
załącznik nr 3 [attachment no. 3]

Summary of professional accomplishments

1. First name and surname: Cezary Migaszewski

2. University diplomas, scientific/artistic degrees – including the name, place and year as well as the

title of the doctoral dissertation:

• Master’s degree in astronomy, given by the Faculty of Physics, Astronomy and Informatics of

the Nicolaus Copernicus University, Toruń, 2007.

• Doctor’s degree of physical sciences in the field of astronomy, given by the Scientific Council

of the Faculty of Physics, Astronomy and Informatics of the Nicolaus Copernicus University,

Toruń, 2010. The dissertation title "Secular dynamics of planetary and stellar systems".

3. An information on employment in scientific/artistic institutions:

• 01.10.2009 – 30.09.2012: research-and-teaching assistant, Centre for Astronomy, Nicolaus Coper-

nicus University.

• 01.10.2012 – 30.09.2016: assistant professor, Centre for Astronomy, Nicolaus Copernicus Univer-

sity.

• 01.02.2014 – 31.01.2017: post-doctoral researcher, Institute of Physics, University of Szczecin.

• since 02.02.2017: assistant professor, Centre for Astronomy, Nicolaus Copernicus University.

4. An indication of the achievement in accordance with art. 16 par 2 of the Act from March 14th 2003

on the scientific degrees, the scientific title and the degrees and the title in the filed of art (Dz. U.

[Journal of Law] from 2016 item 882 as amended in Dz. U. from 2016 item 1311):

a) The title of the scientific/artistic achievement:

Migration, periodic orbits and formation of mean motion resonances in systems with two and

more planets

b) The list of scientific articles constituting the achievement (author/authors, title/titles of publica-

tions, year of publication, publisher’s name, publishing reviewers):

H1 K. Goździewski, C. Migaszewski, "Multiple mean motion resonances in the HR 8799 planetary

system", 2014, Monthly Notices of the Royal Astronomical Society, 440:3140–3171.

H2 C. Migaszewski, "On the migration of two planets in a disc and the formation of mean motion

resonances", 2015, Monthly Notices of the Royal Astronomical Society, 453:1632–1643.

H3 C. Migaszewski, "On the migration of three planets in a protoplanetary disc and the formation

of chains of meanmotion resonances", 2016, Monthly Notices of the Royal Astronomical Society,

458:2051–2060.

H4 C.Migaszewski, "On themigration-induced formation of the 9:7meanmotion resonance", 2017,

Monthly Notices of the Royal Astronomical Society, 469:1131–1146.

H5 C.Migaszewski, K. Goździewski, "A periodic configuration of the Kepler-25 planetary system",

2018, Monthly Notices of the Royal Astronomical Society, 480:1767–1777.

page 1 of 24



c) Discussion of the scientific/artistic goal of the publications listed above as well as the results

achieved and their potential application.

Introduction

Formation of planetary systems is an important issue of modern astronomy. Theories which describe

the process focus both on the origin of planets in protoplanetary discs as well as on shaping the or-

bits and, for systems with more than one planet, forming the orbital configurations. Mean motion

resonances (periodic orbits in particular) as well as planetary migration play a crucial role in the

process. These concepts, listed in the title of the scientific achievement, will be explained further in

the Introduction.

The planet-disc interaction results in an exchange of the mechanical energy and the angular momen-

tum between the planet and the disc, which causes variation of the orbit size (the semi-major axis

a) and shape (the eccentricity e). Although the character of the a and e changes depend on the disc

parameters aswell as on themass and the orbit of the planet, in typical situations both a and edecrease,

i.e., the migration is inward (the planet migrates towards the star) and the orbit is being circularised.

The planet-disc interaction is the subject of many studies (e.g., Goldreich and Tremaine, 1979, 1980;

Tanaka et al., 2002; Tanaka and Ward, 2004; Paardekooper et al., 2010, 2011). One of their goals is to

determine the time-scales of migration τa and circularisation τe, when the disc parameters are given

(instead of the pair τa and τe one often uses the quantities τa, denoted simply with τ, and κ ≡ τa/τe).

Another important aspect of the studies is the evolution of the disc itself (e.g., Shakura and Sunyaev,

1973; Pringle, 1981; D’Alessio et al., 1998). In general, one needs to consider the migration of planets

in an evolving disc, i.e., the migration and circularisation rates are functions of the position of the

planets in the disc as well as time (the disc evolutionary stage).

If in a given disc there are more planets of semi-major axes ai and corresponding orbital periods Pi

(where i enumerates the planets such as ai < ai+1), the migration of a given pair may be convergent or

divergent. The convergent migration of planets i and j (i < j) means that planet j migrates faster than

planet i, therefore the ratio of the semi-major axes a j/ai (as well as the period ratio P j/Pi) decreases in

time. For the divergent migration, planet i migrates faster and a j/ai (and P j/Pi) increases in time.

It is known that the convergent migration results in formation of mean motion resonances, MMR,

(e.g., Snellgrove et al., 2001; Lee and Peale, 2002), i.e., commensurabilities of the fundamental fre-

quencies related to the orbital motion: ni/n j = P j/Pi ≈ (p + q)/p, where j > i, while p and q are

small natural numbers, and q determines the order of the resonance; nk ≡ 2π/Pk denotes the mean

motion of planet k = i, j. The resonance relies on the synchronisation of the planets’ motions as well as

the variations of the orbital elements caused by the planet-planet interactions, i.e., semi-major axes,

eccentricities, longitudes of pericentres, especially their difference ∆̟ ≡ ̟i − ̟ j, as well as the so

called resonant angles φ ≡ pλi − (p+ q)λ j + (q− r)̟i + r̟ j, where λk is the mean longitude of planet k

and r is a natural number from 0 to q. The behaviour of the ∆̟ and φ angles indicates whether or

not the motions are synchronised. For the resonant configurations the angles should oscillate around

fixed values. The synchronisation results in regular and stable evolution of the system. The latter is

important because of the existence of chaos in the region of the resonance separatrix. The chaotic part

of the phase space is larger, when the planets’ masses are larger. In particular, lack of synchronisation

of the systemwhose P2/P1 ≈ (p+q)/p may result in chaotic evolution of the configuration, which may

lead to destabilisation of the system.

Figure 1 presents an example evolution of the period ratio in a case of the convergent and divergent

migration in a system of two planets i = 1, j = 2. The simulations were performedwith a help of the so

called parametric model of the migration (Papaloizou and Larwood, 2000; Beaugé et al., 2006; Moore

et al., 2013), in which the N-body equations of motion are extended to include additional termswhich
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Figure 1: The period ratio evolution of a system of two planets of masses m1 = m2 = 10M⊕ around a

star of a mass of m0 = 1M⊙ in the cases of convergent (panel a) and divergent (panel b) migration in

the vicinity of 3:2 MMR. The initial orbital parameters a1 = 0.2AU, e1 = 0.01, e2 = 0, ̟1 = 0, ̟2 = π,

M1 = 0,M2 = 0 (the same for the two simulations) and a2 = 0.272AU (panel a) and a2 = 0.253AU

(panel b). The migration parameters: κ = 300 (for both the simulations) and τ1 = 1 × 104 yr, τ2 =

4 × 103 yr (panel a); τ1 = 4 × 103 yr, τ2 = 1 × 104 yr (panel b). The simulation was performed with a

help of the parametric model of migration, Eq. 1.

mimic the planet-disc interaction:

fff i = −
vvvi

2τi
−

vvvi − vvvc,i

τiκ
−1
i

, (1)

where vvvi is the astrocentric velocity of planet i, vvvc,i is the Keplerian velocity of a planet in a circular

orbit of the size equal to the astrocentric distance of the planet. The time-scale of migration of planet i

is denoted with τi, while the circularisation time-scale of the i-th planet orbit is given by τi divided

by a constant term κi > 1. In the case of non-interacting planets, the model results in the following

evolution of the semi-major axes and the eccentricities of planet i (for ei ≪ 1): ai(t) ≈ ai(0) exp(−t/τi)

and ei(t) ≈ ei(0) exp(−κi t/τi).

In the example shown in the left panel of Fig. 1 the period ratio, which is initially greater than the

nominal value of the resonance, decreases until P2/P1 ≈ (p+q)/p (here p = 2, q = 1, which corresponds

to 3:2 mean motion resonance), after which it starts to oscillate near this value. In the case of the

divergent migration (the right panel of Fig. 1) the evolution is different. The period ratio, initially

<1.5, increases continuously, reaching values>1.5. The oscillations of P2/P1 around the nominal value

do not occur.

In order to understand this effect, one needs to look at the resonance in the context of periodic con-

figurations. Hadjidemetriou (1976) showed that in the planetary N-body problem (with non-zero

planets’ masses), in a reference frame co-rotating with one of the planets, there exist families of peri-

odic orbits (configurations) corresponding to mean motion resonances. The evolution of the periodic

configuration is such that the system starting from a given point in the phase space (e.g., the space of

positions and velocities or the orbital elements), after certain amount of time T (i.e., the period of the

evolution) returns to that point. In otherwords, the phase trajectory of the system is closed. There exist

whole families (branches) of such configurations, parametrisedwith, e.g., one of the coordinates or, if

the state of the system is given by the orbital elements, by the period ratio (the latter parametrisation

will be used further in this text). A periodic configuration is represented with a freely chosen point

from its trajectory.

Periodic configurations can be stable or unstable. In the former case, if the system (understood as a

point in the phase space representing the state of the system) is initially near the closed trajectory, it

will be near this trajectory during the evolution. In the latter case, the system will stay in the vicinity

of the closed trajectory only for certain finite amount of time.
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Figure 2: The evolution of the system of two migrating planets presented at the (P2/P1, e1)-diagram

in the case of convergent (panel a) and divergent (panel b) migration. The families of stable and

unstable periodic orbits are marked with the black and the grey curves, respectively. The branches

for P2/P1 < 1.5 correspond toM1 = 0 andM2 = 0, whileM1 = 0 andM2 = π for P2/P1 > 1.5.

For both the cases ∆̟ = π. The positions of the system forM1 ≈ 0 andM2 ≈ 0 are shown in red,

the green colour means thatM1 ≈ 0 andM2 ≈ π. The arrows show the direction of the evolution.

The beginning of the evolution for each simulation is marked with the large black symbol. Panels (a)

and (b) correspond to the systems whose evolution was shown in panels (a) and (b) of Fig. 1.

If the planetarymigration is slow enough and the planet-disc interaction results in the orbital circular-

isation (in the typical case), the system of two planets evolves in the phase space along the family of

periodic orbits (e.g., Beaugé et al., 2006; Hadjidemetriou and Voyatzis, 2010). Therefore, the periodic

configurations are attractors in the phase space for the system with migrating planets. The evolution

of the systems presented in Fig. 1 can be also illustrated at the (P2/P1, e1)-plane together with the

families of periodic configurations (Fig. 2).

Figure 2a corresponds to the convergent migration. The period ratio is initially greater than the nom-

inal value of 1.5, i.e., P2/P1 ≈ 1.586, while the eccentricity e ≈ 0.01 is significantly different than the

value corresponding to the periodic configuration. The migration is convergent, i.e., P2/P1 decreases,

simultaneously e1 decreases in a way that the system (the point in the phase space representing the

state of the system) approaches the family of periodic orbits. For P2/P1 ≈ 1.55 the configuration is al-

ready at the branch and evolves further along it, untilP2/P1 reaches the value close to 1.5 and e1 ≈ 0.01.

The further decrease of P2/P1 would result in the increase of e1, and for greater e1, the circularisation

of the orbit is more effective (since ė = −e/τe). The value of ≈0.01 corresponds to a balance between

the excitation of the eccentricity due to the evolution along the branch of periodic orbits and the orbit

circularisation due to the planet-disc interaction. It is a typical scenario for the smooth (i.e., without

additional perturbations) convergent migration.

In the second case, illustrated in Fig. 2b, the initial P2/P1 ≈ 1.423 and the migration is divergent. The

first part of the evolution of the system at the (P2/P1, e1)-diagram is shown with the red colour. At
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this stage of the evolution the system approaches the family of periodic orbits. For the period ratio

of ≈1.45 the configuration is already at the branch and evolves further along it, until the periodic

configurations are no longer stable (the black curve passes into the grey curve). Further evolution

(shown with the green colour) does not occur along the branch of periodic configurations, while the

period ratio increases up to the values >1.5.

Passing between the two branches of periodic orbits is not continuous (e.g., Hadjidemetriou, 1976).

For P2/P1 < 1.5 the critical argument of the resonance φ1 ≡ 2λ1 − 3λ2 +̟1 = π, while for P2/P1 > 1.5

the resonant angleφ1 = 0. The discontinuity between the two branches results in temporary deviation

of the system from the periodic configuration. Besides, during the evolution the system omits the

points (0, 0) and (0, π) at the mean anomalies plane (there are no green points representing the state

of the system for P2/P1 . 1.51). After certain amount of time the system evolves along the branch of

periodic orbits again. Such a situation is typical for the divergent migration. In contrast to the case

of convergent migration, there is no equilibrium configuration, i.e., if the time-scales of migration are

such that τ1 < τ2, the period ratio will increase continuously.

The results presented in articles H1–H5 constituting the scientific achievement will be discussed fur-

ther in this document. Themigration is a key issue in each of the problems studied in the articles, i.e., it

is a process which leads to the formation of mean motion resonances and the periodic configurations

in particular. In two of the papers, H1 and H5, understanding of the migration mechanism helped

to properly interpret the observational data, respectively of the planetary systems around HR 8799

and Kepler-25, as well as to determine the orbital configurations of these two very different (in terms

of the masses and linear dimensions) systems. These two papers form a frame of the cycle of the

scientific achievement. The three remaining articles, H2–H4, are devoted to the process of the forma-

tion of the resonance itself, and do not refer to any particular known planetary system, although the

article H4, devoted to the 9:7 MMR formation, was inspired by the previous paper on the Kepler-29

system (Migaszewski et al., 2017).

The migration of planets and the problem of finding stable configurations of observed multi-

planet systems – the case of HR 8799 (article H1)

As itwasmentioned in the Introduction, in typical situations themigration leads to formation of stable

resonant configurations. This fact was used to find the orbital parameters of the HR 8799 planetary

system, which correspond to stable evolution and agree with the observations.

The planetary system around HR 8799 was found ten years ago with a help of the direct imaging

method. At first, three planets of masses of ∼10 Jupiter mass (MJup) were discovered in orbits of

periods ranging from ∼100 to ∼450 yr (Marois et al., 2008). Two years later the forth equally massive

planet in orbit of∼50 yr periodwas detected (Marois et al., 2010). The system became a target ofmany

studies, one of the goals of which was to determine the orbital configuration of this complex system.

It is not an easy task for two reasons. Firstly, the observations covered initially∼10 yr only (it was even

less for the innermost planetHR 8799e), what caused the orbital elements determination uncertain. At

present, despite additional years of observations, the situation is similar. In otherwords, the area of the

parameter space allowed by the observations is very large – and it is an 18-dimension space, under

an assumption that the system is coplanar and the masses are known. Secondly, strong gravitation

interactions between the planets and the dynamical compactness of system (the orbital period ratios

of subsequent pairs of planets, although known with large uncertainties, are of the order of 2) causes

that the parameter space is dominated by strongly chaotic motions. The dynamical compactness is

understood here in terms of small semi-major axis/period ratios, i.e., ai+1/ai or Pi+1/Pi, not in terms of

small ai orPi. Because of the linear scalability of theN-body problem, variation of the linear sizes of the

orbits results in changing the time-scale of the evolution only, without any changes in the dynamics.
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The problems with finding stable configurations in agreement with the observations were reported

shortly after the discovery of the first three planets (Fabrycky and Murray-Clay, 2010; Goździewski

and Migaszewski, 2009). After the discovery of the forth one, the situation became even worse. In

order to present the problem fully, one needs to mention that the assumption, usually accepted as a

necessary condition, that the this relatively young system (the age of the star, however weakly con-

strained, most likely ranges from ∼30 to ∼90 million years; Baines et al., 2012) has to be stable, was

abandoned in favour of a hypothesis that the system may self-disrupt the in next few tens of Myr

(Goździewski and Migaszewski, 2009). Although, the hypothesis cannot be ruled out a priori, the

searching for alternative models was caused by the problems in finding stable configurations, rather

than by important astrophysical reasons.

In order to find stable configurations consistent with the observations a following approach is usually

used. In the first step, an algorithm of global searching for best-fitting, e.g., in terms of sufficiently low

value of χ2 function, systems in the parameters space is used, the result of which is a large number

of initial conditions. In the second step, the initial conditions are used in the N-body integrations, the

purpose of which is to find whether or not a given system is stable. The so called fast chaos indicators

are often used to answer this question (e.g., Panichi et al., 2017), as they speed up the stability tests

significantly.

In the case of the HR 8799 planetary system, the strategy outlined above was ineffective. As it was

mentioned earlier, because of big masses, the dynamical compactness of the system and the short

observing window, the probability of finding stable configurations consistent with the observations

is very low, of the order of ǫ18. The quantity ǫ expresses the mean over the parameters of the ratio

between a given parameter range corresponding to the stable evolution to the range allowed by the

observational constraints. Even for ǫ ∼ 0.1, the probability of random finding the configuration which

is stable and consistent with the observations is of the order of 10−18, while the number of initial

conditions which can be effectively tested for stability is ∼109.

The chances of finding a stable system consistent with the observations can be increased by using

other algorithms of the parameters space exploration. In the approach known in the literature as

GAMP (Goździewski et al., 2008), the stability is being tested during the process of the fitting the

model to the observational data. Nevertheless, because of the large number of parameters and the

small area of stable motions, even this improved method fails to reach the goal, without imposing

significant limitations on the space of initial conditions.

In both the approaches described above, most (if not whole) of the computational time is used for

testing the agreement with the observational and the stability constraints of the configurations which

turn out to be unstable. In the approach proposed in H1 only those configurations are being tested in

terms of their agreement with the observations of which we know that they are stable. The stability

is guaranteed by the process of migration. Nevertheless, the approach requires the assumption of

a particular type of the orbital configuration, i.e., resonant, which do not have to be fulfilled (e.g.,

Götberg et al., 2016).

The approach was described in details in H1, below it will be presented briefly. Within the astrophys-

ical model of the planet-disc interaction the time-scales of migration and circularisation depend on

the disc parameters and the planet’s mass in a complex way. In the approach presented in H1 the

parametric model of migration was used (Eq. 1), in which τi and κi are free parameters. Although

the model is simple, it is used here only in order to simulate the process leading to formation of

a resonant (i.e., stable) planetary system. As it was explained in the Introduction, the evolution of

a system with two migrating planets in the phase space is determined by the structure of periodic

orbits, and the latter depends on the number of planets and their masses, while it is independent of
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Figure 3: The migration evolution of an example configuration of four planets of masses like in the

HR8799 systempresented as time-evolution of the systemparameters: the semi-major axes, the period

ratios, the critical angle of the chain of resonances 8:4:2:1 (θ = λ1−2λ2−λ3+2λ4) and the eccentricity of

the innermost planet. The panels on the right correspond to slowermigration (see the text for details).

The red colour indicate configurations consistent with the observations. The plots were taken from

article H1.

the disc parameters or the model of migration. The disc parameters as well as the initial orbits of the

HR 8799 system are unknown, and they were not a subject of the studies presented in H1. In other

words, in H1 the migration was used as a heuristic method of finding stable resonant configurations,

which then were tested whether or not they agree with the observations.

Figure 3, which presents the evolution of an example configuration, is an illustration of the method.

The initial orbits are chosen randomly in such a way that the period ratios of subsequent planets &2

and the orbits werewider than presently observed. Themigration parameters τi, κi (where i = 1, 2, 3, 4

enumerates subsequent planets, starting from the innermost one) were chosen randomly as well,

however the choice was such that the migration of each pair of planets were convergent, i.e., τ1 >

τ2 > τ3 > τ4. After ∼60kyr of the example evolution the convergent migration leads the period ratios

of subsequent pairs of planets to Pi+1/Pi ≈ 2, however the critical angle of this chain of resonances,

θ ≡ λ1 − 2λ2 − λ3 + 2λ4, still rotates (panels in the left column), which means that the system is not

yet in the resonance.

When the sizes of the orbits approach the values of the observed system, themigration is being slowed

down (panels in the right column). This technical trick is being used in order not to miss configura-

tions consistent with the observations. At each time-step of the integration, the consistency of a given

configuration with the observations is tested. In order to verify whether or not the model fits the

data, an optimization algorithm is used to find the best-fitting values of the Euler angles, which give

the spatial orientation of the system, as well as the best-fitting phase of the N-body evolution of the

system (which corresponds to assigning a particular epoch to the initial condition). In the example,

after ∼2Myr of the migration, the system fits the astrometric data very well. The systems fitting the

data are marked with the red colour. At this moment of the evolution the system is already resonant.

It is called a four-body resonance. A classical example of such a multi-body resonance known in the

Solar system is the three-body Laplace resonance in the system of the Galilean moons: Io, Europa and

Ganymede (Sinclair, 1975; Yoder, 1979), in which the subsequent pairs of moons are also involved in

two-body 2:1 MMRs.

Figure 4 presents the observational data (the planets positions with respect to the central star) in
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Figure 4: The planets astrometric positions at the sky-plane (red dots) in particular epochs of observa-

tions. The star (the yellow disc) is located in the (0, 0) point. The green curves illustrate the synthetic

orbits (between the epochs of 1980 and 2030) corresponding to stable configurations consistent with

the observations. The grey/black curves correspond to the best-fitting systems. The plot was taken

from H1.

given epochs with the best-fitting model over-plotted. The model is being used as "the official" con-

figuration of the HR 8799 system in works devoted to studies of the dynamical structure of the dust

discs discovered outside the orbit of the outermost planet b as well as inside the orbit of the innermost

planet e (e.g., Contro et al., 2015, 2016; Read et al., 2018). Nevertheless, there are still attempts of find-

ing stable non-resonant configurations (e.g., Götberg et al., 2016). In the recent paper (Goździewski

and Migaszewski, 2018), the method proposed in H1 was further improved and used to analyse the

extended dataset with new observations. The new analysis confirmed the resonant nature of the sys-

tem. More results of this work will be described further in this document.

The method presented in H1 was also used to find a good starting point for the photo-dynamical

analysis of the Kepler-223 system (Mills et al., 2016). The system, discovered by the Kepler mission

(Borucki et al., 2010, 2011), consists of four planets ofmasses in a range of a few Earthmasses, forming

a compact resonant configuration, i.e., the periods of subsequent planets are in ratios of 4:3, 3:2, 4:3.

Similarly to the case of HR 8799, the dynamical compactness of the system as well as weak observa-

tional constraints (the low signal-to-noise ratio, the relatively narrow observing window) caused that

the probability of finding a stable configuration consistent with the observations were very lowwhen

the standard approaches of the orbital model optimisation were used. The method proposed in H1

allowed to find such a configuration and confirm the resonant nature of the system.

The article (Mills et al., 2016), published in Nature together with American astronomers, were not

included in the scientific achievement cycle, because of non-dominant (although important) contribu-

tion of the habilitation candidate. Nevertheless, the use of the method presented in H1 in the analysis

of a system very different from the one for which the method was invented, as well as for different

type of observations, indicate the universality of the approach and the importance of the migration

in the process of formation of the orbital configurations of planets’ masses as well as the linear sizes

from very wide ranges.
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The evolution of two planets in a protoplanetary disc – periodic configurations as final states of

the migration (article H2)

As it was shown in the case of HR 8799, the migration plays an important role in formation of the

orbital configurations of compact multi-planet systems. It is then natural to study the process more

systematically, starting from systems of two planets as well as replacing the parametric model of mi-

gration with the astrophysical model. It was the goal of article H2, wherein the study focused on the

systems with planets of masses in a few Earth mass regime, and with orbital periods ranging from

a few to a few tens of days.

There were two reasons for such a choice. The first one was the fact that thanks to the Keplermission

(Borucki et al., 2010), there are known hundreds of systems with low-mass, short-period planets,

which causes that the results of modelling the migration can be compared with the observed sys-

tems, both individually and in a statistical sense. The second reason was that the small planets do not

disturb the disc evolution significantly, the result of which is that one can use simplified models of

the disc itself as well as the planet-disc interactions, rather than much more time-consuming full hy-

drodynamical simulations. Such an approach makes it possible to study the evolution of the systems

with migrating planets for many different masses and initial orbital parameters.

The direct motivation for the studies presented in H2 was an attempt to explain statistical discrepan-

cies between the histogram of the period ratios resulting from the migration simulations and the one

for the known systems, discovered mainly by the Kepler mission (Fabrycky et al., 2014). It turns out

that the number of systems whose period ratios are close to resonant values of 2/1, 3/2, 4/3, etc., is not

big, i.e., in the histogram of P2/P1 for the observed systems there are no significant maxima around

the resonant values (apart from a weak maximum around the 3:2 MMR).

If the convergent migration was a leading mechanism, the maxima in the histogram should be very

strong and vast majority of the systems should have P2/P1 ≈ (p + 1)/p, because of the dominant role

of the first order MMRs. On the other hand, if the planets migrated mainly divergently, the configu-

rations would not be so compact, i.e., most of the systems would be hierarchical with P2/P1 & 10.

There are several explanations of the discrepancy proposed in the literature. Among them there are

the disc turbulences (Nelson, 2005) or the interactions between the planets and the planetesimals

which left in the system after the disc dispersal (Chatterjee and Ford, 2015). Another proposedmech-

anism is the divergent migration caused by the tidal interactions between the planets and the central

star (Papaloizou, 2011; Batygin and Morbidelli, 2013; Delisle and Laskar, 2014).

It was proposed in H2 that the discrepancy mentioned above could be explained by alternate conver-

gent and divergent migration which results from the complex disc structure as well as its evolution.

The so called α-discmodel was constructed (e.g., Shakura and Sunyaev, 1973), i.e., themodel inwhich

the turbulent viscosity is treated in a simplified way. The disc parameters, i.e., the accretion rate, de-

termined with the value of α, as well as the photo-evaporation rate (Matsuyama et al., 2003), were

chosen such that the disc exists long enough, so the planets of a few Earth masses, starting from the

orbits of sizes of ∼1AU migrate inwards down to the orbital periods ranging from a few up to a few

tens of days. It was shown in this paper that in order to obtain a realistic disc model it was necessary

to account for the opacity dependence on the temperature and density of the disc of gas and dust (the

opacity tables from Semenov et al., 2003, were used).

When at a given time and the astrocentric distance the physical disc parameters are known, the disc-

induced force acting on the planet is being computed with a help of approximated formulae, mainly

from (Paardekooper et al., 2011; Tanaka and Ward, 2004), governing the migration and the circulari-

sation of low-mass planets. The transition into the range of more massive planets was also accounted
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Figure 5: The colour palette illustrates the time-scale of the P2/P1 variation as a function of (P2/P1, a1).

The green colour denotes the convergentmigration, the red colour – divergent. The stronger the colour

is, the faster is the evolution of the period ratio. The arrows form a vector field of a system of two

planets at the (P2/P1, a1)-diagram. The plot corresponds to the planets’ masses of m1 = m2 = 7M⊕
and a given epoch of the evolution of the disc (t = 5 × 105 yr). The plot was taken from H2.

for (Dittkrist et al., 2014). The force computed in this way is being added to the N-body equations of

motion, which are being integrated numerically for the time-interval of ∼3Myr, corresponding to the

disc life-time. The disc model is described in details in H2.

One of the goals of the paper was to illustrate that for different astrocentric distances the planetary

migration may occur in different time-scales, in particular changing its direction. As a consequence

the migration of a given pair of planets may be convergent or divergent, depending on their positions

in the disc. In general, the period ratiomay increase or decrease alternately. Besides that, the disc itself

evolves, which makes the regions of convergent and divergent migration move towards the star. The

combination of these two effects causes that the final result (i.e., the period ratio) may be difficult to

predict without following the evolution during the whole life-time of the disc.

Figure 5 presents the regions of convergent and divergent migration of planets of equal masses of

m1 = m2 = 7M⊕ in a given epoch of the disc evolution. The arrows form the vector field at the

(P2/P1, a1)-diagram. In general, the evolution of the system at the diagram, which varies during the

disc evolution, is very complex. In particular, the inner part of the disc corresponds to the divergent

migration.

A number of 3500 migration simulations for randomly chosen planets’ masses and initial orbits were

performed and presented in H2. The final result was negative in terms of explaining the discrep-

ancy between the observed and synthetic period ratios histograms, however the resulting systems

are characterized with P2/P1 from the whole range of values. Among the final systems there were

very compact configurations with P2/P1 ≈ 1.2 as well as ones with P2/P1 & 2, including hierarchical

systems whose P2/P1 ∼ 10.
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Figure 6: The evolution of four example systems, which are results of the migration simulations in the

evolving disc, presented at the diagrams of resonant anglesφ(1)
2:1
≡ λ1−2λ2+̟1 andφ

(1)
2:1
≡ λ1−2λ2+̟2.

The integration time of the N-body equations of motion is 105 P2. The plots were taken from H2.

The negative result was caused by the fact that the agreement between the synthetic and the observa-

tional statistics of the systems depend strongly on the assumed distribution of the planets’ masses. If

for most of the systems m1 & m2, the P2/P1 histogram lacks of significant maxima around the resonant

values, for the opposite case there are strong maxima, which get stronger when more systems have

m1 . m2. The planets’ masses of significant fraction of the observed systems are known poorly. In

particular, expected amplitudes of the transit timing variation (TTV) are below the measurements

uncertainties for configurations whose P2/P1 are far from the nominal resonant values. Moreover, the

final P2/P1 distribution depends on the distribution of initial orbits, which are unknown. Therefore,

testing the agreement between the period ratio distribution of the synthetic systems with the one of

the observed configurations may be unreliable.

Nevertheless, the study described in H2 resulted in finding a common feature of the systems of dif-

ferent P2/P1 values, which is independent of the issues mentioned above. Almost all the systems re-

sulting from the migration turned out to be periodic configurations. Figure 6 illustrates the evolution

of four example systems at the diagram of the critical angles of the 2:1 resonance. The system I (the

top-left panel) corresponds to the period ratio greater than 2, but very close to the nominal value. The

systems II and III have P2/P1 shifted slightly with respect to 2, i.e., P2/P1 ∼ 1.95 (II) and P2/P1 ∼ 2.05

(III). The system IV has P2/P1 & 2.12.

The phase trajectories of these systems are closed (the plots present projections of the trajectories at

the plane of chosen parameters). Almost all the systems resulting from migration evolve in this way.

The exceptions are the hierarchical systems with high value of P2/P1 and some of the configurations

involved in higher-order resonances. The latter will be explained in H4.

As it was mentioned in the Introduction, the correspondence between the migration and the periodic

orbits have been discussed in the literature (e.g., Ferraz-Mello et al., 2003; Beaugé et al., 2006; Had-

jidemetriou and Voyatzis, 2010). In H2 it was also shown that the exact periodic configurations are
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final states of the migration. The article H5 presents an attempt of showing that the observed systems

may be in fact periodic configurations. The closeness of a given system to the periodic configura-

tion indicates that the migration was smooth (i.e., slow and without additional perturbations caused

by the disc turbulences or the planetesimals). Before describing the results of that work, in the next

section the results of the studies of the migration of three planets will be presented (article H3), as

they bring an additional characteristic of the systems, which could be used to put constraints on the

migration parameters.

The evolution of three planets in a protoplanetary disc – chains of mean motion resonances (arti-

cle H3)

The article H3 presents the results of analogical simulations as in H2, but devoted to three-planet

systems. Similarly to the case of two planets, the migration of subsequent pairs of planets in the three-

planet systems can be convergent or divergent, depending on the planets’ positions in the disc and

well as the evolution stage of the disc itself. Because of a greater number of the orbital parameters,

the structure of the periodic orbits, and as a result the evolution of the three-planet systems, is more

complex than in the problem discussed in H2.

Similarly to the case of the two-planet systems, in which the migration leads to formation of mean

motions resonances, the so called chains of mean motion resonances may be the final results of the

migration of three planets, an example of which is the four-planet system around HR 8799 discussed

earlier. In such a case, subsequent pairs of planets are involved in mean motions resonances, i.e., their

resonant angles librate. As a result, the system of three planets as a whole is involved in a three-body

resonance.

The evolution of an example system of three planets is shown in Fig. 7 (the left panel) as an evolution-

ary path at the diagram of the period ratios. The system starts from the point marked with 0. Initially,

themigration of both the pairs of planets is convergent and the period ratios P2/P1 and P3/P2 decrease

down to the nominal values of the 3:2 and 4:3 resonances (the point marked with 1 at the diagram),

which leads to the resonant synchronisation of the system (the chain of resonances is formed). Be-

cause of the change of the planets’ positions in the disc as well as the change of the disc itself, the

migration becomes divergent and the period ratios P2/P1 and P3/P2 increase – the evolutionary path

passes through points 2 and 3; the evolution direction is shown with the arrow. After reaching the

point of coordinates (∼5/3,∼3/2), which corresponds to the chain of 5:3 and 3:2 resonances, further

evolution occurs along the horizontal line until the point (∼2/1,∼3/2), marked with 4. After passing

through this point, the system continuous the divergent migration (both the period ratios increase),

until reaching point 5, after which the system turns back to point 6. The final result of this complex

evolution is a periodic configuration, which corresponds to the chain of 2:1 and 3:2 MMRs. Therefore,

the phase trajectory of this configuration is closed, what can be seen in the right panel of Fig. 7 as a

projection at the diagram of the differences of the longitudes of pericentres.

The results of 2700 simulations performed for various planets’ masses and the initial orbits are illus-

trated in the left panel of Fig. 8. The black points indicate the positions of the synthetic systems at the

diagram of the period ratios after the disc dispersal. Majority of the points are placed along the grey

curves. The curves correspond to the evolution path of the system illustrated in Fig. 7, more precisely

the fragments of the paths determined by the points 1, 2, 3 as well as 4, 5, 6.

In the case of divergent migration and under the assumption that the system stays in the resonance,

the period ratios x ≡ P2/P1 and y ≡ P3/P2 vary in a strictly defined way. For the chain of first-order

resonances, x ≈ (q + 1)/q and y ≈ (p + 1)/p, the critical angle of the three-body resonance θ ≡ qλ1 −

page 12 of 24



Figure 7: On the left: The evolution of an example system at the period ratios diagram. The evolution

direction is shown with the arrows. Subsequent stages of the evolution are enumerated from 0 (the

beginning of the simulation) up to 6 (the end of the simulation). The horizontal and vertical lines

denote the resonant values. On the right: The N-body evolution of the system after the disc dispersal,

illustrated at the (∆̟1,2,∆̟2,3)-diagram. The plots were taken from H3.

(q + p + 1)λ2 + (p + 1)λ3. If the angle librates, the period ratios x and y are related in a following way:

1

y
= 1 +

q

p + 1
(1 − x) . (2)

The equation defines the evolutionary path of a resonant three-planet configuration migrating diver-

gently. It means that the systemwhich got synchronised in the resonance, remains resonant in a sense

of librating critical angles, even though its further migration is divergent, which results in an increase

of the period ratios with respect to the nominal values of (q + 1)/q and (p + 1)/p.

In a general case of the divergent migration of three planets τ1 < τ2 < τ3, i.e., without the three-body

resonance, the period ratio of each pair of planets evolve independently – x and y increases according

to formulae ẋ = 1.5 x (τ−1
1
−τ−1

2
) and ẏ = 1.5 y (τ−1

2
−τ−1

3
) – therefore, x, ydo not have to vary according to

y(x) given by Eq. 2, which corresponds to the resonant evolution. The location of a given configuration

at such a curve indicates the formation scenario described above.

The left panel of Fig. 8 shows, apart from the synthetic systems mentioned above (the black points),

the positions of known three-planet systems discovered by the Kepler mission (the green points)

within the period ratios range of .1.8. The comparison of the distributions of the black and green

points leads to the conclusion that the known systems do not obey the predicted distribution at the

period ratio diagram.

In order to explain the discrepancy, a series of simulations within the parametric model of migration

were performed (Eq. 1; the right panel of Fig. 8). The migration is initially convergent, which results

in the resonant synchronisation of the system (the θ angle librates). Next, the migration becomes

divergent. The deviation from the nominal values of x = 5/4, y = 4/3 occurs along the curve described

above (the dashed line) if κ is sufficiently high, while already for κ & 25, obtaining a configuration

similar to Kepler-431 cannot be achieved within the scenario presented here (the divergent migration

from the three-body resonance). Only for lower values of κ . 20, it is possible that the system becomes

non-resonant and the period ratios x and y vary independently.
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Figure 8: On the left: The statistics of the synthetic systems resulting from the simulations (the black

points) and of the known systems (the green points), together with the evolutionary paths of res-

onant configurations (the grey curves). On the right: The evolution of three-planet systems within

the parametric model of migration (Eq. 1), under an assumption that the migration which is initially

convergent, changes to divergent after 5Myr. The two simulations differ one from the other with the

value of the κ parameter only. The direction of the evolution is shown with the arrows. The dashed

line denotes the evolutionary path of the system in the 5:4, 4:3 chain of resonance. The red points

indicate the positions of two known three-planet systems, Kepler-60 and Kepler-431. The plots were

taken from H3.

The astrophysical model described in articles H2 and H3 make use of analytic formulae for τa and

τe, which are functions of the disc and planet parameters. The values of κ stemming from the model

are very high ∼1000, which probably results from the too simple physical model of the disc and its

interaction with a planet in an elliptic orbit (Tanaka and Ward, 2004). In fact, the circularisation rate

(and the value of κ as a result) is not well known. For low mass planets it is likely that κ ∼ 30 (Kley

et al., 2009), however in other papers (e.g., Papaloizou and Larwood, 2000; Cresswell and Nelson,

2006) the hydrodynamical simulations lead to circularisation rates even higher than in (Tanaka and

Ward, 2004). The problem of estimating the value of κ is still open.

Therefore, a relatively low value of κ is one of possible conclusions stemming from the comparison

between the results of the simulations and the statistics of the observed configurations. Nevertheless,

if the scenario of the divergent migration of a system in resonance was incorrect, the above reasoning

would not be justified. In fact, the observed systems could have never been in resonance. Another

possible explanation of the discrepancy discussed here is that the migration is not "smooth", i.e., that

one cannot neglect the disc turbulences and/or the planets’ interactions with the planetesimals left

after the disc dispersal. Although the problem remains unresolved, the period ratio distribution at

the (P2/P1,P3/P2)-diagram provides additional informations with respect to what one can infer from

the period ratio histogram alone.
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Figure 9: The evolution of an example system with two planets migrating convergently, for the initial

P2/P1 & 9/7. The positions of the system at the diagrams are shown with blue and pink colours (for

M1 ≈ π, M2 ≈ π) plotted over the branches of periodic orbits (the dashed curves: green for the

first-order resonances 4:3 and 5:4 and red for the 9:7 MMR). The families of periodic configurations

correspond toM1 =M2 = π. The direction of the evolution is shown with the arrows. The fragments

of the evolution in 9:7 MMR are shown in zoom. The planets’ masses m1 = m2 = 6M⊕, the mass of the

star equals the Solar mass. Panels (a) and (b) correspond to almost identical initial conditions (see

the text for details). The plots were taken from H4.

The formation of the second order resonances on an example of 9:7 mean motion resonance (arti-

cle H4)

As it was demonstrated in the two articles described above, the first order mean motion resonances

play an important role in the formation of the orbital configurations as results of planetary migration

in protoplanetary discs. Nevertheless, the migration can lead to the formation of higher order reso-

nances as well. It is more difficult, though, because of the structure of periodic orbits related to such

resonances. The second and higher order resonances as well as the chains of resonances of this sort

were among the results of the simulations presented inH2 andH3, however such configurations were

rare, constituting a few per cent of the sample.

The TTV analysis of the Kepler-29 system presented in (Migaszewski et al., 2017) showed that the

system is likely involved in 9:7 MMR. This result was the motivation of a systematic study of the

process of formation of such a configuration as an example of the second order resonance, which was

the goal of article H4. The parametric model of migration, Eq. 1, was used in the study.

The process of formation of the first order resonance (on the example of 3:2 MMR) was discussed in

the Introduction and illustrated in the top panel of Fig. 2. The family of periodic orbits (the branch

for P2/P1 > 1.5) occupies a wide range of the period ratio and the eccentricity varies slowly with the

change of P2/P1. Because of that, the system parameters vary relatively gradually.

The situation is different in the case of the second order resonance. Figure 9 presents the families of

periodic orbits of the first orderMMR (4:3 and 5:4; the green dashed curve) and the 9:7 resonance (the

red dashed curve). The blue and the pink dots denote the positions of the system at the (P2/P1, a1)-

diagram in moments of time, when both the mean anomalies are close to π.

The branches of periodic orbits are represented by the positions of the configurations at the (P2/P1, e1)-

diagram for fixed phases, i.e., M1 = M2 = π. The initial conditions of the two simulations differ

slightly one from the other by the value of a2, i.e., a2 = 0.11874AU (panel a) and a2 = 0.11875AU

(panel b). The remaining orbital parameters as well as the planets’ masses and the migration param-

eters are the same in both the simulations.

The first part of the evolution is almost identical for both the systems. The period ratio decreases down
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to the nominal value of the 9:7 resonance. Until this moment, the system evolves along the family of

periodic orbits of the 4:3 MMR. The branch of periodic configurations of the 9:7 resonance is almost

perpendicular to it. The further evolution occurs along the red curve, i.e., the period ratio does not

change significantly, while the eccentricities grow up to their equilibrium values.

The difference between the two cases is visible from this point. In the situation presented in panel (a),

the system (more precisely: the point in the phase space representing the state of the system) ap-

proaches the periodic configuration, while in the second case (panel b), the system deviates from it,

and after certain amount of time it evolves towards the branch of periodic orbits of 5:4 MMR.

In the first case, the entrance into the resonance1 is permanent (or stable), since the system evolves

towards the periodic configuration, although because of the finite amount of time (finite life-time of

the disc), the final state of the system may differ from periodic.

In order to better illustrate the behaviour of the system after entering the resonance, the averaged

model of the resonant system was used (Michtchenko and Ferraz-Mello, 2001; Beaugé et al., 2003).

The procedure of the averaging of the Hamiltonian of the system over the so called fast variables

(here, the mean anomalies) results in the reduction of the number of the degrees of freedom as well

as the elimination of the fast variability, i.e., the evolution in time-scales of the order of the orbital

periods. The equilibrium of the averaged system is a counterpart of the periodic configuration in

the full, unaveraged, model. A family of equilibria in the averaged model correspond to a family of

periodic orbits.

Figure 10 presents the evolution of four chosen initial configurations (points I, II, III and IV), each of

which was initially in 9:7 MMR. The evolution is illustrated at the so called representative plane of

initial conditions, i.e., the plane of the eccentricities corresponding to fixed values of the total angular

momentum C and the so called scaling parameter K (Michtchenko and Ferraz-Mello, 2001; Beaugé

et al., 2003). The semi-major axes are then functions of the eccentricities and the integrals C and K.

Additionally, the resonant angles σi ≡ (1 + s)λ2 − sλ1 − ̟i, i = 1, 2, where s = p/q = 7/2 are fixed, i.e.,

(σ1, σ2) = (π/2, π/2) or (σ1, σ2) = (π/2,−π/2).

The point in the centre of the plot (the intersection of the two green curves) denotes the equilibrium

of the system of given values of the integrals C and K, which corresponds to the periodic configuration

of the unaveraged model. The green curves denote the stable periodic configurations of the averaged

system (the red curves correspond to the unstable configurations). The evolution of the periodic con-

figuration of the averaged system occurs, analogically to the case of the full model, along a closed

phase trajectory, with this difference that the phase space is reduced due to the elimination of the

fast variability. For given values of C and K there exist families of periodic orbits parametrised by the

energy integral. Since, after the averaging, the mean system has two degrees of freedom, the periodic

configuration is represented at the Poincaré cross section with a fixed point.

After adding the migration terms to the averaged equations of motion, one can follow the evolution

of a given system at the representative plane (the black curves). The evolution of each initial system

occurs in the first phase parallel to the vertical branch of the periodic orbits, while after reaching the

horizontal branch, the system evolves along it, either towards the equilibrium or away from it.

The systemmarked at the diagram with I starts furthest away from the equilibrium, a result of which

is that the configuration deviates from the resonance centre, and, as a consequence (what is not shown

here), the system leaves the resonance. The dynamical area of the resonance is borderedwith a separa-

trix – the grey points (in fact, the resonance has a complex structure). The remaining configurations

1The entrance of the system into the resonance is understood as a change of the position of the point in the phase space

representing its state from the non-resonant region to the resonant part of the phase space. Analogically, the system may

leave the resonance.
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Figure 10: The representative plane of (e1, e2, σ1, σ2) for (σ1, σ2) = (π/2,±π/2) presenting the energy

levels of the averaged system near the 9:7 MMR (the black thin curves), the stable and unstable peri-

odic configurations (respectively, the green and the red curves). The stable equilibrium is determined

by the crossing of two green curves in the centre of the diagram. The evolution of example systems

with two planets migrating convergently are given by black curves. The blue dots correspond to the

initial configurations, which end the simulations as non-resonant systems. The grey colour denotes

the chaotic evolution. The plot was taken from H4.

II, III and IV evolve towards the equilibrium, therefore they stay in the resonance. The blue points

denote the initial configurations which leave the resonance during the migration, therefore the white

area denotes the convergence zone of the resonance.

As it was shown in Figs. 9 and 10, the decisive factor in the resonance formation is the distance of the

system from the periodic configuration (or the equilibriumwithin the averaged model) directly after

entering the resonance. If the distance is too big, the system will leave the resonance. The existence

and size of the convergence zone depend on the planets’ masses. In particular, it is possible that the

permanent resonance cannot be achieved in a certain mass range (Xu and Lai, 2017). It was shown

in H4 that the existence of such a zone depends also on the equilibrium values of the eccentricities as

well as on the dependence of the migration rate on the astrocentric distance of a planet.

The periodic configurations of the observed planetary systems – the case of Kepler-25 (article H5)

It was shown in H2 and H3 that the smooth migration in the systems of two and three planets results

in the periodic configurations. That refers mainly to the first order resonances or chains of such reso-

nances, however, as demonstrated in H4, systems in the second order MMRs can be close-to-periodic

as well. Therefore, the periodic orbits may be a characteristic feature of the systems formed on theway

of smooth migration. A natural question arises whether the feature can be verified by observations.

Determination of the frequency of periodic or close-to-periodic configurations among the known sys-

tems with two or more planets could help to estimate ranges of the migrations parameters as well

as indicate how important were the disc turbulences or the planets’ interactions with planetesimals

at the early stages of the planetary systems formation. In H5 an attempt was made to determine if a

given system is a periodic configuration.

A system of two planets around Kepler-25 (Steffen et al., 2012) was chosen for the analysis, the period

ratio of which P2/P1 ≈ 2.039, i.e., the system is close to the 2:1 MMR. A relatively good signal-to-noise
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Figure 11: The transit timing variation (TTV) of the Kepler-25 system (the grey points with the error

bars) and the model values for the periodic configuration (the black points). The plots were taken

from H5.

ratio of the TTV aswell as the observingwindow encompassing a fewperiods of the TTVmodulations

were the reasons of that choice. In the group of the systems discovered by the Kepler mission only

few fulfil both the criteria given above, the reason of which will be explained below.

As it was mentioned, a resonant system which is described with the averaged Hamiltonian, can be in

an equilibrium, which is a counterpart of a periodic configuration of a system characterised by the full

Hamiltonian (i.e., unaveraged). The evolution of the system in the equilibrium means, in particular,

that the semi-major axes, eccentricities, as well as the angles ∆̟ ≡ ̟1 − ̟2 and, for the 2:1 MMR,

φ1 ≡ λ1 − 2λ2 + ̟1 (the second resonant angle φ2 ≡ λ1 − 2λ2 + ̟2 = φ1 + ∆̟) are constant. The

constancy ofφ1 and∆̟ (as well as ai, ei) together with the fact that λ̇i ≈ ni for | ˙̟ i| ≪ ni(i = 1, 2), causes

that the orbits of the system in equilibrium rotate uniformlywith a period of T(O-C) = P2/|2−x|, where

x ≡ P2/P1, while their apsidal lines are anti-aligned (∆̟ = π). The period is called the super-period

in the literature (Lithwick et al., 2012).

The apsidal lines rotations, when the remaining orbital parameters are constant, result in the transit

timing variations with respect to the equidistant transit times of the unperturbed Keplerian motion.

That stems from the fact that the orbital motion in an elliptic orbit is uneven, the effect is stronger

for higher eccentricities. The variability of the transit times occurs with a period T(O-C), while the

amplitude with respect to the orbital period is proportional to the eccentricity.

For the Kepler-25 system x ≈ 2.039, which leads, under the assumption of the periodic configuration,

to T(O-C) ≈ 325d, i.e., the value in agreementwith the observations. Since the TTV amplitudes depend

on the eccentricities, which in turn depend on the planets’ masses and the period ratio, it is possible

to determine the latter, i.e., m1 = (10.8 ± 1.1)M⊕ and m2 = (14.5 ± 1.3)M⊕. The observational data are

presented in Fig. 11 together with the model corresponding to the periodic configuration.

As it was mentioned above, the sample of the systems discovered with a help of the transits method

contains only few systems with the TTV signals of both high amplitudes and short periodicity with

respect to the observing window of ∼1500d. The amplitudes increase with a proximity of P2/P1 to

the nominal value. On the other hand, the proximity results in an increase of T(O-C). Therefore, the

systems with P2/P1 � (p + q)/p have usually too long period T(O-C) in order to observe the transit

timing variationswithin the observingwindow of∼1500d. The TTV signals of the systemswith P2/P1

too distant from the nominal value have very small amplitudes. Naturally, for more massive planets

the situation would be better, nevertheless majority of the systems discovered by the Kepler mission

consist of small planets of masses in the range of a few Earth masses.

Finding the periodic configuration which fits the TTV data of the Kepler-25 system does not mean,

though, that the system represents the configuration of this sort. Similarly to the case of HR 8799

(article H1), it is only an assumption, whose consistency with the observations was demonstrated.

In the case of HR 8799 the stability of the resonant system, in contrast with unstable non-resonant
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In H5 there were performed tests which confirmed this presumption. Additionally, the weak depen-

dence of the signals characteristics on the eccentricities (if only they lie at the line defined by∆a-ph = 0)

may cause that the best-fitting models (e.g., in terms of the lowest χ2 values) correspond to relatively

high eccentricities (∼0.1). In fact, the problemwith finding real orbital structures of planetary systems

has a wider context. Correct determination of the orbital parameters is a key issue for the studies of

the formation of given configurations on the way of migration, because these parameters, taken as

known from the observations, serve to find constraints on the migration parameters, and hence on

the parameters of the protoplanetary discs. An incorrect determination of the parameters (and here

the differences are qualitative from the point of view of the migration process) may result in wrong

guidance of this kind of studies.

Conclusions

The process ofmigrationwhich leads to stable resonant systems (the periodic configurations in partic-

ular) made it possible to correctly interpret the astrometric data of the system of four massive planets

around HR 8799 (article H1). It was shown that the system forms a chain of mean motion resonances

8:4:2:1, i.e., each subsequent pair of planets is involved in 2:1 MMR, as well as the whole system forms

the four-body resonance. The system of this sort is stable and consistent with the observations.

In the scientific achievement, a strong relation between the migration of planets in protoplanetary

discs and the structure of periodic configurations was demonstrated (articles H2, H3 and H4). It

was shown that the families of periodic orbits determine the paths in the phase space along which

the systems of migrating planets evolve. It was demonstrated that the smooth migration leads to

formation of exact periodic configurations of the first order resonances, as well as the chains of such

resonances. In the case of the second order resonance, approaching to the exact periodic configuration

is in general more difficult. Nevertheless, it is possible that a given system is close-to-periodic.

Moreover, it was demonstrated in H5 that the Kepler-25 system may be a periodic configuration. Be-

cause of the TTV signal degeneration, the standard methods of the observational data analysis may

lead to incorrect conclusions on the dynamical structure of particular systems. The analysis presented

in H5 repeated for a greater number of systems could allow to find out how common are the periodic

configurations among the known planetary systems and, as a consequence, to put constraints on the

migration parameters.

The sample of the known systems of transiting planets includes at least a few systems whose TTVs

could be modelled with the periodic configurations, as well as a number of systems for which it is not

possible. The article (Panichi et al., 2019) presents an analysis of the KOI-1599 systemwith two planets

close to 3:2MMR,whose TTV signals differ in terms of the periodicity and the amplitudeswith respect

to what could be expected if the system was a periodic configuration. It was demonstrated that if the

entrance into the resonance was sufficiently fast, a system formed in such a process would be shifted

slightly with respect to the periodic configuration. It was shown that the observed TTV signals result

from the semi-major axes modulations, not from the rotation of the system as a whole.

In contrast to the case of the Kepler-25 system, the period ratio of the KOI-1599 is very close to the

nominal value of the resonance. As it was mentioned previously, in such a case the period of the

rotation of the system as a whole (the super-period) is very long. If the system was not shifted with

respect to the periodic configuration, the detection of any TTV variability would be impossible for

the observing window of ∼1500 days, and thus the determination of the orbital and physical param-

eters of the system would not be possible either. The slight deviation of the system from the periodic

configuration allows not only to estimate the migration parameters, but also helps to determine the

parameters of the system itself.
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The scientific achievement described in this document shows that understanding of the mechanical

aspect of the migration (the role of the periodic orbits as attractors for the systems with migrating

planets) allows to correctly determine the parameters of the observed systems. On the other hand, the

systems characteristics obtained in this way (possibly a big number of them) could form the observa-

tional constraints for the astrophysical studies devoted to the discs structure as well as the planet-disc

interactions.

A natural direction of the studies presented in scientific achievement is to analyse the TTV data of

other systems with two and more planets discovered by the Kepler mission and its successor, the K2

mission (Howell et al., 2014) as well as the TESS (Ricker et al., 2015) and PLATO (Rauer et al., 2014)

missions. The aim of the future studies is to find how many systems could have been formed on the

way of migration, as well as to put constraints on the parameters of this process.

5. Discussion of other scientific and research (artistic) achievements:

Before receiving the doctoral degree I dealt with studies of the secular dynamics of non-resonant

(hierarchical) planetary systems, which was the topic of my dissertation, as well as determination of

the orbital and physical parameters of known planetary systems (mainly with a help of the analysis

of the radial velocities of stars).

After obtaining the degree I focused on the evolution of planetary systemswith energy dissipation, on

the resonant dynamics aswell as on the role ofmigration in the formation ofmeanmotion resonances.

Moreover, the analysis of the observed configurations was extended to different types of observations

(mainly the transit timing). Below I present an overview of the articles published after receiving the

doctoral degree, except the articles H1–H5 and the papers inwhichmy contributionwas small (below

10 per cent).

In (Migaszewski andGoździewski, 2011) the secular dynamics of a hierarchical systemof three bodies

within the post-Newtonianmodel ofmotionwas studied. In particular, it was shown that the relativis-

tic corrections are important in a wide range of the masses of the system. Moreover, the limitation of

the applicability of the restricted model in cases of a low-mass outermost object was studied. A part

of the results were described in the doctoral dissertation.

The article (Migaszewski, 2012) was the first paper of mine which goes beyond the conservative secu-

lar dynamics of planetary and stellar systems. In this work there are derived the equations of motion

governing the evolution of the orbit as well as the rotation velocity vectors of two extended objects,

whose figures are non-spherical due to their own rotations and well as the mutual tidal interactions.

Moreover, the post-Newtonian corrections to the gravitation were accounted for. The model also as-

sumes that the system dissipates the mechanical energy due to the tidal perturbation of the velocity

field in the convective zones of the objects. The obtained equations of motion were used to study the

dynamics of a system whose components have masses of the ones of the Sun and Jupiter, and the

orbital period of the order of a few days.

In particular, the analysis was devoted to the boundary at the (a, e)-diagram for the planet fall onto

the star, for different initial rotational periods of the star, inclinations of the orbit with respect to the

stellar equator as well as for different values of the coefficients governing the efficiency of the energy

dissipation in the objects. Moreover, the equilibrium corresponding to the synchronisation of the ro-

tations of both the objects with the orbital motion was studied. It was shown that the equilibrium can

be stable or unstable depending on the orbital size. In the latter case, a small deviation of the system

from the equilibrium results in either falling the planet onto the star or an increase of the orbital size.

The article (Migaszewski et al., 2012) is devoted to the photo-dynamical analysis (i.e., fitting the dy-

namical model to the photometric data) of the six-planet system around Kepler-11 (Lissauer et al.,
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2011). The masses of the planets as well as the orbital parameters were determined in this work. It

was shown, in particular, that the relative inclinations between the orbits of planets b and c as well as

planets d and e can be constrained dynamically with a good precision (<5◦). Moreover, the structure

of multi-body resonances was studied, as well as the dependence of the planets’ densities on the

orbital sizes was discussed.

The aim of the article (Migaszewski et al., 2013) was to test the hypothesis of linear spacing of the

orbits of multi-planet systems (i.e., the sizes of subsequent orbits orbit an ≈ a0 + n∆a). Indeed, some

of the known systems (e.g., Kepler-33) are characterised with this kind of the orbital structure. It

was shown that for certain chains of mean motion resonances (e.g., 7:3, 5:3, 3:2, 4:3), the sizes of

subsequent orbits can be approximated with a good precision by subsequent terms of an arithmetic

progression. Although it seems that looking for statistical regularities of this sort in the knownmulti-

planet configurations were premature, this article pointed my attention to the problem of migration

and chains of mean motion resonances, which helped to develop the method described in H1.

In the next papers (Goździewski et al., 2016; Mills et al., 2016; Migaszewski et al., 2017; Panichi et al.,

2018; Goździewski and Migaszewski, 2018), the problem of planetary migration is considered. The

article (Goździewski et al., 2016) is devoted to the TTV analysis of the three-planet system around

Kepler-60 (Steffen et al., 2012), a result of which was the masses and orbital parameters determi-

nation. The planetary migration was used here as a mechanism of elimination of a certain type of

configurations consistent with the observations, i.e., the three-body resonance which is not a chain

of two-body resonances. On the other hand, it was found that another configuration consistent with

the TTV data (a chain of two-body resonances) is also consistent with the scenario of the migration-

induced formation of the system.

The article (Mills et al., 2016) was mentioned already in this document when discussing the results

of H1. The migration was used here as a process leading to the formation of chains of resonances,

which resulted in finding a good staring point for further analysis of the light curve of the Kepler-223

system and determining the planets’ masses as well as the orbital elements of this system.

The article (Migaszewski et al., 2017) is devoted to the TTV analysis of the two-planet system around

Kepler-29 (Fabrycky et al., 2012) with the period ratio of ∼9/7, in order to determine its physical and

orbital parameters. It was shown that the analysis cannot give a unique set of the system’s parame-

ters. In particular, both close-to-circular orbits as well as the orbits of significant eccentricities ∼0.3,

are allowed by the observations. Moreover, the apsidal lines can be either aligned or anti-aligned

(∆̟ ≈ 0 or ∆̟ ≈ π). It was shown that the migration leads to the systems with ∆̟ ∼ π only, and

with the eccentricities e . 0.02. It was also pointed out that some of the systems consistent with the

observations are close to the periodic configurations. This work was a motivation for the studies of

the migration-induced formation of 9:7 MMR (article H4).

The article (Panichi et al., 2018) is devoted to the TTV analysis of the three-planet system around

Kepler-30 (Fabrycky et al., 2012). The parameters of the system were determined and it was shown

that the system consists of the planets whose masses differ one from another significantly, from the

planet of amass of∼9M⊕ (the innermost one), through the planet of amass of∼23M⊕ (the outermost

one) to the very massive planet of a mass of ∼1.7MJup (the middle one). It was demonstrated that

such a system could have been formed on the way of initially convergent migration, which became di-

vergent. Moreover, the role of the three-body resonances during the divergent phase of the migration

was pointed out.

The article (Goździewski andMigaszewski, 2018)was alreadymentionedwhendiscussing the results

of H1 in the context of refining the initial condition of the HR 8799 system by analysing the extended

set of observations. Nevertheless, it was not the only goal of this work. Another aim was to study the
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structure of the dust discs (belts) discovered in the inner as well as the outer parts of the system. The

inner border of the outer disc was determined to be at ∼145AU (Booth et al., 2016). However, this

border is not consistent with the stability border in the system with the four known planets. In (Read

et al., 2018) the influence of an additional exterior planet on the disc border was studied, concluding

that a good agreement with the observationally determined border can be achieved for the additional

planet of a mass of ∼0.1MJup in the orbit of a ∼ 138AU. One of the results of (Goździewski and

Migaszewski, 2018), was to show that the additional planet is not necessary for the reconstruction

of the disc border. When assuming the migration of the four known planets from the orbits slightly

wider than the ones presently observed, the inner border of the outer dust belt can be shifted up to

the range determined in (Booth et al., 2016).
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