
532 Chapter 12. Fast Fourier Transform

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

12.6 External Storage or Memory-Local FFTs

Sometime in your life, you might have to compute the Fourier transform of a really
large data set, larger than the size of your computer’s physical memory. In such a case,
the data will be stored on some external medium, such as magnetic or optical tape or disk.
Needed is an algorithm that makes some manageable number of sequential passes through
the external data, processing it on the fly and outputting intermediate results to other external
media, which can be read on subsequent passes.

In fact, an algorithm of just this description was developed by Singleton [1] very soon
after the discovery of the FFT. The algorithm requires four sequential storage devices, each
capable of holding half of the input data. The first half of the input data is initially on one
device, the second half on another.

Singleton’s algorithm is based on the observation that it is possible to bit-reverse 2M

values by the following sequence of operations: On the first pass, values are read alternately
from the two input devices, and written to a single output device (until it holds half the data),
and then to the other output device. On the second pass, the output devices become input
devices, and vice versa. Now, we copy two values from the first device, then two values
from the second, writing them (as before) first to fill one output device, then to fill a second.
Subsequent passes read 4, 8, etc., input values at a time. After completion of pass M − 1,
the data are in bit-reverse order.

Singleton’s next observation is that it is possible to alternate the passes of essentially
this bit-reversal technique with passes that implement one stage of the Danielson-Lanczos
combination formula (12.2.3). The scheme, roughly, is this: One starts as before with half
the input data on one device, half on another. In the first pass, one complex value is read
from each input device. Two combinations are formed, and one is written to each of two
output devices. After this “computing” pass, the devices are rewound, and a “permutation”
pass is performed, where groups of values are read from the first input device and alternately
written to the first and second output devices; when the first input device is exhausted, the
second is similarly processed. This sequenceof computing and permutation passes is repeated
M − K − 1 times, where 2K is the size of internal buffer available to the program. The
second phase of the computation consists of a finalK computation passes. What distinguishes
the second phase from the first is that, now, the permutations are local enough to do in place
during the computation. There are thus no separate permutation passes in the second phase.
In all, there are 2M − K − 2 passes through the data.

Here is an implementation of Singleton’s algorithm, based on [1]:

#include <stdio.h>
#include <math.h>
#include "nrutil.h"
#define KBF 128

void fourfs(FILE *file[5], unsigned long nn[], int ndim, int isign)
One- or multi-dimensional Fourier transform of a large data set stored on external media. On
input, ndim is the number of dimensions, and nn[1..ndim] contains the lengths of each di-
mension (number of real and imaginary value pairs), which must be powers of two. file[1..4]
contains the stream pointers to 4 temporary files, each large enough to hold half of the data.
The four streams must be opened in the system’s “binary” (as opposed to “text”) mode. The
input data must be in C normal order, with its first half stored in file file[1], its second
half in file[2], in native floating point form. KBF real numbers are processed per buffered
read or write. isign should be set to 1 for the Fourier transform, to −1 for its inverse. On
output, values in the array file may have been permuted; the first half of the result is stored in
file[3], the second half in file[4]. N.B.: For ndim > 1, the output is stored by columns,
i.e., not in C normal order; in other words, the output is the transpose of that which would have
been produced by routine fourn.
{

void fourew(FILE *file[5], int *na, int *nb, int *nc, int *nd);
unsigned long j,j12,jk,k,kk,n=1,mm,kc=0,kd,ks,kr,nr,ns,nv;
int cc,na,nb,nc,nd;

12.6 External Storage or Memory-Local FFTs 533

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

float tempr,tempi,*afa,*afb,*afc;
double wr,wi,wpr,wpi,wtemp,theta;
static int mate[5] = {0,2,1,4,3};

afa=vector(1,KBF);
afb=vector(1,KBF);
afc=vector(1,KBF);
for (j=1;j<=ndim;j++) {

n *= nn[j];
if (nn[j] <= 1) nrerror("invalid float or wrong ndim in fourfs");

}
nv=1;
jk=nn[nv];
mm=n;
ns=n/KBF;
nr=ns >> 1;
kd=KBF >> 1;
ks=n;
fourew(file,&na,&nb,&nc,&nd);
The first phase of the transform starts here.
for (;;) { Start of the computing pass.

theta=isign*3.141592653589793/(n/mm);
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi=0.0;
mm >>= 1;
for (j12=1;j12<=2;j12++) {

kr=0;
do {

cc=fread(&afa[1],sizeof(float),KBF,file[na]);
if (cc != KBF) nrerror("read error in fourfs");
cc=fread(&afb[1],sizeof(float),KBF,file[nb]);
if (cc != KBF) nrerror("read error in fourfs");
for (j=1;j<=KBF;j+=2) {

tempr=((float)wr)*afb[j]-((float)wi)*afb[j+1];
tempi=((float)wi)*afb[j]+((float)wr)*afb[j+1];
afb[j]=afa[j]-tempr;
afa[j] += tempr;
afb[j+1]=afa[j+1]-tempi;
afa[j+1] += tempi;

}
kc += kd;
if (kc == mm) {

kc=0;
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

}
cc=fwrite(&afa[1],sizeof(float),KBF,file[nc]);
if (cc != KBF) nrerror("write error in fourfs");
cc=fwrite(&afb[1],sizeof(float),KBF,file[nd]);
if (cc != KBF) nrerror("write error in fourfs");

} while (++kr < nr);
if (j12 == 1 && ks != n && ks == KBF) {

na=mate[na];
nb=na;

}
if (nr == 0) break;

}
fourew(file,&na,&nb,&nc,&nd); Start of the permutation pass.
jk >>= 1;
while (jk == 1) {

mm=n;

534 Chapter 12. Fast Fourier Transform

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

jk=nn[++nv];
}
ks >>= 1;
if (ks > KBF) {

for (j12=1;j12<=2;j12++) {
for (kr=1;kr<=ns;kr+=ks/KBF) {

for (k=1;k<=ks;k+=KBF) {
cc=fread(&afa[1],sizeof(float),KBF,file[na]);
if (cc != KBF) nrerror("read error in fourfs");
cc=fwrite(&afa[1],sizeof(float),KBF,file[nc]);
if (cc != KBF) nrerror("write error in fourfs");

}
nc=mate[nc];

}
na=mate[na];

}
fourew(file,&na,&nb,&nc,&nd);

} else if (ks == KBF) nb=na;
else break;

}
j=1;
The second phase of the transform starts here. Now, the remaining permutations are suf-
ficiently local to be done in place.
for (;;) {

theta=isign*3.141592653589793/(n/mm);
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi=0.0;
mm >>= 1;
ks=kd;
kd >>= 1;
for (j12=1;j12<=2;j12++) {

for (kr=1;kr<=ns;kr++) {
cc=fread(&afc[1],sizeof(float),KBF,file[na]);
if (cc != KBF) nrerror("read error in fourfs");
kk=1;
k=ks+1;
for (;;) {

tempr=((float)wr)*afc[kk+ks]-((float)wi)*afc[kk+ks+1];
tempi=((float)wi)*afc[kk+ks]+((float)wr)*afc[kk+ks+1];
afa[j]=afc[kk]+tempr;
afb[j]=afc[kk]-tempr;
afa[++j]=afc[++kk]+tempi;
afb[j++]=afc[kk++]-tempi;
if (kk < k) continue;
kc += kd;
if (kc == mm) {

kc=0;
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

}
kk += ks;
if (kk > KBF) break;
else k=kk+ks;

}
if (j > KBF) {

cc=fwrite(&afa[1],sizeof(float),KBF,file[nc]);
if (cc != KBF) nrerror("write error in fourfs");
cc=fwrite(&afb[1],sizeof(float),KBF,file[nd]);
if (cc != KBF) nrerror("write error in fourfs");
j=1;

}

12.6 External Storage or Memory-Local FFTs 535

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

}
na=mate[na];

}
fourew(file,&na,&nb,&nc,&nd);
jk >>= 1;
if (jk > 1) continue;
mm=n;
do {

if (nv < ndim) jk=nn[++nv];
else {

free_vector(afc,1,KBF);
free_vector(afb,1,KBF);
free_vector(afa,1,KBF);
return;

}
} while (jk == 1);

}
}

#include <stdio.h>
#define SWAP(a,b) ftemp=(a);(a)=(b);(b)=ftemp

void fourew(FILE *file[5], int *na, int *nb, int *nc, int *nd)
Utility used by fourfs. Rewinds and renumbers the four files.
{

int i;
FILE *ftemp;

for (i=1;i<=4;i++) rewind(file[i]);
SWAP(file[2],file[4]);
SWAP(file[1],file[3]);
*na=3;
*nb=4;
*nc=1;
*nd=2;

}

For one-dimensional data, Singleton’s algorithm produces output in exactly the same
order as a standard FFT (e.g., four1). For multidimensional data, the output is the transposeof
the conventional arrangement (e.g., the output of fourn). This peculiarity, which is intrinsic to
the method, is generally only a minor inconvenience. For convolutions, one simply computes
the component-by-component product of two transforms in their nonstandard arrangement,
and then does an inverse transform on the result. Note that, if the lengths of the different
dimensions are not all the same, then you must reverse the order of the values in nn[1..ndim]
(thus giving the transpose dimensions) before performing the inverse transform. Note also
that, just like fourn, performing a transform and then an inverse results in multiplying the
original data by the product of the lengths of all dimensions.

We leave it as an exercise for the reader to figure out how to reorder fourfs’s output
into normal order, taking additional passes through the externally stored data. We doubt that
such reordering is ever really needed.

You will likely want to modify fourfs to fit your particular application. For example,
as written, KBF ≡ 2K plays the dual role of being the size of the internal buffers, and the
record size of the unformatted reads and writes. The latter role limits its size to that allowed
by your machine’s I/O facility. It is a simple matter to perform multiple reads for a much
larger KBF, thus reducing the number of passes by a few.

Another modification of fourfs would be for the case where your virtual memory
machine has sufficient address space, but not sufficient physical memory, to do an efficient
FFT by the conventional algorithm (whose memory references are extremely nonlocal). In
that case, you will need to replace the reads, writes, and rewinds by mappings of the arrays

536 Chapter 12. Fast Fourier Transform

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

afa, afb, and afc into your address space. In other words, these arrays are replaced by
references to a single data array, with offsets that get modified wherever fourfs performs an
I/O operation. The resulting algorithm will have its memory references local within blocks
of size KBF. Execution speed is thereby sometimes increased enormously, albeit at the cost
of requiring twice as much virtual memory as an in-place FFT.

CITED REFERENCES AND FURTHER READING:

Singleton, R.C. 1967, IEEE Transactions on Audio and Electroacoustics, vol. AU-15, pp. 91–97.
[1]

Oppenheim, A.V., and Schafer, R.W. 1989, Discrete-Time Signal Processing (Englewood Cliffs,
NJ: Prentice-Hall), Chapter 9.

