As for references on this subject, the one to turn to first is Knuth [1]. Then try [2]. Only a few of the standard books on numerical methods [3-4] treat topics relating to random numbers.

## CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming (Reading, MA: Addison-Wesley), Chapter 3, especially §3.5. [1]
Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: SpringerVerlag). [2]
Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall), Chapter 11. [3]
Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10. [4]

### 7.1 Uniform Deviates

Uniform deviates are just random numbers that lie within a specified range (typically 0 to 1 ), with any one number in the range just as likely as any other. They are, in other words, what you probably think "random numbers" are. However, we want to distinguish uniform deviates from other sorts of random numbers, for example numbers drawn from a normal (Gaussian) distribution of specified mean and standard deviation. These other sorts of deviates are almost always generated by performing appropriate operations on one or more uniform deviates, as we will see in subsequent sections. So, a reliable source of random uniform deviates, the subject of this section, is an essential building block for any sort of stochastic modeling or Monte Carlo computer work.

## System-Supplied Random Number Generators

Most C implementations have, lurking within, a pair of library routines for initializing, and then generating, "random numbers." In ANSI C, the synopsis is:

```
#include <stdlib.h>
#define RAND_MAX ...
void srand(unsigned seed);
int rand(void);
```

You initialize the random number generator by invoking srand (seed) with some arbitrary seed. Each initializing value will typically result in a different random sequence, or a least a different starting point in some one enormously long sequence. The same initializing value of seed will always return the same random sequence, however.

You obtain successive random numbers in the sequence by successive calls to rand(). That function returns an integer that is typically in the range 0 to the largest representable positive value of type int (inclusive). Usually, as in ANSI C, this largest value is available as RAND_MAX, but sometimes you have to figure it out for yourself. If you want a random float value between 0.0 (inclusive) and 1.0 (exclusive), you get it by an expression like
$\mathrm{x}=$ rand()/(RAND_MAX+1.0);

Now our first, and perhaps most important, lesson in this chapter is: be very, very suspicious of a system-supplied rand () that resembles the one just described. If all scientific papers whose results are in doubt because of bad rand()s were to disappear from library shelves, there would be a gap on each shelf about as big as your fist. System-supplied rand()s are almost always linear congruential generators, which generate a sequence of integers $I_{1}, I_{2}, I_{3}, \ldots$, each between 0 and $m-1$ (e.g., RAND_MAX) by the recurrence relation

$$
\begin{equation*}
I_{j+1}=a I_{j}+c \quad(\bmod m) \tag{7.1.1}
\end{equation*}
$$

Here $m$ is called the modulus, and $a$ and $c$ are positive integers called the multiplier and the increment respectively. The recurrence (7.1.1) will eventually repeat itself, with a period that is obviously no greater than $m$. If $m, a$, and $c$ are properly chosen, then the period will be of maximal length, i.e., of length $m$. In that case, all possible integers between 0 and $m-1$ occur at some point, so any initial "seed" choice of $I_{0}$ is as good as any other: the sequence just takes off from that point.

Although this general framework is powerful enough to provide quite decent random numbers, its implementation in many, if not most, ANSI C libraries is quite flawed; quite a number of implementations are in the category "totally botched." Blame should be apportioned about equally between the ANSI C committee and the implementors. The typical problems are these: First, since the ANSI standard specifies that rand () return a value of type int - which is only a two-byte quantity on many machines - RAND_MAX is often not very large. The ANSI C standard requires only that it be at least 32767 . This can be disastrous in many circumstances: for a Monte Carlo integration ( $\$ 7.6$ and $\S 7.8$ ), you might well want to evaluate $10^{6}$ different points, but actually be evaluating the same 32767 points 30 times each, not at all the same thing! You should categorically reject any library random number routine with a two-byte returned value.

Second, the ANSI committee's published rationale includes the following mischievous passage: "The committee decided that an implementation should be allowed to provide a rand function which generates the best random sequence possible in that implementation, and therefore mandated no standard algorithm. It recognized the value, however, of being able to generate the same pseudo-random sequence in different implementations, and so it has published an example.... [emphasis added]" The "example" is

```
unsigned long next=1;
int rand(void) /* NOT RECOMMENDED (see text) */
{
    next = next*1103515245 + 12345;
    return (unsigned int)(next/65536) % 32768;
}
void srand(unsigned int seed)
{
    next=seed;
}
```

This corresponds to equation (7.1.1) with $a=1103515245, c=12345$, and $m=2^{32}$ (since arithmetic done on unsigned long quantities is guaranteed to return the correct low-order bits). These are not particularly good choices for $a$ and $c$, though they are not gross embarrassments by themselves. The real botches occur when implementors, taking the committee's statement above as license, try to "improve" on the published example. For example, one popular 32-bit PC-compatible compiler provides a long generator that uses the above congruence, but swaps the high-order and low-order 16 bits of the returned value. Somebody probably thought that this extra flourish added randomness; in fact it ruins the generator. While these kinds of blunders can, of course, be fixed, there remains a fundamental flaw in simple linear congruential generators, which we now discuss.

The linear congruential method has the advantage of being very fast, requiring only a few operations per call, hence its almost universal use. It has the disadvantage that it is not free of sequential correlation on successive calls. If $k$ random numbers at a time are used to plot points in $k$ dimensional space (with each coordinate between 0 and 1), then the points will not tend to "fill up" the $k$-dimensional space, but rather will lie on $(k-1)$-dimensional "planes." There will be at most about $m^{1 / k}$ such planes. If the constants $m, a$, and $c$ are not very carefully chosen, there will be many fewer than that. If $m$ is as bad as 32768 , then the number of planes on which triples of points lie in three-dimensional space will be no greater than about the cube root of 32768 , or 32 . Even if $m$ is close to the machine's largest representable integer, e.g., $\sim 2^{32}$, the number of planes on which triples of points lie in three-dimensional space is usually no greater than about the cube root of $2^{32}$, about 1600 . You might well be focusing attention on a physical process that occurs in a small fraction of the total volume, so that the discreteness of the planes can be very pronounced.

Even worse, you might be using a generator whose choices of $m, a$, and $c$ have been botched. One infamous such routine, RANDU, with $a=65539$ and $m=2^{31}$, was widespread on IBM mainframe computers for many years, and widely copied onto other systems [1]. One of us recalls producing a "random" plot with only 11 planes, and being told by his computer center's programming consultant that he had misused the random number generator: "We guarantee that each number is random individually, but we don't guarantee that more than one of them is random." Figure that out.

Correlation in $k$-space is not the only weakness of linear congruential generators. Such generators often have their low-order (least significant) bits much less random than their high-order bits. If you want to generate a random integer between 1 and 10 , you should always do it using high-order bits, as in

$$
j=1+(\text { int })(10.0 * r a n d() /(\text { RAND_MAX }+1.0)) ;
$$

and never by anything resembling

```
j=1+(rand() % 10);
```

(which uses lower-order bits). Similarly you should never try to take apart a "rand()" number into several supposedly random pieces. Instead use separate calls for every piece.

## Portable Random Number Generators

Park and Miller [1] have surveyed a large number of random number generators that have been used over the last 30 years or more. Along with a good theoretical review, they present an anecdotal sampling of a number of inadequate generators that have come into widespread use. The historical record is nothing if not appalling.

There is good evidence, both theoretical and empirical, that the simple multiplicative congruential algorithm

$$
\begin{equation*}
I_{j+1}=a I_{j} \quad(\bmod m) \tag{7.1.2}
\end{equation*}
$$

can be as good as any of the more general linear congruential generators that have $c \neq 0$ (equation 7.1.1) - if the multiplier $a$ and modulus $m$ are chosen exquisitely carefully. Park and Miller propose a "Minimal Standard" generator based on the choices

$$
\begin{equation*}
a=7^{5}=16807 \quad m=2^{31}-1=2147483647 \tag{7.1.3}
\end{equation*}
$$

First proposed by Lewis, Goodman, and Miller in 1969, this generator has in subsequent years passed all new theoretical tests, and (perhaps more importantly) has accumulated a large amount of successful use. Park and Miller do not claim that the generator is "perfect" (we will see below that it is not), but only that it is a good minimal standard against which other generators should be judged.

It is not possible to implement equations (7.1.2) and (7.1.3) directly in a high-level language, since the product of $a$ and $m-1$ exceeds the maximum value for a 32-bit integer. Assembly language implementation using a 64 -bit product register is straightforward, but not portable from machine to machine. A trick due to Schrage $[2,3]$ for multiplying two 32 -bit integers modulo a 32-bit constant, without using any intermediates larger than 32 bits (including a sign bit) is therefore extremely interesting: It allows the Minimal Standard generator to be implemented in essentially any programming language on essentially any machine.

Schrage's algorithm is based on an approximate factorization of $m$,

$$
\begin{equation*}
m=a q+r, \quad \text { i.e., } \quad q=[m / a], r=m \bmod a \tag{7.1.4}
\end{equation*}
$$

with square brackets denoting integer part. If $r$ is small, specifically $r<q$, and $0<z<m-1$, it can be shown that both $a(z \bmod q)$ and $r[z / q]$ lie in the range $0, \ldots, m-1$, and that

$$
a z \bmod m= \begin{cases}a(z \bmod q)-r[z / q] & \text { if it is } \geq 0,  \tag{7.1.5}\\ a(z \bmod q)-r[z / q]+m & \text { otherwise }\end{cases}
$$

The application of Schrage's algorithm to the constants (7.1.3) uses the values $q=127773$ and $r=2836$.

Here is an implementation of the Minimal Standard generator:

```
#define IA 16807
#define IM 2147483647
#define AM (1.0/IM)
#define IQ 127773
#define IR 2836
#define MASK 123459876
float ran0(long *idum)
"Minimal" random number generator of Park and Miller. Returns a uniform random deviate
between 0.0 and 1.0. Set or reset idum to any integer value (except the unlikely value MASK)
to initialize the sequence; idum must not be altered between calls for successive deviates in
a sequence.
{
    long k;
    float ans;
    *idum "= MASK;
    XORing with MASK allows use of zero and other
    k=(*idum)/IQ;
    *idum=IA*(*idum-k*IQ)-IR*k;
    if (*idum < 0) *idum += IM;
    ans=AM* (*idum);
    *idum "= MASK;
    return ans;
}
XORing with MASK allows use of zero and other simple bit patterns for idum.
Compute idum=(IA*idum) \% IM without overflows by Schrage's method.
Convert idum to a floating result.
Unmask before return.
\}
```

The period of ran0 is $2^{31}-2 \approx 2.1 \times 10^{9}$. A peculiarity of generators of the form (7.1.2) is that the value 0 must never be allowed as the initial seed - it perpetuates itself - and it never occurs for any nonzero initial seed. Experience has shown that users always manage to call random number generators with the seed idum=0. That is why ran0 performs its exclusive-or with an arbitrary constant both on entry and exit. If you are the first user in history to be proof against human error, you can remove the two lines with the $\wedge$ operation.

Park and Miller discuss two other multipliers $a$ that can be used with the same $m=2^{31}-1$. These are $a=48271$ (with $q=44488$ and $r=3399$ ) and $a=69621$ (with $q=30845$ and $r=23902$ ). These can be substituted in the routine ran0 if desired; they may be slightly superior to Lewis et al.'s longer-tested values. No values other than these should be used.

The routine ran0 is a Minimal Standard, satisfactory for the majority of applications, but we do not recommend it as the final word on random number generators. Our reason is precisely the simplicity of the Minimal Standard. It is not hard to think of situations where successive random numbers might be used in a way that accidentally conflicts with the generation algorithm. For example, since successive numbers differ by a multiple of only $1.6 \times 10^{4}$ out of a modulus of more than $2 \times 10^{9}$, very small random numbers will tend to be followed by smaller than average values. One time in $10^{6}$, for example, there will be a value $<10^{-6}$ returned (as there should be), but this will always be followed by a value less than about 0.0168 . One can easily think of applications involving rare events where this
 is granted for users of the World Wide Web to make one paper copy for their own personal use. Further reproduction, or any copying of World Wide Web sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)
Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permis
them, we think that it is prudent to do so.
The following routine, ran1, uses the Minimal Standard for its random value, but it shuffles the output to remove low-order serial correlations. A random deviate derived from the $j$ th value in the sequence, $I_{j}$, is output not on the $j$ th call, but rather on a randomized later call, $j+32$ on average. The shuffling algorithm is due to Bays and Durham as described in Knuth [4], and is illustrated in Figure 7.1.1.

```
#define IA 16807
#define IM 2147483647
#define AM (1.0/IM)
#define IQ 127773
#define IR 2836
#define NTAB 32
#define NDIV (1+(IM-1)/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)
float ran1(long *idum)
"Minimal" random number generator of Park and Miller with Bays-Durham shuffle and added
safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint
values). Call with idum a negative integer to initialize; thereafter, do not alter idum between
successive deviates in a sequence. RNMX should approximate the largest floating value that is
less than 1.
{
    int j;
    long k;
    static long iy=0;
    static long iv[NTAB];
    float temp;
    if (*idum <= 0 || !iy) { Initialize.
        if (-(*idum) < 1) *idum=1; Be sure to prevent idum = 0.
        else *idum = -(*idum);
        for ( }j=NTAB+7;j>=0;j--) { Load the shuffle table (after 8 warm-ups)
            k=(*idum)/IQ;
            *idum=IA*(*idum-k*IQ)-IR*k;
            if (*idum < 0) *idum += IM;
            if (j < NTAB) iv[j] = *idum;
        }
        iy=iv[0];
    }
    k=(*idum)/IQ; Start here when not initializing
    *idum=IA*(*idum-k*IQ)-IR*k; Compute idum=(IA*idum) % IM without over-
    if (*idum < 0) *idum += IM; flows by Schrage's method.
    j=iy/NDIV;
    Will be in the range 0..NTAB-1.
    iy=iv[j]; Output previously stored value and refill the
    iv[j] = *idum;
        shuffle table.
    if ((temp=AM*iy) > RNMX) return RNMX; Because users don't expect endpoint values.
    else return temp;
}
```

The routine ran1 passes those statistical tests that ran0 is known to fail. In


Figure 7.1.1. $\quad$ Shuffling procedure used in ran1 to break up sequential correlations in the Minimal Standard generator. Circled numbers indicate the sequence of events: On each call, the random number in iy is used to choose a random element in the array iv. That element becomes the output random number, and also is the next iy. Its spot in iv is refilled from the Minimal Standard routine.
either of them (call it $m$ ). A trick to avoid an intermediate value that overflows the integer wordsize is to subtract rather than add, and then add back the constant $m-1$ if the result is $\leq 0$, so as to wrap around into the desired interval $0, \ldots, m-1$.

Notice that it is not necessary that this wrapped subtraction be able to reach all values $0, \ldots, m-1$ from every value of the first sequence. Consider the absurd extreme case where the value subtracted was only between 1 and 10: The resulting sequence would still be no less random than the first sequence by itself. As a practical matter it is only necessary that the second sequence have a range covering substantially all of the range of the first. L'Ecuyer recommends the use of the two generators $m_{1}=2147483563$ (with $a_{1}=40014, q_{1}=53668, r_{1}=12211$ ) and $m_{2}=2147483399$ (with $a_{2}=40692, q_{2}=52774, r_{2}=3791$ ). Both moduli are slightly less than $2^{31}$. The periods $m_{1}-1=2 \times 3 \times 7 \times 631 \times 81031$ and $m_{2}-1=2 \times 19 \times 31 \times 1019 \times 1789$ share only the factor 2 , so the period of the combined generator is $\approx 2.3 \times 10^{18}$. For present computers, period exhaustion is a practical impossibility.

Combining the two generators breaks up serial correlations to a considerable extent. We nevertheless recommend the additional shuffle that is implemented in the following routine, ran2. We think that, within the limits of its floating-point precision, ran2 provides perfect random numbers; a practical definition of "perfect" is that we will pay $\$ 1000$ to the first reader who convinces us otherwise (by finding a statistical test that ran2 fails in a nontrivial way, excluding the ordinary limitations of a machine's floating-point representation).

```
#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 }4001
#define IA2 40692
#define IQ1 }5366
#define IQ2 }5277
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)
float ran2(long *idum)
Long period (>2 < 10 18) random number generator of L'Ecuyer with Bays-Durham shuffle
and added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of
the endpoint values). Call with idum a negative integer to initialize; thereafter, do not alter
idum between successive deviates in a sequence. RNMX should approximate the largest floating
value that is less than 1.
{
    int j;
    long k;
    static long idum2=123456789;
    static long iy=0;
    static long iv[NTAB];
    float temp;
    if (*idum <= 0) {
    Initialize.
        if (-(*idum) < 1) *idum=1; Be sure to prevent idum = 0.
        else *idum = -(*idum);
        idum2=(*idum);
        for ( }j=NTAB+7;j>=0;j--) { Load the shuffle table (after 8 warm-ups)
            k=(*idum)/IQ1;
            *idum=IA1*(*idum-k*IQ1)-k*IR1;
            if (*idum < O) *idum += IM1;
            if (j < NTAB) iv[j] = *idum;
        }
        iy=iv[0];
    }
    k=(*idum)/IQ1; Start here when not initializing.
    *idum=IA1*(*idum-k*IQ1)-k*IR1; Compute idum=(IA1*idum)% IM1 without
    if (*idum < 0) *idum += IM1;
        overflows by Schrage's method.
    k=idum2/IQ2;
    idum2=IA2*(idum2-k*IQ2)-k*IR2; Compute idum2=(IA2*idum) % IM2 likewise.
    if (idum2 < 0) idum2 += IM2;
    j=iy/NDIV;
    iy=iv[j]-idum2; Here idum is shuffled, idum and idum2 are
    iv[j] = *idum; combined to generate output.
    Will be in the range 0..NTAB-1.
    if (iy < 1) iy += IMM1;
    if ((temp=AM*iy) > RNMX) return RNMX; Because users don't expect endpoint values.
    else return temp;
}
```

L'Ecuyer [6] lists additional short generators that can be combined into longer ones, including generators that can be implemented in 16-bit integer arithmetic.

Finally, we give you Knuth's suggestion [4] for a portable routine, which we have translated to the present conventions as ran3. This is not based on the linear congruential method at all, but rather on a subtractive method (see also [5]). One might hope that its weaknesses, if any, are therefore of a highly different character
from the weaknesses, if any, of ran1 above. If you ever suspect trouble with one routine, it is a good idea to try the other in the same application. ran3 has one nice feature: if your machine is poor on integer arithmetic (i.e., is limited to 16 -bit integers), you can declare $\mathrm{mj}, \mathrm{mk}$, and ma[] as float, define mbig and mseed as 4000000 and 1618033, respectively, and the routine will be rendered entirely floating-point.

```
#define MBIG 1000000000
#define MSEED 161803398
#define MZ O
#define FAC (1.0/MBIG)
According to Knuth, any large MBIG, and any smaller (but still large) MSEED can be substituted
for the above values.
float ran3(long *idum)
Returns a uniform random deviate between 0.0 and 1.0. Set idum to any negative value to
initialize or reinitialize the sequence.
{
    static int inext,inextp;
    static long ma[56]; The value 56 (range ma[1..55]) is special and
    static int iff=0; should not be modified; see Knuth.
    long mj,mk;
    int i,ii,k;
    if (*idum < 0 || iff == 0) { Initialization.
        iff=1;
        mj=MSEED-(*idum < 0 ? -*idum : *idum); Initialize ma[55] using the seed
        mj %= MBIG; idum and the large number
        ma[55]=mj; MSEED.
        mk=1;
        for (i=1;i<=54;i++) { Now initialize the rest of the table,
            ii=(21*i) % 55; in a slightly random order,
            ma[ii]=mk; with numbers that are not especially random.
            mk=mj-mk;
            if (mk < MZ) mk += MBIG;
        mj=ma[ii];
        }
        for (k=1;k<=4;k++) We randomize them by "warming up the gener-
            for (i=1;i<=55;i++) { ator."
                ma[i] -= ma[1+(i+30) % 55];
                if (ma[i] < MZ) ma[i] += MBIG;
            }
        inext=0; 年 Prepare indices for our first generated number.
        inext=0; 年 Prepare indices for our first generated number.
        inext=0; }\quad\mathrm{ Prepare indices for our first generated number.
        *idum=1;
    }
    Here is where we start, except on initialization.
    if (++inext == 56) inext=1; Increment inext and inextp, wrapping around
    if (++inextp == 56) inextp=1;
    mj=ma[inext]-ma[inextp];
    if (++inext == 56) inext=1; Increment inext and inextp, wrapping around
        56 to 1.
    if (mj < MZ) mj += MBIG; Be sure that it is in range.
    ma[inext]=mj; Store it,
    return mj*FAC;
}
Now initialize the rest of the table,
in a slightly random order, with numbers that are not especially random.
        Generate a new random number subtractively.
                                Store it,
                                and output the derived uniform deviate.
```



## Quick and Dirty Generators

One sometimes would like a "quick and dirty" generator to embed in a program, perhaps taking only one or two lines of code, just to somewhat randomize things. One might wish to
process data from an experiment not always in exactly the same order, for example, so that the first output is more "typical" than might otherwise be the case.

For this kind of application, all we really need is a list of "good" choices for $m, a$, and $c$ in equation (7.1.1). If we don't need a period longer than $10^{4}$ to $10^{6}$, say, we can keep the value of $(m-1) a+c$ small enough to avoid overflows that would otherwise mandate the extra complexity of Schrage's method (above). We can thus easily embed in our programs

```
unsigned long jran,ia,ic,im;
float ran;
jran=(jran*ia+ic) % im;
ran=(float) jran / (float) im;
```

whenever we want a quick and dirty uniform deviate, or

```
jran=(jran*ia+ic) % im;
j=jlo+((jhi-jlo+1)*jran)/im;
```

whenever we want an integer between jlo and jhi , inclusive. (In both cases jran was once initialized to any seed value between 0 and im-1.)

Be sure to remember, however, that when im is small, the $k$ th root of it, which is the number of planes in $k$-space, is even smaller! So a quick and dirty generator should never be used to select points in $k$-space with $k>1$.

With these caveats, some "good" choices for the constants are given in the accompanying table. These constants (i) give a period of maximal length im, and, more important, (ii) pass Knuth's "spectral test" for dimensions $2,3,4,5$, and 6 . The increment ic is a prime, close to the value $\left(\frac{1}{2}-\frac{1}{6} \sqrt{3}\right) \mathrm{im}$; actually almost any value of ic that is relatively prime to im will do just as well, but there is some "lore" favoring this choice (see [4], p. 84).

## An Even Quicker Generator

In C, if you multiply two unsigned long int integers on a machine with a 32-bit long integer representation, the value returned is the low-order 32 bits of the true 64 -bit product. If we now choose $m=2^{32}$, the "mod" in equation (7.1.1) is free, and we have simply

$$
\begin{equation*}
I_{j+1}=a I_{j}+c \tag{7.1.6}
\end{equation*}
$$

Knuth suggests $a=1664525$ as a suitable multiplier for this value of $m$. H.W. Lewis has conducted extensive tests of this value of $a$ with $c=1013904223$, which is a prime close to $(\sqrt{5}-2) m$. The resulting in-line generator (we will call it ranqd1) is simply

```
unsigned long idum;
idum = 1664525L*idum + 1013904223L;
```

This is about as good as any 32-bit linear congruential generator, entirely adequate for many uses. And, with only a single multiply and add, it is very fast.

To check whether your machine has the desired integer properties, see if you can

| Constants for Quick and Dirty Random Number Generators |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| overflow at | im | ia | ic | overflow at | im | ia | ic |
| $2^{20}$ | 6075 | 106 | 1283 |  | 86436 | 1093 | 18257 |
|  |  |  |  |  | 121500 | 1021 | 25673 |
| $2^{21}$ | 7875 | 211 | 1663 |  | 259200 | 421 | 54773 |
|  |  |  |  | $2^{27}$ |  |  |  |
| $2^{22}$ | 7875 | 421 | 1663 |  | 117128 | 1277 | 24749 |
|  |  |  |  |  | 121500 | 2041 | 25673 |
|  | 6075 | 1366 | 1283 |  | 312500 | 741 | 66037 |
|  | 6655 | 936 | 1399 | $2^{28}$ |  |  |  |
| $2^{23}$ | 11979 | 430 | 2531 |  | 145800 | 3661 | 30809 |
|  |  |  |  |  | 175000 | 2661 | 36979 |
|  | 14406 | 967 | 3041 |  | 233280 | 1861 | 49297 |
|  | 29282 | 419 | 6173 |  | 244944 | 1597 | 51749 |
|  | 53125 | 171 | 11213 | $2^{29}$ |  |  |  |
| $2^{24}$ |  |  |  |  | 139968 | 3877 | 29573 |
|  | 12960 | 1741 | 2731 |  | 214326 | 3613 | 45289 |
|  | 14000 | 1541 | 2957 |  | 714025 | 1366 | 150889 |
|  | 21870 | 1291 | 4621 | $2^{30}$ |  |  |  |
|  | 31104 | 625 | 6571 |  | 134456 | 8121 | 28411 |
|  | 139968 | 205 | 29573 |  | 259200 | 7141 | 54773 |
| $2^{25}$ |  |  |  | $2^{31}$ |  |  |  |
|  | 29282 | 1255 | 6173 |  | 233280 | 9301 | 49297 |
|  | 81000 | 421 | 17117 |  | 714025 | 4096 | 150889 |
|  | 134456 |  | 28411 | $2^{32}$ |  |  |  |

```
    unsigned long idum,itemp;
    float rand;
#ifdef vax
    static unsigned long jflone = 0x00004080;
    static unsigned long jflmsk = 0xffff007f;
#else
    static unsigned long jflone = 0x3f800000;
    static unsigned long jflmsk = 0x007fffff;
#endif
    idum = 1664525L*idum + 1013904223L;
    itemp = jflone | (jflmsk & idum);
    rand = (*(float *)&itemp)-1.0;
```

The hex constants 3 F800000 and 007FFFFF are the appropriate ones for computers using the IEEE representation for 32-bit floating-point numbers (e.g., IBM PCs and most UNIX workstations). For DEC VAXes, the correct hex constants are, respectively, 00004080 and FFFF007F. Notice that the IEEE mask results in the floating-point number being constructed out of the 23 low-order bits of the integer, which is not ideal. (Your authors have tried very hard to make almost all of the material in this book machine and compiler independent - indeed, even programming language independent. This subsection is a rare aberration. Forgive us. Once in a great while the temptation to be really dirty is just irresistible.)

## Relative Timings and Recommendations

Timings are inevitably machine dependent. Nevertheless the following table is indicative of the relative timings, for typical machines, of the various uniform
generators discussed in this section, plus ran4 from §7.5. Smaller values in the table indicate faster generators. The generators ranqd1 and ranqd2 refer to the "quick and dirty" generators immediately above.

| Generator | Relative Execution Time |
| :---: | :---: |
| ran0 | $\equiv 1.0$ |
| ran1 | $\approx 1.3$ |
| ran2 | $\approx 2.0$ |
| ran3 | $\approx 0.6$ |
| ranqd1 | $\approx 0.10$ |
| ranqd2 | $\approx 0.25$ |
| ran4 | $\approx 4.0$ |

On balance, we recommend ran1 for general use. It is portable, based on Park and Miller's Minimal Standard generator with an additional shuffle, and has no known (to us) flaws other than period exhaustion.

If you are generating more than $100,000,000$ random numbers in a single calculation (that is, more than about $5 \%$ of ran1's period), we recommend the use of ran2, with its much longer period.

Knuth's subtractive routine ran3 seems to be the timing winner among portable routines. Unfortunately the subtractive method is not so well studied, and not a standard. We like to keep ran3 in reserve for a "second opinion," substituting it when we suspect another generator of introducing unwanted correlations into a calculation.

The routine ran 4 generates extremely good random deviates, and has some other nice properties, but it is slow. See $\S 7.5$ for discussion.

Finally, the quick and dirty in-line generators ranqd1 and ranqd2 are very fast, but they are somewhat machine dependent, and at best only as good as a 32-bit linear congruential generator ever is - in our view not good enough in many situations. We would use these only in very special cases, where speed is critical.

CITED REFERENCES AND FURTHER READING:
Park, S.K., and Miller, K.W. 1988, Communications of the ACM, vol. 31, pp. 1192-1201. [1]
Schrage, L. 1979, ACM Transactions on Mathematical Software, vol. 5, pp. 132-138. [2]
Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: SpringerVerlag). [3]
Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming (Reading, MA: Addison-Wesley), §§3.2-3.3. [4]
Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 10. [5]
L'Ecuyer, P. 1988, Communications of the ACM, vol. 31, pp. 742-774. [6]
Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10.

### 7.2 Transformation Method: Exponential and Normal Deviates

In the previous section, we learned how to generate random deviates with a uniform probability distribution, so that the probability of generating a number between $x$ and $x+d x$, denoted $p(x) d x$, is given by

$$
p(x) d x= \begin{cases}d x & 0<x<1  \tag{7.2.1}\\ 0 & \text { otherwise }\end{cases}
$$

The probability distribution $p(x)$ is of course normalized, so that

$$
\begin{equation*}
\int_{-\infty}^{\infty} p(x) d x=1 \tag{7.2.2}
\end{equation*}
$$

Now suppose that we generate a uniform deviate $x$ and then take some prescribed function of it, $y(x)$. The probability distribution of $y$, denoted $p(y) d y$, is determined by the fundamental transformation law of probabilities, which is simply

$$
\begin{equation*}
|p(y) d y|=|p(x) d x| \tag{7.2.3}
\end{equation*}
$$

or

$$
\begin{equation*}
p(y)=p(x)\left|\frac{d x}{d y}\right| \tag{7.2.4}
\end{equation*}
$$

## Exponential Deviates

As an example, suppose that $y(x) \equiv-\ln (x)$, and that $p(x)$ is as given by equation (7.2.1) for a uniform deviate. Then

$$
\begin{equation*}
p(y) d y=\left|\frac{d x}{d y}\right| d y=e^{-y} d y \tag{7.2.5}
\end{equation*}
$$

which is distributed exponentially. This exponential distribution occurs frequently in real problems, usually as the distribution of waiting times between independent Poisson-random events, for example the radioactive decay of nuclei. You can also easily see (from 7.2.4) that the quantity $y / \lambda$ has the probability distribution $\lambda e^{-\lambda y}$.

So we have
\#include <math.h>
float expdev(long *idum)
Returns an exponentially distributed, positive, random deviate of unit mean, using ran1 (idum) as the source of uniform deviates.
\{
float ran1(long *idum);
float dum;
do
dum=ran1 (idum);
while (dum == 0.0);
return $-\log (d u m)$;
\}

