
762 Chapter 17. Two Point Boundary Value Problems

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

for (i=1;i<=n;i++) f[i]=f1[i]-f2[i];
free_vector(y,1,nvar);
free_vector(f2,1,nvar);
free_vector(f1,1,nvar);

}

There are boundary value problems where even shooting to a fitting point fails
— the integration interval has to be partitioned by several fitting points with the
solution being matched at each such point. For more details see [1].

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§7.3.5–7.3.6. [1]

17.3 Relaxation Methods

In relaxation methods we replace ODEs by approximate finite-difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As a typical example,
we could replace a general first-order differential equation

dy

dx
= g(x, y) (17.3.1)

with an algebraic equation relating function values at two points k, k − 1:

yk − yk−1 − (xk − xk−1) g
[

1
2 (xk + xk−1), 1

2 (yk + yk−1)
]

= 0 (17.3.2)

The form of the FDE in (17.3.2) illustrates the idea, but not uniquely: There are many
ways to turn the ODE into an FDE. When the problem involvesN coupled first-order ODEs
represented by FDEs on a mesh of M points, a solution consists of values for N dependent
functions given at each of the M mesh points, or N ×M variables in all. The relaxation
method determines the solution by starting with a guess and improving it, iteratively. As the
iterations improve the solution, the result is said to relax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi-
dimensional Newton’s method, works well. The method produces a matrix equation that
must be solved, but the matrix takes a special, “block diagonal” form, that allows it to be
inverted far more economically both in time and storage than would be possible for a general
matrix of size (MN) × (MN). Since MN can easily be several thousand, this is crucial
for the feasibility of the method.

Our implementation couples at most pairs of points, as in equation
(17.3.2). More points can be coupled, but then the method becomes more complex.
We will provide enough background so that you can write a more general scheme if you
have the patience to do so.

Let us develop a general set of algebraic equations that represent the ODEs by FDEs. The
ODE problem is exactly identical to that expressed in equations (17.0.1)–(17.0.3) where we
hadN coupledfirst-order equations that satisfyn1 boundary conditions atx1 andn2 = N−n1

boundary conditions at x2. We first define a mesh or grid by a set of k = 1, 2, ...,M points
at which we supply values for the independent variable xk. In particular, x1 is the initial
boundary, and xM is the final boundary. We use the notation yk to refer to the entire set of

17.3 Relaxation Methods 763

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

dependent variables y1, y2, . . . , yN at point xk. At an arbitrary point k in the middle of the
mesh, we approximate the set of N first-order ODEs by algebraic relations of the form

0 = Ek ≡ yk − yk−1 − (xk − xk−1)gk(xk, xk−1, yk, yk−1), k = 2, 3, . . . ,M (17.3.3)

The notation signifies that gk can be evaluated using information from both points k, k − 1.
The FDEs labeled by Ek provide N equations coupling 2N variables at points k, k − 1.
There are M − 1 points, k = 2, 3, . . . ,M , at which difference equations of the form (17.3.3)
apply. Thus the FDEs provide a total of (M − 1)N equations for the MN unknowns. The
remaining N equations come from the boundary conditions.

At the first boundary we have

0 = E1 ≡ B(x1, y1) (17.3.4)

while at the second boundary

0 = EM+1 ≡ C(xM , yM) (17.3.5)

The vectors E1 and B have only n1 nonzero components, corresponding to the n1 boundary
conditions at x1. It will turn out to be useful to take these nonzero components to be the
last n1 components. In other words, Ej,1 6= 0 only for j = n2 + 1, n2 + 2, . . . , N . At
the other boundary, only the first n2 components of EM+1 and C are nonzero: Ej,M+1 6= 0
only for j = 1, 2, . . . , n2.

The “solution” of the FDE problem in (17.3.3)–(17.3.5) consists of a set of variables
yj,k, the values of the N variables yj at the M points xk. The algorithm we describe
below requires an initial guess for the yj,k. We then determine increments ∆yj,k such that
yj,k + ∆yj,k is an improved approximation to the solution.

Equations for the increments are developed by expanding the FDEs in first-order Taylor
series with respect to small changes ∆yk. At an interior point, k = 2, 3, . . . ,M this gives:

Ek(yk + ∆yk, yk−1 + ∆yk−1) ≈ Ek(yk, yk−1)

+
N∑
n=1

∂Ek
∂yn,k−1

∆yn,k−1 +
N∑
n=1

∂Ek
∂yn,k

∆yn,k
(17.3.6)

For a solution we want the updated value E(y + ∆y) to be zero, so the general set of equations
at an interior point can be written in matrix form as

N∑
n=1

Sj,n∆yn,k−1 +

2N∑
n=N+1

Sj,n∆yn−N,k = −Ej,k , j = 1, 2, . . . , N (17.3.7)

where

Sj,n =
∂Ej,k
∂yn,k−1

, Sj,n+N =
∂Ej,k
∂yn,k

, n = 1, 2, . . . , N (17.3.8)

The quantity Sj,n is an N × 2N matrix at each point k. Each interior point thus supplies a
block ofN equations coupling 2N corrections to the solution variables at the points k, k − 1.

Similarly, the algebraic relations at the boundaries can be expanded in a first-order
Taylor series for increments that improve the solution. Since E1 depends only on y1, we
find at the first boundary:

N∑
n=1

Sj,n∆yn,1 = −Ej,1, j = n2 + 1, n2 + 2, . . . , N (17.3.9)

where

Sj,n =
∂Ej,1
∂yn,1

, n = 1, 2, . . . , N (17.3.10)

At the second boundary,
N∑
n=1

Sj,n∆yn,M = −Ej,M+1, j = 1, 2, . . . , n2 (17.3.11)

764 Chapter 17. Two Point Boundary Value Problems

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

where

Sj,n =
∂Ej,M+1

∂yn,M
, n = 1, 2, . . . , N (17.3.12)

We thus have in equations (17.3.7)–(17.3.12) a set of linear equations to be solved for
the corrections ∆y, iterating until the corrections are sufficiently small. The equations have
a special structure, because each Sj,n couples only points k, k − 1. Figure 17.3.1 illustrates
the typical structure of the complete matrix equation for the case of 5 variables and 4 mesh
points, with 3 boundary conditions at the first boundary and 2 at the second. The 3 × 5
block of nonzero entries in the top left-hand corner of the matrix comes from the boundary
condition Sj,n at point k = 1. The next three 5 × 10 blocks are the Sj,n at the interior
points, coupling variables at mesh points (2,1), (3,2), and (4,3). Finally we have the block
corresponding to the second boundary condition.

We can solve equations (17.3.7)–(17.3.12) for the increments ∆y using a form of
Gaussian elimination that exploits the special structure of the matrix to minimize the total
number of operations, and that minimizes storage of matrix coefficients by packing the
elements in a special blocked structure. (You might wish to review Chapter 2, especially
§2.2, if you are unfamiliar with the steps involved in Gaussian elimination.) Recall that
Gaussian elimination consists of manipulating the equations by elementary operations such
as dividing rows of coefficients by a common factor to produce unity in diagonal elements,
and adding appropriate multiples of other rows to produce zeros below the diagonal. Here
we take advantage of the block structure by performing a bit more reduction than in pure
Gaussian elimination, so that the storage of coefficients is minimized. Figure 17.3.2 shows
the form that we wish to achieve by elimination, just prior to the backsubstitution step. Only a
small subset of the reducedMN ×MN matrix elements needs to be stored as the elimination
progresses. Once the matrix elements reach the stage in Figure 17.3.2, the solution follows
quickly by a backsubstitution procedure.

Furthermore, the entire procedure, except the backsubstitution step, operates only on
one block of the matrix at a time. The procedure contains four types of operations: (1)
partial reduction to zero of certain elements of a block using results from a previous step,
(2) elimination of the square structure of the remaining block elements such that the square
section contains unity along the diagonal, and zero in off-diagonal elements, (3) storage of the
remaining nonzero coefficients for use in later steps, and (4) backsubstitution. We illustrate
the steps schematically by figures.

Consider the block of equations describing corrections available from the initial boundary
conditions. We have n1 equations for N unknown corrections. We wish to transform the first
block so that its left-hand n1 × n1 square section becomes unity along the diagonal, and zero
in off-diagonal elements. Figure 17.3.3 shows the original and final form of the first block
of the matrix. In the figure we designate matrix elements that are subject to diagonalization
by “D”, and elements that will be altered by “A”; in the final block, elements that are stored
are labeled by “S”. We get from start to finish by selecting in turn n1 “pivot” elements from
among the first n1 columns, normalizing the pivot row so that the value of the “pivot” element
is unity, and adding appropriate multiples of this row to the remaining rows so that they
contain zeros in the pivot column. In its final form, the reduced block expresses values for the
corrections to the first n1 variables at mesh point 1 in terms of values for the remaining n2

unknown corrections at point 1, i.e., we now know what the first n1 elements are in terms of
the remaining n2 elements. We store only the final set of n2 nonzero columns from the initial
block, plus the column for the altered right-hand side of the matrix equation.

We must emphasize here an important detail of the method. To exploit the reduced
storage allowed by operating on blocks, it is essential that the ordering of columns in the
s matrix of derivatives be such that pivot elements can be found among the first n1 rows
of the matrix. This means that the n1 boundary conditions at the first point must contain
some dependence on the first j=1,2,...,n1 dependent variables, y[j][1]. If not, then the
original square n1×n1 subsection of the first block will appear to be singular, and the method
will fail. Alternatively, we would have to allow the search for pivot elements to involve all
N columns of the block, and this would require column swapping and far more bookkeeping.
The code provides a simple method of reordering the variables, i.e., the columns of the s
matrix, so that this can be done easily. End of important detail.

17.3 Relaxation Methods 765

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Figure 17.3.1. Matrix structure of a set of linear finite-difference equations (FDEs) with boundary
conditions imposed at both endpoints. Here X represents a coefficient of the FDEs, V represents a
component of the unknown solution vector, and B is a component of the known right-hand side. Empty
spaces represent zeros. The matrix equation is to be solved by a special form of Gaussian elimination.
(See text for details.)

1
1

1

X
X
X
1

X
X
X

1

1

1

1

X
X
X
X
X
1

X
X
X
X
X

1

1

1

1

X
X
X
X
X
1

1

1

1

X
X
X
X
X
1

X
X
X
X
X

1

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

X
X
X
X
X

1

Figure 17.3.2. Target structure of the Gaussian elimination. Once the matrix of Figure 17.3.1 has been
reduced to this form, the solution follows quickly by backsubstitution.

766 Chapter 17. Two Point Boundary Value Problems

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

(a)

(b)

D
D
D

1
0
0

D
D
D

0
1
0

D
D
D

0
0
1

A
A
A

S
S
S

A
A
A

S
S
S

V
V
V

V
V
V

A
A
A

S
S
S

Figure 17.3.3. Reduction process for the first (upper left) block of the matrix in Figure 17.3.1. (a)
Original form of the block, (b) final form. (See text for explanation.)

(a) 1
0
0
Z
Z
Z
Z
Z

V
V
V
V
V
V
V
V

S
S
S
A
A
A
A
A

(b) 1
0
0
0
0
0
0
0

0
0
1
0
0

V
V
V
V
V
V
V
V

S
S
S
S
S
S
S
S

0
1
0
Z
Z
Z
Z
Z

0
0
1
Z
Z
Z
Z
Z

S
S
S
D
D
D
D
D

S
S
S
D
D
D
D
D

D
D
D
D
D

D
D
D
D
D

D
D
D
D
D

A
A
A
A
A

A
A
A
A
A

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

S
S
S
1
0
0
0
0

S
S
S
0
1
0
0
0

0
0
0
1
0

0
0
0
0
1

S
S
S
S
S

S
S
S
S
S

Figure 17.3.4. Reduction process for intermediate blocks of the matrix in Figure 17.3.1. (a) Original
form, (b) final form. (See text for explanation.)

(a) 0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0
Z
Z

0
0
0
1
0
Z
Z

0
0
0
0
1
Z
Z

S
S
S
S
S
D
D

S
S
S
S
S
D
D

V
V
V
V
V
V
V

S
S
S
S
S
A
A

(b) 0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0
0
0

0
0
0
1
0
0
0

0
0
0
0
1
0
0

S
S
S
S
S
1
0

S
S
S
S
S
0
1

V
V
V
V
V
V
V

S
S
S
S
S
S
S

Figure 17.3.5. Reduction process for the last (lower right) block of the matrix in Figure 17.3.1. (a)
Original form, (b) final form. (See text for explanation.)

17.3 Relaxation Methods 767

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Next consider the block ofN equations representing the FDEs that describe the relation
between the 2N corrections at points 2 and 1. The elements of that block, together with results
from the previous step, are illustrated in Figure 17.3.4. Note that by adding suitable multiples
of rows from the first block we can reduce to zero the first n1 columns of the block (labeled
by “Z”), and, to do so, we will need to alter only the columns from n1 + 1 to N and the
vector element on the right-hand side. Of the remaining columns we can diagonalize a square
subsection of N ×N elements, labeled by “D” in the figure. In the process we alter the final
set of n2 + 1 columns, denoted “A” in the figure. The second half of the figure shows the
block when we finish operating on it, with the stored (n2 + 1) ×N elements labeled by “S.”

If we operate on the next set of equations corresponding to the FDEs coupling corrections
at points 3 and 2, we see that the state of available results and new equations exactly reproduces
the situation described in the previous paragraph. Thus, we can carry out those steps again
for each block in turn through blockM . Finally on blockM + 1 we encounter the remaining
boundary conditions.

Figure 17.3.5 shows the final block of n2 FDEs relating the N corrections for variables
at mesh point M , together with the result of reducing the previous block. Again, we can first
use the prior results to zero the first n1 columns of the block. Now, when we diagonalize
the remaining square section, we strike gold: We get values for the final n2 corrections
at mesh point M .

With the final block reduced, the matrix has the desired form shown previously in
Figure 17.3.2, and the matrix is ripe for backsubstitution. Starting with the bottom row and
working up towards the top, at each stage we can simply determine one unknown correction
in terms of known quantities.

The function solvde organizes the steps described above. The principal procedures
used in the algorithm are performed by functions called internally by solvde. The function
red eliminates leading columns of the s matrix using results from prior blocks. pinvs
diagonalizes the square subsection of s and stores unreduced coefficients. bksub carries
out the backsubstitution step. The user of solvde must understand the calling arguments,
as described below, and supply a function difeq, called by solvde, that evaluates the s
matrix for each block.

Most of the arguments in the call to solvde have already been described, but some
require discussion. Array y[j][k] contains the initial guess for the solution, with j labeling
the dependent variables at mesh points k. The problem involves ne FDEs spanning points
k=1,..., m. nb boundary conditions apply at the first point k=1. The array indexv[j]
establishes the correspondencebetween columns of the s matrix, equations (17.3.8), (17.3.10),
and (17.3.12), and the dependent variables. As described above it is essential that the nb
boundary conditions at k=1 involve the dependentvariables referenced by the first nb columns
of the s matrix. Thus, columns j of the s matrix can be ordered by the user in difeq to refer
to derivatives with respect to the dependent variable indexv[j].

The function only attempts itmax correction cycles before returning, even if the solution
has not converged. The parameters conv, slowc, scalv relate to convergence. Each
inversion of the matrix produces corrections for ne variables at m mesh points. We want these
to become vanishingly small as the iterations proceed, but we must define a measure for the
size of corrections. This error “norm” is very problem specific, so the user might wish to
rewrite this section of the code as appropriate. In the program below we compute a value for
the average correction err by summing the absolute value of all corrections, weighted by a
scale factor appropriate to each type of variable:

err =
1

m× ne

m∑
k=1

ne∑
j=1

|∆Y [j][k]|
scalv[j]

(17.3.13)

When err≤conv, the method has converged. Note that the user gets to supply an array
scalv which measures the typical size of each variable.

Obviously, if err is large, we are far from a solution, and perhaps it is a bad idea
to believe that the corrections generated from a first-order Taylor series are accurate. The
number slowc modulates application of corrections. After each iteration we apply only a

768 Chapter 17. Two Point Boundary Value Problems

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

fraction of the corrections found by matrix inversion:

Y [j][k]→ Y [j][k]+
slowc

max(slowc,err)
∆Y [j][k] (17.3.14)

Thus, when err>slowc only a fraction of the corrections are used, but when err≤slowc
the entire correction gets applied.

The call statement also supplies solvde with the array y[1..nyj][1..nyk] con-
taining the initial trial solution, and workspace arrays c[1..ne][1..ne-nb+1][1..m+1],
s[1..ne][1..2*ne+1]. The array c is the blockbuster: It stores the unreduced elements
of the matrix built up for the backsubstitution step. If there are m mesh points, then there
will be m+1 blocks, each requiring ne rows and ne-nb+1 columns. Although large, this
is small compared with (ne×m)2 elements required for the whole matrix if we did not
break it into blocks.

We now describe the workings of the user-supplied function difeq. The synopsis of
the function is

void difeq(int k, int k1, int k2, int jsf, int is1, int isf,
int indexv[], int ne, float **s, float **y);

The only information passed from difeq to solvde is the matrix of derivatives
s[1..ne][1..2*ne+1]; all other arguments are input to difeq and should not be altered.
k indicates the current mesh point, or block number. k1,k2 label the first and last point in
the mesh. If k=k1 or k>k2, the block involves the boundary conditions at the first or final
points; otherwise the block acts on FDEs coupling variables at points k-1, k.

The convention on storing information into the array s[i][j] follows that used in
equations (17.3.8), (17.3.10), and (17.3.12): Rows i label equations, columns j refer to
derivatives with respect to dependent variables in the solution. Recall that each equation will
depend on the ne dependent variables at either one or two points. Thus, j runs from 1 to
either ne or 2*ne. The column ordering for dependent variables at each point must agree
with the list supplied in indexv[j]. Thus, for a block not at a boundary, the first column
multiplies ∆Y (l=indexv[1],k-1), and the column ne+1multiplies ∆Y (l=indexv[1],k).
is1,isf give the numbers of the starting and final rows that need to be filled in the s matrix
for this block. jsf labels the column in which the difference equations Ej,k of equations
(17.3.3)–(17.3.5) are stored. Thus, −s[i][jsf] is the vector on the right-hand side of the
matrix. The reason for the minus sign is that difeq supplies the actual difference equation,
Ej,k, not its negative. Note that solvde supplies a value for jsf such that the difference
equation is put in the column just after all derivatives in the s matrix. Thus, difeq expects to
find values entered into s[i][j] for rows is1 ≤ i ≤ isf and 1 ≤ j ≤ jsf.

Finally, s[1..nsi][1..nsj] and y[1..nyj][1..nyk] supply difeq with storage
for s and the solution variables y for this iteration. An example of how to use this routine
is given in the next section.

Many ideas in the following code are due to Eggleton [1].

#include <stdio.h>
#include <math.h>
#include "nrutil.h"

void solvde(int itmax, float conv, float slowc, float scalv[], int indexv[],
int ne, int nb, int m, float **y, float ***c, float **s)

Driver routine for solution of two point boundary value problems by relaxation. itmax is the
maximum number of iterations. conv is the convergence criterion (see text). slowc controls
the fraction of corrections actually used after each iteration. scalv[1..ne] contains typical
sizes for each dependent variable, used to weight errors. indexv[1..ne] lists the column
ordering of variables used to construct the matrix s[1..ne][1..2*ne+1] of derivatives. (The
nb boundary conditions at the first mesh point must contain some dependence on the first nb
variables listed in indexv.) The problem involves ne equations for ne adjustable dependent
variables at each point. At the first mesh point there are nb boundary conditions. There are a
total of m mesh points. y[1..ne][1..m] is the two-dimensional array that contains the initial
guess for all the dependent variables at each mesh point. On each iteration, it is updated by the

17.3 Relaxation Methods 769

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

calculated correction. The arrays c[1..ne][1..ne-nb+1][1..m+1] and s supply dummy
storage used by the relaxation code.
{

void bksub(int ne, int nb, int jf, int k1, int k2, float ***c);
void difeq(int k, int k1, int k2, int jsf, int is1, int isf,

int indexv[], int ne, float **s, float **y);
void pinvs(int ie1, int ie2, int je1, int jsf, int jc1, int k,

float ***c, float **s);
void red(int iz1, int iz2, int jz1, int jz2, int jm1, int jm2, int jmf,

int ic1, int jc1, int jcf, int kc, float ***c, float **s);
int ic1,ic2,ic3,ic4,it,j,j1,j2,j3,j4,j5,j6,j7,j8,j9;
int jc1,jcf,jv,k,k1,k2,km,kp,nvars,*kmax;
float err,errj,fac,vmax,vz,*ermax;

kmax=ivector(1,ne);
ermax=vector(1,ne);
k1=1; Set up row and column markers.
k2=m;
nvars=ne*m;
j1=1;
j2=nb;
j3=nb+1;
j4=ne;
j5=j4+j1;
j6=j4+j2;
j7=j4+j3;
j8=j4+j4;
j9=j8+j1;
ic1=1;
ic2=ne-nb;
ic3=ic2+1;
ic4=ne;
jc1=1;
jcf=ic3;
for (it=1;it<=itmax;it++) { Primary iteration loop.

k=k1; Boundary conditions at first point.
difeq(k,k1,k2,j9,ic3,ic4,indexv,ne,s,y);
pinvs(ic3,ic4,j5,j9,jc1,k1,c,s);
for (k=k1+1;k<=k2;k++) { Finite difference equations at all point pairs.

kp=k-1;
difeq(k,k1,k2,j9,ic1,ic4,indexv,ne,s,y);
red(ic1,ic4,j1,j2,j3,j4,j9,ic3,jc1,jcf,kp,c,s);
pinvs(ic1,ic4,j3,j9,jc1,k,c,s);

}
k=k2+1; Final boundary conditions.
difeq(k,k1,k2,j9,ic1,ic2,indexv,ne,s,y);
red(ic1,ic2,j5,j6,j7,j8,j9,ic3,jc1,jcf,k2,c,s);
pinvs(ic1,ic2,j7,j9,jcf,k2+1,c,s);
bksub(ne,nb,jcf,k1,k2,c); Backsubstitution.
err=0.0;
for (j=1;j<=ne;j++) { Convergence check, accumulate average er-

ror.jv=indexv[j];
errj=vmax=0.0;
km=0;
for (k=k1;k<=k2;k++) { Find point with largest error, for each de-

pendent variable.vz=fabs(c[jv][1][k]);
if (vz > vmax) {

vmax=vz;
km=k;

}
errj += vz;

}
err += errj/scalv[j]; Note weighting for each dependent variable.
ermax[j]=c[jv][1][km]/scalv[j];

770 Chapter 17. Two Point Boundary Value Problems

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

kmax[j]=km;
}
err /= nvars;
fac=(err > slowc ? slowc/err : 1.0);
Reduce correction applied when error is large.
for (j=1;j<=ne;j++) { Apply corrections.

jv=indexv[j];
for (k=k1;k<=k2;k++)

y[j][k] -= fac*c[jv][1][k];
}
printf("\n%8s %9s %9s\n","Iter.","Error","FAC"); Summary of corrections

for this step.printf("%6d %12.6f %11.6f\n",it,err,fac);
if (err < conv) {

free_vector(ermax,1,ne);
free_ivector(kmax,1,ne);
return;

}
}
nrerror("Too many iterations in solvde"); Convergence failed.

}

void bksub(int ne, int nb, int jf, int k1, int k2, float ***c)
Backsubstitution, used internally by solvde.
{

int nbf,im,kp,k,j,i;
float xx;

nbf=ne-nb;
im=1;
for (k=k2;k>=k1;k--) { Use recurrence relations to eliminate remaining de-

pendences.if (k == k1) im=nbf+1;
kp=k+1;
for (j=1;j<=nbf;j++) {

xx=c[j][jf][kp];
for (i=im;i<=ne;i++)

c[i][jf][k] -= c[i][j][k]*xx;
}

}
for (k=k1;k<=k2;k++) { Reorder corrections to be in column 1.

kp=k+1;
for (i=1;i<=nb;i++) c[i][1][k]=c[i+nbf][jf][k];
for (i=1;i<=nbf;i++) c[i+nb][1][k]=c[i][jf][kp];

}
}

#include <math.h>
#include "nrutil.h"

void pinvs(int ie1, int ie2, int je1, int jsf, int jc1, int k, float ***c,
float **s)

Diagonalize the square subsection of the s matrix, and store the recursion coefficients in c;
used internally by solvde.
{

int js1,jpiv,jp,je2,jcoff,j,irow,ipiv,id,icoff,i,*indxr;
float pivinv,piv,dum,big,*pscl;

indxr=ivector(ie1,ie2);
pscl=vector(ie1,ie2);
je2=je1+ie2-ie1;
js1=je2+1;

17.3 Relaxation Methods 771

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

for (i=ie1;i<=ie2;i++) { Implicit pivoting, as in §2.1.
big=0.0;
for (j=je1;j<=je2;j++)

if (fabs(s[i][j]) > big) big=fabs(s[i][j]);
if (big == 0.0) nrerror("Singular matrix - row all 0, in pinvs");
pscl[i]=1.0/big;
indxr[i]=0;

}
for (id=ie1;id<=ie2;id++) {

piv=0.0;
for (i=ie1;i<=ie2;i++) { Find pivot element.

if (indxr[i] == 0) {
big=0.0;
for (j=je1;j<=je2;j++) {

if (fabs(s[i][j]) > big) {
jp=j;
big=fabs(s[i][j]);

}
}
if (big*pscl[i] > piv) {

ipiv=i;
jpiv=jp;
piv=big*pscl[i];

}
}

}
if (s[ipiv][jpiv] == 0.0) nrerror("Singular matrix in routine pinvs");
indxr[ipiv]=jpiv; In place reduction. Save column ordering.
pivinv=1.0/s[ipiv][jpiv];
for (j=je1;j<=jsf;j++) s[ipiv][j] *= pivinv; Normalize pivot row.
s[ipiv][jpiv]=1.0;
for (i=ie1;i<=ie2;i++) { Reduce nonpivot elements in column.

if (indxr[i] != jpiv) {
if (s[i][jpiv]) {

dum=s[i][jpiv];
for (j=je1;j<=jsf;j++)

s[i][j] -= dum*s[ipiv][j];
s[i][jpiv]=0.0;

}
}

}
}
jcoff=jc1-js1; Sort and store unreduced coefficients.
icoff=ie1-je1;
for (i=ie1;i<=ie2;i++) {

irow=indxr[i]+icoff;
for (j=js1;j<=jsf;j++) c[irow][j+jcoff][k]=s[i][j];

}
free_vector(pscl,ie1,ie2);
free_ivector(indxr,ie1,ie2);

}

void red(int iz1, int iz2, int jz1, int jz2, int jm1, int jm2, int jmf,
int ic1, int jc1, int jcf, int kc, float ***c, float **s)

Reduce columns jz1-jz2 of the s matrix, using previous results as stored in the c matrix. Only
columns jm1-jm2,jmf are affected by the prior results. red is used internally by solvde.
{

int loff,l,j,ic,i;
float vx;

loff=jc1-jm1;
ic=ic1;

772 Chapter 17. Two Point Boundary Value Problems

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

for (j=jz1;j<=jz2;j++) { Loop over columns to be zeroed.
for (l=jm1;l<=jm2;l++) { Loop over columns altered.

vx=c[ic][l+loff][kc];
for (i=iz1;i<=iz2;i++) s[i][l] -= s[i][j]*vx; Loop over rows.

}
vx=c[ic][jcf][kc];
for (i=iz1;i<=iz2;i++) s[i][jmf] -= s[i][j]*vx; Plus final element.
ic += 1;

}
}

“Algebraically Difficult” Sets of Differential Equations

Relaxation methods allow you to take advantage of an additional opportunity that, while
not obvious, can speed up some calculations enormously. It is not necessary that the set
of variables yj,k correspond exactly with the dependent variables of the original differential
equations. They can be related to those variables through algebraic equations. Obviously, it
is necessary only that the solution variables allow us to evaluate the functions y, g,B,C that
are used to construct the FDEs from the ODEs. In some problems g depends on functions of
y that are known only implicitly, so that iterative solutions are necessary to evaluate functions
in the ODEs. Often one can dispense with this “internal” nonlinear problem by defining
a new set of variables from which both y, g and the boundary conditions can be obtained
directly. A typical example occurs in physical problems where the equations require solution
of a complex equation of state that can be expressed in more convenient terms using variables
other than the original dependent variables in the ODE. While this approach is analogous to
performing an analytic change of variables directly on the original ODEs, such an analytic
transformation might be prohibitively complicated. The change of variables in the relaxation
method is easy and requires no analytic manipulations.

CITED REFERENCES AND FURTHER READING:

Eggleton, P.P. 1971, Monthly Notices of the Royal Astronomical Society, vol. 151, pp. 351–364.
[1]

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.

17.4 A Worked Example: Spheroidal Harmonics

The best way to understand the algorithms of the previous sections is to see
them employed to solve an actual problem. As a sample problem, we have selected
the computation of spheroidal harmonics. (The more common name is spheroidal
angle functions, but we prefer the explicit reminder of the kinship with spherical
harmonics.) We will show how to find spheroidal harmonics, first by the method
of relaxation (§17.3), and then by the methods of shooting (§17.1) and shooting
to a fitting point (§17.2).

Spheroidal harmonics typically arise when certain partial differential
equations are solved by separation of variables in spheroidal coordinates. They
satisfy the following differential equation on the interval −1 ≤ x ≤ 1:

d

dx

[
(1− x2)

dS

dx

]
+

(
λ− c2x2 − m2

1− x2

)
S = 0 (17.4.1)

