Chapter 8. Sorting

8.0 Introduction

This chapter almost doesn’'t belong in abook on numerical methods. However,
some practical knowledge of techniques for sorting is an indispensable part of any
good programmer’s expertise. We would not want you to consider yourself expert in
numerical techniques while remaining ignorant of so basic a subject.

In conjunction with numerical work, sorting is frequently necessary when data
(either experimental or numerically generated) are being handled. One has tables
or lists of numbers, representing one or more independent (or “control”) variables,
and one or more dependent (or “measured”) variables. One may wish to arrange
these data, in various circumstances, in order by one or another of these variables.
Alternatively, one may simply wish to identify the “median” value, or the “upper
quartile” value of one of the lists of values. This task, closely related to sorting,
is called selection.

Here, more specifically, are the tasks that this chapter will deal with:

e Sort, i.e., rearrange, an array of numbers into numerical order.

e Rearrange an array into numerical order while performing the corre-
sponding rearrangement of one or more additiona arrays, so that the
correspondence between elementsin all arrays is maintained.

e Given an array, prepare an index table for it, i.e, a table of pointers
telling which number array element comes first in numerical order, which
second, and so on.

e Given an array, prepare a rank table for it, i.e.,, atable telling what is
the numerical rank of the first array element, the second array element,
and so on.

e Sdlect the Mth largest element from an array.

For the basic task of sorting N elements, the best agorithms require on the
order of several times NV log, NV operations. The algorithm inventor tries to reduce
the constant in front of this estimate to as small a value as possible. Two of the
best algorithms are Quicksort (§8.2), invented by the inimitable C.A.R. Hoare, and
Heapsort (§8.3), invented by JW.J. Williams.

For large N (say > 1000), Quicksort isfaster, on most machines, by afactor of
1.5or 2; it requires a bit of extramemory, however, and isamoderately complicated
program. Hespsort is a true “sort in place,” and is somewhat more compact to
program and therefore a bit easier to modify for specia purposes. On baance, we
recommend Quicksort because of its speed, but we implement both routines.

329

*(eollBWY YLION 3pISINO) 3N oe'wed dnao@apel) 0] [rewa puas Jo ‘(Ajuo eolswy YLON) £27/-228-008-T |[e2 10 Ju~/wo9’pis pliom//:diny o1 ob
‘sanaysIp pue s)00q sadiday [eauswnp Japio o) "panqiyosd Apouis si ‘1aindwod Jaaias Aue o0y (suo siyy Buipnjoul) sa|i ajgepeal-aulydewl
Jo Buikdoo Aue Jo ‘uononpoidal Jayun4 "asn jeuosiad umo Jisy 1oy Adod Jaded suo axew 01 gaAA SPIA PIHOAA BU) JO SIasn Joj pajueld si
uoissiwlad "alemyos sadipay [eauswnN Aq z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuquwe) Aq z66T-886T (D) WbuAdoD
(S5-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 1V IHL :O NI STdIOTH TvIIHdIANNN wouy abed sjduwres gapn apIm PHOM

330 Chapter 8. Sorting

For small N one does better to use an agorithm whose operation count goes
as a higher, i.e., poorer, power of N, if the constant in front is small enough. For
N < 20, roughly, the method of straight insertion (§8.1) is concise and fast enough.
We include it with some trepidation: It is an N2 agorithm, whose potential for
misuse (by using it for too large an N) is great. The resultant waste of computer
time is so avesome, that we were tempted not to include any N2 routine at all. We
will draw the ling, however, at the inefficient N2 algorithm, beloved of e ementary
computer science texts, called bubble sort. If you know what bubble sort is, wipe it
from your mind; if you don’t know, make a point of never finding out!

For N < 50, roughly, Shell’smethod (§8.1), only slightly more complicated to
program than straight insertion, is competitive with the more complicated Quicksort
on many machines. Thismethod goesas N3/2 intheworst case, butisusually faster.

See references(1,2] for further information on the subject of sorting, and for
detailed references to the literature.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley). [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapters 8-13. [2]

8.1 Straight Insertion and Shell’s Method

Straight insertion is an N2 routine, and should be used only for small N,
sy < 20.

The technique is exactly the one used by experienced card players to sort their
cards: Pick out the second card and put it in order with respect to thefirst; then pick
out the third card and insert it into the sequence among thefirst two; and so on until
the last card has been picked out and inserted.

void piksrt(int n, float arr[])
Sorts an array arr [1. .n] into ascending numerical order, by straight insertion. n is input; arr
is replaced on output by its sorted rearrangement.

{
int i,j;
float a;
for (j=2;j<=n;j++) { Pick out each element in turn.
a=arr[j];
i=j-1;
while (i > 0 && arr[i] > a) { Look for the place to insert it.
arr[i+1]=arr[i];
i--;
}
arr[i+1]=a; Insert it.
}
}

What if you also want to rearrange an array brr at the same time as you sort
arr? Simply move an element of brr whenever you move an e ement of arr:

*(eollaWY YLION 3pISINO) N oe'wed dnao@apel) 0] [rewa puas Jo ‘(Ajuo ealswy YLON) £27/-228-008-T |[e2 10 Ju~/wo9’pis'pliom//:diny o1 ob

‘sanaysIp pue s$)00q sadiday [eauswnp Japio o) "panqiyosd Apouis si ‘1aindwod Jaaias Aue 0y (suo siyy Buipnjoul) saji ajgepeal-aulydew

Jo Buikdoo Aue Jo ‘uononpoidal Jayun4 "asn jeuosiad umo Jiay 1o} Adod Jaded suo axew 01 gaAA SPIA PIHOAA BU) JO SIasn Joj pajueld si
uoissiwlad "aremyos sadioay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuquwe) Aq z66T-886T (D) WbuUAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM

