15.7 Robust Estimation 699

M
1
Cip =Y —5ViiVii (15.6.10)
1=1

2
wy

CITED REFERENCES AND FURTHER READING:

Efron, B. 1982, The Jackknife, the Bootstrap, and Other Resampling Plans (Philadelphia:
S.LAM.). [1]

Efron, B., and Tibshirani, R. 1986, Statistical Science vol. 1, pp. 54-77. [2]

Avni, Y. 1976, Astrophysical Journal, vol. 210, pp. 642—-646. [3]

Lampton, M., Margon, M., and Bowyer, S. 1976, Astrophysical Journal, vol. 208, pp. 177-190.
Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New York: Wiley).

Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).

15.7 Robust Estimation

The concept of robustness has been mentioned in passing severa times already.
In §14.1 we noted that the median was a more robust estimator of central value than
the mean; in §14.6 it was mentioned that rank correlation is more robust than linear
correlation. The concept of outlier points as exceptions to a Gaussian model for
experimental error was discussed in §15.1.

The term “robust” was coined in statistics by G.E.P. Box in 1953. Various
definitions of greater or lesser mathematical rigor are possible for the term, but in
genera, referring to a statistical estimator, it means “insensitive to small departures
from theidealized assumptions for which the estimator is optimized.” [1.2] The word
“small” can have two different interpretations, both important: either fractionally
small departures for al data points, or else fractionally large departures for a small
number of data points. It isthe latter interpretation, leading to the notion of outlier
points, that is generally the most stressful for statistical procedures.

Statisticianshave devel oped various sorts of robust statistical estimators. Many,
if not most, can be grouped in one of three categories.

M-estimates follow from maximum-likelihood arguments very much as equa-
tions(15.1.5) and (15.1.7) followed from equation (15.1.3). M-estimates are usualy
the most relevant class for model-fitting, that is, estimation of parameters. We
therefore consider these estimates in some detail below.

L-estimates are “linear combinations of order statistics.” These are most
applicable to estimations of central value and central tendency, though they can
occasionally be applied to some problems in estimation of parameters. Two
“typica” L-estimates will give you the generd idea. They are (i) the median, and
(i) Tukey's trimean, defined as the weighted average of the first, second, and third
guartile pointsin a distribution, with weights 1/4, 1/2, and 1/4, respectively.

R-estimates are estimates based on rank tests. For example, the equality or
inequality of two distributions can be estimated by the Wilcoxon test of computing
the mean rank of one distribution in a combined sample of both distributions.
The Kolmogorov-Smirnov statistic (equation 14.3.6) and the Spearman rank-order

*(eollaWY YLION 3pISINO) N oe'wed dnao@apel) 0] [rewa puas Jo ‘(Ajuo ealswy YLON) £27/-228-008-T |[e2 10 Ju~/wo9’pis'pliom//:diny o1 ob
‘sanaysIp pue s$)00q sadiday [eauswnp Japio o) "panqiyosd Apouis si ‘1aindwod Jaaias Aue 0y (suo siyy Buipnjoul) saji ajgepeal-aulydew
Jo Buikdoo Aue Jo ‘uononpoidal Jayun4 "asn jeuosiad umo Jiay 1o} Adod Jaded suo axew 01 gaAA SPIA PIHOAA BU) JO SIasn Joj pajueld si
uoissiwlad "aremyos sadioay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuquwe) Aq z66T-886T (D) WbuUAdoD
(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM



700 Chapter 15.  Modeling of Data

narrow

central peak
|

tail of

/ outliers

@

™ robust straight-line fit

(b)

Figure 15.7.1. Examples where robust statistical methods are desirable: (a) A one-dimensional
distributionwith atail of outliers; statistical fluctuationsinthese outlierscan preventaccurate determination
of the position of the central peak. (b) A distribution in two dimensionsfitted to a straight line; non-robust
techniques such as least-squares fitting can have undesired sensitivity to outlying points.

correlation coefficient (14.6.1) are R-estimates in essence, if not always by formal
definition.

Some other kindsof robust techniques, coming fromthefiel ds of optimal control
and filtering rather than from thefield of mathematical statistics, are mentioned at the
end of this section. Some examples where robust statistical methods are desirable
are shown in Figure 15.7.1.

Estimation of Parameters by Local M-Estimates

Suppose we know that our measurement errors are not normally distributed.
Then, in deriving a maximum-likelihood formulafor the estimated parametersain a
model y(x;a), we would write instead of equation (15.1.3)

N
P =T {exp [=plyiry {oi:ah)] Ay} (15.7.1)
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15.7 Robust Estimation 701

where the function p isthe negative logarithm of the probability density. Taking the
logarithm of (15.7.1) analogously with (15.1.4), we find that we want to minimize
the expression

N

> plyiy{zial) (15.7.2)

=1

Very often, it is the case that the function p depends not independently on its
two arguments, measured y; and predicted y(z; ), but only on their difference, at least
if scaled by some weight factors o; which we are able to assign to each point. Inthis
casethe M-estimateis said to belocal, and we can replace (15.7.2) by the prescription

N  — y(zi;a)
minimize over a Z p (M> (15.7.3)

o
i=1 v

where the function p(z) isafunction of asinglevariable z = [y; — y(z;)]/0:.
If we now define the derivative of p(z) to be a function ¢ (z),

dp(2)
dz

then the generalization of (15.1.7) to the case of a general M-estimate is

L, (9 y@) [y

If you compare (15.7.3) to (15.1.3), and (15.7.5) to (15.1.7), you see a once
that the specialization for normally distributed errorsis

P(z) =

(15.7.4)

p(z) ===z U(z) ==z (normal) (15.7.6)

If the errors are distributed as a double or two-sided exponential, namely

Prob {y: — y(ai)} ~ exp - |22 ) (1577)
then, by contrast,
plx) = |z| Y(z) = sgn(z) (double exponential) (15.7.8)

Comparing to equation (15.7.3), we see that in this case the maximum likelihood
estimator is obtained by minimizing the mean absolute deviation, rather than the
mean square deviation. Here the tails of the distribution, athough exponentially
decreasing, are asymptotically much larger than any corresponding Gaussian.

A distribution with even more extensive — therefore sometimes even more
realistic — tails is the Cauchy or Lorentzian distribution,

Prob {y; — y(x;)} ~ ! (15.7.9)

4L (y —y(xz')>2

2 ag;
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This implies

z

=" Lorentzian 15.7.10
e ) (157.10)

o) =1os(1432)  ule)

Notice that the ¢ function occurs as a weighting function in the generaized
norma equations (15.7.5). For normally distributed errors, equation (15.7.6) says
that the more deviant the points, the greater the weight. By contrast, when tails are
somewhat more prominent, as in (15.7.7), then (15.7.8) says that al deviant points
get the same relative weight, with only the sign information used. Finally, when
the tails are even larger, (15.7.10) says the ) increases with deviation, then starts
decreasing, so that very deviant points — the true outliers — are not counted at all
in the estimation of the parameters.

This genera ides, that the weight given individual points should first increase
with deviation, then decrease, motivates some additional prescriptions for ¢» which
do not especially correspond to standard, textbook probability distributions. Two
examples are

Andrew's sine

[ sin(z/c) |z| < em
W(z) = { ; ol on (15.7.11)

If the measurement errors happen to be normal after dl, with standard deviationso;,
then it can be shown that the optimal value for the constant c isc = 2.1.
Tukey's biweight

[ 2(1—2%/c?)? |z < ¢
W(z) = { ; SN (15.7.12)

where the optimal value of ¢ for normal errorsisc = 6.0.
Numerical Calculation of M-Estimates

To fit amodel by means of an M-estimate, you first decide which M-estimate
you want, that is, which matching pair p, ¥ you want to use. We rather like
(15.7.8) or (15.7.10).

You then have to make an unpleasant choice between two fairly difficult
problems. Either find the solution of the nonlinear set of M equations (15.7.5), or
else minimize the single function in M variables (15.7.3).

Notice that the function (15.7.8) has a discontinuous ¢, and a discontinuous
derivative for p. Such discontinuities frequently wreak havoc on both genera
nonlinear equation solvers and general function minimizing routines. You might
now think of rejecting (15.7.8) in favor of (15.7.10), which is smoother. However,
you will find that the latter choiceisalso bad newsfor many general equation solving
or minimization routines: small changes in the fitted parameters can drive ¢ (z)
off its peak into one or the other of its asymptotically small regimes. Therefore,
different termsin the equation spring into or out of action (almost as bad as anaytic
discontinuities).

Don't despair. If your computer budget (or, for personal computers, patience)
is up to it, thisis an excellent application for the downhill simplex minimization
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15.7 Robust Estimation 703

algorithm exemplified in amoeba §10.4 or amebsa in §10.9. Those algorithms make
no assumptions about continuity; they just ooze downhill and will work for virtually
any sane choice of the function p.

It is very much to your (financia) advantage to find good starting values,
however. Often thisis done by first fitting the model by the standard x? (nonrobust)
techniques, e.g., as described in §15.4 or §15.5. The fitted parameters thus obtained
are then used as starting values in amoeba, now using the robust choice of p and
minimizing the expression (15.7.3).

Fitting a Line by Minimizing Absolute Deviation

Occasiondlly there is a specia case that happens to be much easier than is
suggested by the general strategy outlined above. The case of equations (15.7.7)—
(15.7.8), when the mode! is a simple straight line

y(x;a,b) = a+ bz (15.7.13)

and where the weights o; are all equal, happens to be such a case. The problem is
precisely the robust version of the problem posed in equation (15.2.1) above, namely
fit astraight line through a set of data points. The merit function to be minimized is

N
>y —a — bl (15.7.14)
=1

rather than the x2 given by equation (15.2.2).
The key simplification is based on the following fact: The median ¢y, of a set
of numbers c; isaso that value which minimizes the sum of the absolute deviations

S lec - eud
7

(Proof: Differentiate the above expression with respect to cj, and set it to zero.)
It follows that, for fixed b, the value of a that minimizes (15.7.14) is

a = median{y; — bx;} (15.7.15)
Equation (15.7.5) for the parameter b is

N
0="> x sgn(y; — a — bx;) (15.7.16)
1=1

(where sgn(0) is to be interpreted as zero). If we replace a in this equation by the
implied function a(b) of (15.7.15), then we are left with an eguation in a single
variable which can be solved by bracketing and bisection, as described in §9.1.
(In fact, it is dangerous to use any fancier method of root-finding, because of the
discontinuities in equation 15.7.16.)

Here is aroutine that does all this. It calls select (§8.5) to find the median.
The bracketing and bisection are built in to the routine, as is the x? solution that
generates theinitial guesses for a and b. Notice that the evaluation of the right-hand
side of (15.7.16) occurs in the function rofunc, with communication via global
(top-level) variables.
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704 Chapter 15.  Modeling of Data

#include <math.h>
#include "nrutil.h"

int ndatat;

float *xt,*yt,aa,abdevt;

void medfit(float x[], float y[], int ndata, float *a, float *b, float *abdev)
Fits y = a + bx by the criterion of least absolute deviations. The arrays x[1..ndata] and
y[1..ndata] are the input experimental points. The fitted parameters a and b are output,
along with abdev, which is the mean absolute deviation (in y) of the experimental points from
the fitted line. This routine uses the routine rofunc, with communication via global variables.
{

float rofunc(float b);

int j;

float bb,bl,b2,del,f,f1,f2,sigb,temp;

float sx=0.0,sy=0.0,sxy=0.0,sxx=0.0,chisq=0.0;

ndatat=ndata;

xt=x;

yt=y;

for (j=1;j<=ndata;j++) { As a first guess for a and b, we will find the least-
sx += x[j]; squares fitting line.
sy += y[jl;

sxy += x[jl*y[j];
sxx += x[j]1*x[j];

}
del=ndata*sxx—-sx*sXx;
aa=(sxx*sy-sx*sxy)/del; Least-squares solutions.

bb=(ndata*sxy-sx*sy)/del;
for (j=1;j<=ndata;j++)
chisq += (temp=y[j]-(aa+bb*x[j]),temp*temp);
sigb=sqrt(chisq/del); The standard deviation will give some idea of how
bil=bb; big an iteration step to take.
fil=rofunc(bl);
b2=bb+SIGN(3.0*sigb,f1);
Guess bracket as 3-0 away, in the downhill direction known from f£1.
f2=rofunc(b2);
if (b2 == b1) {
*a=aa;
*b=bb;
*abdev=abdevt/ndata;
return;
}
while (£f1xf2 > 0.0) { Bracketing.
bb=b2+1.6*(b2-b1);
b1=b2;
f1=£2;
b2=bb;
f2=rofunc(b2);
}
sigb=0.01*sigb; Refine until error a negligible number of standard
while (fabs(b2-bl) > sigb) { deviations.
bb=b1+0.5%(b2-bl); Bisection.
if (bb == bl || bb == b2) break;
f=rofunc (bb) ;
if (£*£f1 >= 0.0) {
fi1=f;
bl=bb;
} else {
f2=f;
b2=bb;

*a=aa;
*b=bb;
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15.7 Robust Estimation 705

*abdev=abdevt/ndata;

#include <math.h>
#include "nrutil.h"
#define EPS 1.0e-7

extern int ndatat; Defined in medfit.
extern float *xt,*yt,aa,abdevt;

float rofunc(float b)
Evaluates the right-hand side of equation (15.7.16) for a given value of b. Communication with
the routine medfit is through global variables.
{
float select(unsigned long k, unsigned long n, float arr[]);
int j;
float *arr,d,sum=0.0;

arr=vector (1,ndatat);
for (j=1;j<=ndatat;j++) arr[jl=yt[jl-b*xt[j];
if (ndatat & 1) {
aa=select((ndatat+1)>>1,ndatat,arr);
}
else {
j=ndatat >> 1;
aa=0.5*(select (j,ndatat,arr)+select(j+1l,ndatat,arr));
}
abdevt=0.0;
for (j=1;j<=ndatat;j++) {
d=yt[j1-(bkxt[jl+aa);
abdevt += fabs(d);
if (yt[j] !'= 0.0) d /= fabs(yt[j1);
if (fabs(d) > EPS) sum += (d >= 0.0 7 xt[j] : -xt[j1);
}
free_vector(arr,1,ndatat);
return sum;

Other Robust Techniques

Sometimes you may have a priori knowledge about the probable values and
probabl e uncertainties of some parameters that you are trying to estimate from a data
set. In such cases you may want to perform afit that takes this advance information
properly into account, neither completely freezing a parameter at a predetermined
value (asin 1fit §15.4) nor completely leaving it to be determined by the data set.
The formalism for doing thisis called “use of a priori covariances.”

A related problem occurs in signal processing and control theory, where it is
sometimes desired to “track” (i.e., maintain an estimate of) atime-varying signal in
the presence of noise. If the signal is known to be characterized by some number
of parameters that vary only slowly, then the formalism of Kalman filtering tells
how the incoming, raw measurements of the signal should be processed to produce
best parameter estimates as a function of time. For example, if the signd is a
frequency-modulated sine wave, then the slowly varying parameter might be the
instantaneous frequency. The Kalman filter for this case is caled a phase-locked
loop and isimplemented in the circuitry of good radio receivers[3.4].
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