299.aspx
http://msdn.microsoft.com/en-us/library/ms742521.aspx
http://msdn.microsoft.com/en-us/library/ms750613.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.usercontrol.aspx
http://msdn.microsoft.com/en-us/library/cc626338(v=VS.95).aspx
http://msdn.microsoft.com/en-us/magazine/cc163421.aspx
http://msdn.microsoft.com/en-us/library/ms753186.aspx
http://msdn.microsoft.com/en-us/library/ee839627.aspx
http://msdn.microsoft.com/en-us/library/ms747254.aspx
http://blogs.msdn.com/b/wpfsldesigner/archive/2010/06/30/sample-data-in-the-wpf-and-silverlight-designer.aspx
http://blogs.msdn.com/b/wpfsldesigner/archive/2010/01/15/learn.aspx

381

8: Navigation

For more information about Prism regions, see Composing the User Interface.

For more information about the MVVM pattern and Interaction Request pattern, see Implementing the

MVVM Pattern and Advanced MVVM Scenarios.

For more information about the Interaction Request object, see Using Interaction Request Objects in

Advanced MVVM Scenarios.

For more information about the Visual State Manager, see VisualStateManager Class on MSDN.

For more information about using Microsoft Blend behaviors, see Working with built-in behaviors on

MSDN.

For more information about creating custom behaviors with Microsoft Blend, see Creating Custom

Behaviors on MSDN.

9: Communicating Between Loosely Coupled Components

For more information about weak references, see Weak References on MSDN.

10: Deploying Prism Applications

Download the Manifest Manager Utility from the Prism community site on Codeplex.

To learn the specific steps involved in publishing and updating a WPF Prism application that uses

dynamic module loading, see the Publishing and Updating Applications Using the Prism Library Hands-on

Lab.

12: Patterns in the Prism Library

The following are references and links to the patterns found in the Stock Trader RI and in the Prism

Library:

 Composite pattern in Chapter 4, "Structural Patterns," in Design Patterns: Elements of

Reusable Object-Oriented Software (1).

 Adapter pattern in Chapter 4, "Structural Patterns," in Design Patterns: Elements of Reusable

Object-Oriented Software (1).

 Façade pattern in Chapter 4, "Structural Patterns," in Design Patterns: Elements of Reusable

Object-Oriented Software (1).

 Template Method pattern in Chapter 5, "Behavioral Patterns," in Design Patterns: Elements

of Reusable Object-Oriented Software (1).

 Observer pattern in Chapter 5, "Behavioral Patterns," in Design Patterns: Elements of

Reusable Object-Oriented Software (1).

 Exploring the Observer Design Pattern on MSDN.

http://msdn.microsoft.com/en-us/library/cc626338(v=VS.95).aspx
http://msdn.microsoft.com/en-us/library/ff724013(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ff724708(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ff724708(v=Expression.40).aspx
http://msdn.microsoft.com/en-us/library/ms404247.aspx
http://compositewpf.codeplex.com/releases/view/14771
http://msdn.microsoft.com/en-us/library/Ee817669(pandp.10).aspx

382

 Repository pattern in Patterns of Enterprise Application Architecture by Martin Fowler or the

abbreviated version on his website.

 Inversion of Control containers and the Dependency Injection pattern on Martin Fowler's

website.

 Plugin pattern on Martin Fowler's website.

 Registry pattern on Martin Fowler's website.

 Presentation Model pattern on Martin Fowler's website.

 Event Aggregator pattern on Martin Fowler's website.

 Separated Interface pattern on Martin Fowler's website.

 MVC and MVP variants on Martin Fowler's website.

 Design Patterns: Dependency Injection by Griffin Caprio on MSDN.

 Model-View-ViewModel pattern on John Gossman's blog.

For more information about the Unity Application Block, see "Unity Application Block" on MSDN.

(1) Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley Professional, 1995.

13: Prism Library

Prism's community sites are:

 Prism

 PubSubEvents (Event Aggregator)

 MVVM

For more information about Unity, see the following:

 "Unity Application Block" on MSDN.

 Unity community site on CodePlex.

For more information about MEF, see the following:

 "Managed Extensibility Framework Overview" on MSDN.

 MEF community site on CodePlex.

For more information about service locator, see the Common Service Locator on CodePlex.

http://www.martinfowler.com/eaaCatalog/repository.html
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/eaaCatalog/plugin.html
http://martinfowler.com/eaaCatalog/registry.html
http://www.martinfowler.com/eaaDev/PresentationModel.html
http://www.martinfowler.com/eaaDev/EventAggregator.html
http://www.martinfowler.com/eaaCatalog/separatedInterface.html
http://martinfowler.com/eaaDev/uiArchs.html
http://msdn.microsoft.com/en-us/magazine/cc163739.aspx
http://blogs.msdn.com/johngossman/archive/2005/10/08/478683.aspx
http://www.msdn.com/unity
http://www.codeplex.com/Prism
http://pnppubsub.codeplex.com/
http://pnpmvvm.codeplex.com/
http://www.msdn.com/unity
http://www.codeplex.com/unity
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://mef.codeplex.com/
http://commonservicelocator.codeplex.com/

