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Abstract. We show how random unitary dynamics arise from the coupling of an open
quantum system to a static environment. Subsequently, we derive a master equation for
the reduced system random unitary dynamics and study three specific cases: commuting
system and interaction Hamiltonians, the short-time limit, and the Markov approximation.
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In information theory, the dynamics of quantum systems subject solely to
classical uncertainty can be modelled by random mixtures of unitary dynam-
ics, or random unitary maps [3],

Λ[ρ̂] =
∑

λ

pλWλρ̂W
†
λ , (1)

which are convex combinations of unitary Kraus operators Wλ weighted with
normalized probabilities pλ,

∑
λ pλ = 1, pλ ∈ [0, 1].

On the one hand, the Kraus form (1) has proven to be a powerful tool in
derivations of general mathematical relations characterizing the dynamics of
quantum systems subject to classical uncertainty [12, 2, 5, 9, 22]. Moreover,
random unitary maps have been used to study generic properties of quan-
tum systems, such as Markovianity [8]. However, the abstract formulation
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Fig. 1: (Colour online) Random unitary dynamics can be formulated in
three different frameworks. On can start from the Kraus representation,
as is customary in information theory, or from an ensemble disordered time-
independent Hamiltonians, as is done in disorder physics, or from the cou-
pling of an open system to an environment, as in the theory of open quantum
systems.

in terms of Kraus operators does not provide a direct physical description
of quantum dynamics in terms of experimentally realizable Hamiltonians.
Therefore, the experimental implementation of random unitary maps, e.g., a
mixture of Pauli channels that are easily studied on a mathematical level [7],
may require complicated experimental setups [19].

On the other hand, random unitary maps based on microscopic mod-
els describing disordered systems [15, 10] or open quantum systems [3, 6] are
physically motivated. Whereas these models, in general, give rise to mathe-
matically rather complicated random unitary dynamics, they provide access
to extensive methods developed in the theory of open quantum systems and
of disordered systems to study the emerging dynamics. Among various meth-
ods, a distinguished role is played by master equations.

It was demonstrated in [15] how to derive and interpret master equations
in the context of disordered systems. In this contribution, we will explore the
open quantum system approach. To begin with, we show how random unitary
dynamics arise from the coupling of an open system to a static environment.
Subsequently, we derive the corresponding master equation in the Born ap-
proximation. We then discuss more explicitly three cases: commuting system
and interaction Hamiltonians, the short-time limit and the semigroup Markov
approximation. The first case leads to pure dephasing dynamics, the second
one captures the generic Gaussian incoherent dynamics at times shorter than
the Heisenberg time, and the third case is characterized by the free retarded
Green’s function associated with the system Hamiltonian. These findings il-
lustrate the intrinsic connection between disordered systems, open quantum
systems and random unitary maps.

In the following, we consider a specific random unitary dynamics de-
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Open System Model for Quantum Dynamical Maps

scribed by the following dynamical map:

Λt[ρ̂] =

∫
dλ p(λ)Uλ(t) ρ̂ U †λ(t) , (2)

where Uλ(t) = e−itĤλ/~ is the unitary time-evolution operator arising from

the Hamiltonian Ĥλ. Note that, mathematically, it is common to consider a
sum of unitary evolutions (cf. (1)). However, for physically motivated models,
it is often more natural to consider continuous combinations of unitary maps.
For instance, such a situation arises when an open system is embedded in an
environment with a continuous density of states. Hence, we have an integral
in the right-hand side of (2), with a normalized probability distribution p(λ).

As discussed in [15], (2) can be interpreted as the ensemble-averaged
dynamics of a disordered quantum system characterized by the Hamiltonian

Ĥλ = Ĥ+δ Ĥλ, where δ Ĥλ are random Hamiltonians distributed according to

the probability distribution p(λ) and Ĥ :=
∫
dλp(λ)Ĥλ is the average Hamil-

tonian. The dynamics of a single realization of the disorder is then given

by ρ̂λ(t) = Uλ(t)ρ̂(0)U †λ(t), with Uλ(t) = e−it(Ĥ+δĤλ)/~. Correspondingly, the

ensemble-averaged dynamics is obtained as ρ̂(t) :=
∫
dλp(λ)ρλ(t) = Λt[ρ̂(0)],

which is a random unitary channel in the form of (2). The significance of this
result stems from the fact that many quantum transport and/or interaction
phenomena in complex systems can effectively be described using models of
disorder. Relevant examples include the electronic transport in wires with im-
purities (Anderson model) [1], the propagation of entangled photons across
atmospheric turbulence [23], the exciton transport in molecular complexes
[17], and the inhomogeneous broadening of spectral line widths [24].

Alternatively, as we show in the following, one can also conceive the dy-
namics (2) as arising from the coupling of an open quantum system to a
static environment. The open system and its environment are character-
ized by the total Hamiltonian ĤT = ĤS + ĤSE + ĤE, where ĤS , ĤSE and
ĤE are the Hamiltonians of the open system, the interaction and the envi-
ronment, respectively. We assume an initial product (uncorrelated) state,
ρ̂0 = ρ̂S0 ⊗ ρ̂E0 , of the system and environment. Furthermore, we assume that

the environment part ρ̂E0 is a stationary state of ĤE :

ρ̂0 = ρ̂S0 ⊗
∫
dλ p(λ) |λ〉〈λ| , (3)

with the (orthonormal) eigenstates |λ〉 of ĤE, and the normalized probability
density p(λ),

∫
dλp(λ) = 1.

In order to generate random unitary dynamics, we further assume that
the state of the environment is time-independent. In other words, we impose
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the Born approximation, ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂E, to hold at arbitrary times. This
can be achieved by demanding

[ĤE , ĤSE] = 0 . (4)

In this case, ĤE and ĤSE share a common eigenbasis and, thus, we can
parametrize the interaction Hamiltonian as

ĤSE =

∫
dλ Ĥλ ⊗ |λ〉〈λ| . (5)

The simplest example of an interaction Hamiltonian in the form of (5) is

ĤSE = ĤA ⊗ ĤB . Indeed, if we expand ĤB in its eigenbasis |λ〉 (with eigen-

values EB
λ ) we obtain ĤSE =

∫
λE

B
λ ĤA ⊗ |λ〉〈λ|. Defining Ĥλ ≡ EλĤA then

yields (5).
Given the initial state (3) and condition (4), the Hamiltonian of the envi-

ronment plays no role in the dynamics and, thus, we can restrict our further
analysis to Ĥ = ĤS + ĤSE. This Hamiltonian has a block diagonal structure,

Ĥ =




ĤS + Ĥ1

ĤS + Ĥ2

ĤS + Ĥ3

. . .


 , (6)

where each block corresponds to one realization of the random unitary chan-

nel. It is useful to include the average Hamiltonian, Ĥ =
∫
λ p(λ)Ĥλ, into the

definition of the system Hamiltonian:

ĤS −→ ĤS + Ĥ , Ĥλ −→ Ĥλ − Ĥ . (7)

With this transformation, the Hamiltonian (6) remains unchanged, but the

average
∫
dλp(λ)Ĥλ = 0.

The dynamics of the total system is then characterized by the unitary

time-evolution operator U(t) = e−itĤ/~ and the reduced dynamics of the
system is obtained by tracing out the degrees of freedom of the environment,
ρ̂S(t) = TrE [ρ̂(t)] = TrE

[
U(t)ρ̂0U

†(t)
]
. This trace is conveniently evaluated

in the orthonormal basis {|λ〉} of the environment,

ρ̂S(t) =

∫
dλ p(λ)e−it(Ĥ

S+Ĥλ)/~ ρ̂S0 e
it(ĤS+Ĥλ)/~

=

∫
dλ p(λ)Uλ(t)ρ̂S0U

†
λ(t) = Λt[ρ̂

S
0 ] . (8)

Note that in practice, one first computes the TrE using a sum
∑

λ instead of
the integral

∫
dλ, and subsequently takes the continuum limit of the sum to
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Open System Model for Quantum Dynamical Maps

obtain (8). According to (8), the reduced system dynamics forms a random
unitary channel in the sense of (2).

Thus, we have shown how to obtain random unitary dynamics from the
couplings of an open system to a static environment. We remark that the
connection to disordered quantum systems is established by choosing the

system Hamiltonian to be equal to the disorder average Hamiltonian ĤS = Ĥ,
and the disorder realization Hamiltonian to be arising from the coupling to
the environment, Ĥλ = δ Ĥλ. Hence, the dynamics described by (2) can
equivalently be derived from a microscopic disorder model or from a model
of an open system coupled to an environment, or be postulated as a random
unitary map (cf. Fig. 1).

Furthermore, we exploit the open system perspective to derive a quantum
master equation for the random unitary dynamics (2). Our derivation focuses
on the weak-coupling limit and is analogous to the one presented, e.g., in [4].

At the outset, we transform to the interaction picture, where opera-
tors evolve in time with ĤS , while states with ĤSE. For clarity, we sup-
ply all interaction picture quantities with the subscript I. Next, it is useful

to introduce the unitary time evolution operator, ÛI = Û †0(t)Û (t), where

Û0(t) = e−itĤ
S/~⊗ 1l and Û(t) is defined above after (7). Then, the state and

the Hamiltonian in the interaction picture are given by ρ̂I(t) = Û †0 (t)ρ̂(t)Û0(t)

and ĤI(t) = Û †0 (t)ĤSEÛ0(t), respectively. Using (5), the latter Hamiltonian
can be rewritten as

ĤI(t) =

∫
dλ e−itĤ

S/~Ĥλ e
itĤS/~ ⊗ |λ〉〈λ| . (9)

In the interaction picture, the dynamics of a density operator obeys the
von Neumann equation,

d

dt
ρ̂I(t) = − i

~

[
ĤI(t), ρ̂I(t)

]
. (10)

Equation (10) is a typical starting point for the microscopic derivation of a
master equation describing the dynamics of the reduced system, which here
subsumes the random unitary channel. We proceed by integrating both sides
of (10) over time, and subsequently inserting the result for ρ̂I(t) back into
(10), to get

˙̂ρI(t) = − i
~

[
ĤI(t), ρ̂(0)

]
− 1

~2

t∫

0

dt′
[
ĤI(t),

[
ĤI(t′), ρ̂I(t′)

]]
. (11)

Note that no approximation has been made so far to derive the above integral-
differential equation. It can be solved iteratively, yielding an infinite series
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in powers of ĤI(t). Instead of doing so, let us take the trace over the envi-
ronment degrees of freedom (TrE) in the exact equation (11),

˙̂ρ
S
I (t) = − i

~

∫
dλ p(λ)

[
ÛS†
0 (t)ĤλÛ

S
0 (t), ρ̂S0

]

− 1

~2
TrE

{ t∫

0

dt′
[
ĤI(t),

[
ĤI(t′), ρ̂I(t′)

]]}
, (12)

with ÛS
0 (t) = e−itĤ

S/~ the interaction picture unitary evolution operator of
the system. The first term on the right-hand side of (12) vanishes due to the

transformation (7), which ensures that
∫
dλp(λ)Ĥλ = 0. As for the second

term, we recall that in the Born approximation we are using ρ̂(t) = ρ̂S(t)⊗ρ̂E .
This leads to the result,

ρ̂I(t′) = ρ̂SI (t′)⊗ ρ̂E = ÛS†
0 (t′)ρ̂S0 Û

S
0 (t′)⊗

∫
dλp(λ) |λ〉〈λ| . (13)

Inserting the latter result into (12) and performing the trace over the envi-
ronment, we obtain

˙̂ρ
S
I (t) = − 1

~2

t∫

0

dt′
∫
dλ p(λ)

[
ĤλI(t),

[
ĤλI(t′), ρ̂SI (t′)

]]
, (14)

where ĤλI(t) = U †0 (t)ĤλU0(t). We now make a further approximation,

ρ̂SI (t′) ≈ ρ̂SI (t) , (15)

which renders (14) local in time. This approximation is justified in the regime
of weak system-environment coupling and amounts to the truncation of the
infinite series expansion by the terms that are second-order in ĤI(t) [13]. In
the context of disordered systems, this is equivalent to considering at most
second-order correlations of the disorder potential.

Applying the approximation (15) in (14), we arrive at a Redfield master
equation [4, 21] in the interaction picture,

˙̂ρ
S
I (t) = − 1

~2

t∫

0

dt′
∫
dλ p(λ)

[
ĤλI(t),

[
ĤλI(t′), ρ̂SI (t)

]]
. (16)

Dropping the (now, redundant) superscript S of the density matrix and re-
verting back to the Schrödinger picture, we obtain the master equation,

˙̂ρ(t) = − i
~

[
ĤS , ρ̂(t)

]
− 1

~2

∫
dλ pλ

[
Ĥλ,

[˜̂
Hλ(t), ρ̂(t)

]]
, (17)
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Open System Model for Quantum Dynamical Maps

where

˜̂
Hλ(t) :=

t∫

0

dt′e−it
′ĤS/~ Ĥλ e

it′ĤS/~ . (18)

In the following, we explore the properties of (17) for three different scenarios.

EXAMPLE 1 (Commuting system and interaction Hamiltonians) As a first
example, let us consider a system whose Hamiltonian commutes with the
interaction Hamiltonian,

[
ĤS , Ĥλ

]
= 0 , ∀ λ . (19)

In this case, (18) is elementarily integrated to yield the relation

˜̂
Hλ(t) = t Ĥλ . (20)

Consequently, the master equation (17) becomes

˙̂ρ(t) = − i
~

[
ĤS , ρ̂(t)

]
− t

~2

∫
dλ pλ

[
Ĥλ,

[
Ĥλ, ρ̂(t)

]]
. (21)

Equation (21) is easily solved in the eigenbasis |n〉 that is common to ĤS and

Ĥλ, with the matrix elements of the density operator given by

ρnm(t) = ρnm(0) e−it(E
S
n−ES

m)/~ e−t
2C2(n,m)/2~2 , (22)

where

C2(n,m) =

∫
dλ pλ(Eλ

n − Eλ
m)2, (23)

is the two-point correlation function which has the meaning of the average
square of the energy gap between levels n and m. Equation (22) signifies pure
dephasing dynamics: the diagonal elements (n = m) are time-independent,

while the off-diagonal elements (n 6= m) evolve coherently with ĤS , and on
top of that undergo a Gaussian decay with a linearly increasing in time rate
γnm(t) = t C2(n,m)/~2. As it includes all contributions from the two-point
correlations, the master equation (21) is exact in the limit where the initial
state distribution p(λ) is a Gaussian. A rigorous proof thereof for finite-
dimensional systems can be easily derived by adapting corollary 3.1 of [26].

Furthermore, taking the disorder instead of the open system perspective,
the condition (19) is equivalent to the requirement that the disorder affects
only the eigenvalues (i.e., spectral disorder) [15]. One can then show that
the exact dynamics also results in pure dephasing [15], and, hence, is not
a consequence of the weak-coupling approximation given by (15), but is a
direct consequence of the commutation relation (19).
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EXAMPLE 2 (Short times) Let us now study the behaviour of ρ̂(t) at short
times. For that purpose, we expand (18) to first order in time, which yields

the same result as for condition (19), namely
˜̂
Hλ(t) = t Ĥλ. Hence, again,

the corresponding master equation is (21). Note that, since the Hamiltoni-

ans Ĥλ for different λ may not commute with each other, in this case the
dynamics does not necessarily result in pure dephasing. Comparing the first-
and second-order terms in the series expansion of the exponential in (22), the
validity time τ can be estimated to be proportional to the mean level spacing
of the system Hamiltonian,

τ ≈ ~

〈ES
m − ES

n 〉
. (24)

This time scale is given by the energy-time uncertainty relation [16], and is
sometimes termed Heisenberg time (see, e.g., [25]).

EXAMPLE 3 (Markov approximation) A common approximation in the
study of open quantum systems is the semigroup Markov approximation
which leads to the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master
equation [18, 11]. To derive the latter, we begin by expanding (18) in the
eigenbasis |n〉 of the system Hamiltonian

˜̂
Hλ(t) =

d∑

m,n=1

|m〉〈m| Ĥλ |n〉〈n|
t∫

0

dt′e−
i
~
(t−t′)(ES

m−ES
n ), (25)

with ES
n the n-th eigenvalue of ĤS and d = dim(ĤS).

The semigroup Markov approximation is obtained by setting the upper
integration limit of the time integral in (25) to infinity,

lim
t→∞

t∫

0

dt′e−
i
~
(t−t′)(ES

m−ES
n ) = lim

ǫ→0

i~

ES
n − ES

m + iǫ
=: Rmn . (26)

We then obtain

˜̂
Hλ =

d∑

m,n=1

Rmn〈m|Ĥλ|n〉 |m〉〈n| . (27)

The above expression (26) is the matrix element Rmn = 〈m|ĜS(En)|m〉 of

the free retarded resolvent operator ĜS(E) = (E − ĤS + iǫ)−1. In other
words, Rmn is the transition amplitude from state |m〉 to |n〉 of a particle

evolving only with the system Hamiltonian ĤS .
Inserting (27) into (17) yields a GKSL master equation, which is by def-

inition time-independent. Hence, it is clear that the Markov approximation

1740012-8
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Open System Model for Quantum Dynamical Maps

cannot be applied to the previous two examples, which are characterized by
the time-dependent master equation (21). Finally, we note that when the
GKLS master equation arises as a consequence of averaging over random
impurities in a disordered sample, one obtains pure momentum-dephasing
random unitary dynamics [20].

In this paper we studied a particular class of random unitary channels
and showed how to embed the latter in the framework of the theory of open
quantum systems. Making use of the fact that our random unitary chan-
nels imply the Born approximation, we derived the corresponding Redfield
master equation. We then studied in more detail three specific cases: com-
muting system and interaction Hamiltonians, the short-time approximation
and the semigroup Markov approximation. We showed that in the first case,
one obtains a pure dephasing master equation with rates that are linearly in-
creasing with time. In the second case, we obtained a master equation with
the same rates, but that does not invariably lead to dephasing dynamics.
In the semigroup Markov approximation, the resulting GKLS master equa-
tion is characterized by the transition amplitudes generated by the system
Hamiltonian.

In conclusion, the dynamics of quantum systems subject to classical un-
certainty can be studied either starting from the random unitary Kraus map
(1) [3], from an ensemble of disordered Hamiltonians [15], or, as discussed
here, from a system coupled to a static environment. Each approach allows
for specific computational methods and provides particular grounds for ex-
perimental implementations. We believe that these different points of view
are fruitful for fostering synergies between the fields of open quantum sys-
tems, disorder physics and information theory [14].
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