Chapter 11. Eigensystems

11.0 Introduction

An N x N matrix A is said to have an eigenvector x and corresponding
eigenvalue X if

A X=X (11.0.1)

Obvioudly any multiple of an eigenvector x will also be an eigenvector, but we
won't consider such multiplesas being distinct eigenvectors. (The zero vector is not
considered to be an eigenvector at all.) Evidently (11.0.1) can hold only if

det|[A — A1 =0 (11.0.2)

which, if expanded out, isan Nth degree polynomial in A\ whose roots are the eigen-
values. This proves that there are dways N (not necessarily distinct) eigenvalues.
Equal eigenvalues coming from multiplerootsare called degenerate. Root-searching
in the characteristic equation (11.0.2) is usually a very poor computational method
for finding eigenvalues. We will learn much better ways in this chapter, as well as
efficient ways for finding corresponding eigenvectors.

The above two eguations also prove that every one of the N eigenvalues has
a (not necessarily distinct) corresponding eigenvector: If \ is set to an eigenvalue,
then the matrix A — A1 is singular, and we know that every singular matrix has at
least one nonzero vector in its null space (see §2.6 on singular value decomposition).

If you add 7x to both sides of (11.0.1), you will easily see that the eigenvalues
of any matrix can be changed or shifted by an additive constant 7 by adding to
the matrix that constant times the identity matrix. The eigenvectors are unchanged
by this shift. Shifting, as we will see, is an important part of many agorithms
for computing eigenvalues. We see also that there is no special significance to a
zero eigenvalue. Any eigenvalue can be shifted to zero, or any zero eigenvalue
can be shifted away from zero.
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11.0 Introduction 457

Definitions and Basic Facts
A matrix is called symmetric if it is equa to its transpose,
A=AT o a;=aj (11.0.3)

Itiscalled Hermitian or self-adjointif it equal sthe complex-conjugate of itstranspose
(its Hermitian conjugate, denoted by “t")

A=AT o ay=a;* (11.0.4)
It is termed orthogonal if its transpose equals its inverse,
AT . A=A.AT =1 (11.0.5)

and unitary if its Hermitian conjugate equalsitsinverse. Finaly, amatrix is caled
normal if it commutes with its Hermitian conjugate,

A-AT=aT.A (11.0.6)

For real matrices, Hermitian means the same as symmetric, unitary means the
same as orthogonal, and both of these distinct classes are normal.

Thereason that “Hermitian” isan important concept hasto do with eigenvalues.
The eigenvalues of a Hermitian matrix are al real. In particular, the eigenvalues
of area symmetric matrix are dl rea. Contrariwise, the eigenvalues of a red
nonsymmetric matrix may includereal values, but may also include pairs of complex
conjugate values; and the eigenvalues of a complex matrix that is not Hermitian
will in general be complex.

The reason that “normal” is an important concept has to do with the eigen-
vectors. The eigenvectors of a norma matrix with nondegenerate (i.e., distinct)
eigenvalues are compl ete and orthogonal, spanning the N -dimensional vector space.
For anormal matrix with degenerate el genvalues, we have the additional freedom of
replacing the elgenvectors corresponding to a degenerate eigenvalue by linear com-
binations of themselves. Using thisfreedom, we can always perform Gram-Schmidt
orthogonalization (consult any linear algebratext) and find a set of eigenvectors that
are complete and orthogonal, just as in the nondegenerate case. The matrix whose
columns are an orthonormal set of eigenvectorsis evidently unitary. A specia case
is that the matrix of eigenvectors of areal, symmetric matrix is orthogonal, since
the eigenvectors of that matrix are all redl.

When a matrix is not normal, as typified by any random, nonsymmetric, resl
matrix, thenin genera we cannot find any orthonormal set of eigenvectors, nor even
any pairs of eigenvectorsthat are orthogonal (except perhaps by rare chance). While
the NV non-orthonormal eigenvectors will “usually” span the N-dimensional vector
space, they do not always do so; that is, the eigenvectors are not always compl ete.
Such a matrix is said to be defective.
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458 Chapter 11.  Eigensystems

Left and Right Eigenvectors

While the eigenvectors of a non-normal matrix are not particularly orthogona
among themselves, they do have an orthogonality relation with a different set of
vectors, which we must now define. Up to now our eigenvectors have been column
vectors that are multiplied to the right of a matrix A, asin (11.0.1). These, more
explicitly, are termed right eigenvectors. We could aso, however, try to find row
vectors, which multiply A to the left and satisfy

XA = \X (11.0.7)

These are called |l eft eigenvectors. By taking the transpose of equation (11.0.7), we
see that every left eigenvector isthe transpose of aright eigenvector of the transpose
of A. Now by comparing to (11.0.2), and using the fact that the determinant of a
meatrix equals the determinant of its transpose, we also see that the left and right
eigenvalues of A are identical.

If the matrix A is symmetric, then the left and right eigenvectors are just
transposes of each other, that is, have the same numerical values as components.
Likewise, if the matrix is self-adjoint, the left and right eigenvectors are Hermitian
conjugates of each other. For the general nonnormal case, however, we have the
following calculation: Let X be the matrix formed by columns from the right
eigenvectors, and X ;, be the matrix formed by rows from the | eft eigenvectors. Then
(11.0.1) and (11.0.7) can be rewritten as

Multiplying the first of these equations on the left by X, the second on the right
by Xg, and subtracting the two, gives

This saysthat the matrix of dot products of the left and right ei genvectors commutes
with the diagonal matrix of eigenvalues. But the only matrices that commute with a
diagonal matrix of distinct elementsarethemselvesdiagonal. Thus, if theeigenvaues
are nondegenerate, each left el genvector isorthogonal to all right eigenvectorsexcept
its corresponding one, and vice versa. By choice of normalization, the dot products
of corresponding | eft and right eigenvectors can always be made unity for any matrix
with nondegenerate eigenva ues.

If some eigenvalues are degenerate, then either the left or the right eigenvec-
tors corresponding to a degenerate eigenvalue must be linearly combined among
themselves to achieve orthogonality with the right or left ones, respectively. This
can always be done by a procedure akin to Gram-Schmidt orthogonalization. The
normalization can then be adjusted to give unity for thenonzero dot productsbetween
corresponding left and right eigenvectors. If thedot product of corresponding left and
right eigenvectorsis zero at this stage, then you have a case where the eigenvectors
areincomplete! Note that incomplete eigenvectors can occur only where there are
degenerate eigenvalues, but do not always occur in such cases (in fact, never occur
for the class of “norma” matrices). See[1] for a clear discussion.
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11.0 Introduction 459

In both the degenerate and nondegenerate cases, the fina normalization to
unity of all nonzero dot products produces the result: The matrix whose rows
are left eigenvectors is the inverse matrix of the matrix whose columns are right
eigenvectors, if the inverse exists.

Diagonalization of a Matrix

Multiplying the first equation in (11.0.8) by X, and using the fact that X,
and Xy are matrix inverses, we get

X' A Xp =diag(Ar ... AN) (11.0.10)
This isa particular case of a similarity transform of the matrix A,
A —- zZ'.A.Z (11.0.11)

for some transformation matrix Z. Similarity transformations play a crucia role
in the computation of eigenvalues, because they leave the eigenvalues of a matrix
unchanged. This is easily seen from

det|Z7'A-Z — M| =det|z7!- (A - A1) - Z|
= det|Z| det|A — \1| det|z ™| (11.0.12)
= det|A — \1|

Equation (11.0.10) showsthat any matrix with compl ete eigenvectors (whichincludes
all norma matrices and “most” random nonnormal ones) can be diagonalized by a
similarity transformation, that the columns of the transformation matrix that effects
the diagonalization are the right eigenvectors, and that the rows of its inverse are
the left eigenvectors.

For real, symmetric matrices, the eigenvectors are real and orthonormal, so the
transformation matrix is orthogonal. The similarity transformation is then also an
orthogonal transformation of the form

A — zT'.A.z (11.0.13)

Whilereal nonsymmetric matrices can bediagonalizedin their usua case of complete
eigenvectors, the transformation matrix is not necessarily real. It turnsout, however,
that a real similarity transformation can “almost” do the job. It can reduce the
meatrix down to a form with little two-by-two blocks along the diagonal, all other
elements zero. Each two-by-two block corresponds to a complex-conjugate pair
of complex eigenvalues. We will see this idea exploited in some routines given
later in the chapter.

The “grand strategy” of virtually al modern eigensystem routines is to nudge
the matrix A towards diagonal form by a sequence of similarity transformations,

A — P/L.A-P, — P;L.P{L AP P

11.0.14
— PylPyLPILACPPy Py — dc ( !
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460 Chapter 11.  Eigensystems

If we get al the way to diagonal form, then the eigenvectors are the columns of
the accumulated transformation

Xp=P;-Py-Ps-... (11.0.15)

Sometimes we do not want to go al the way to diagonal form. For example, if
we are interested only in eigenvalues, not eigenvectors, it is enough to transform
the matrix A to be triangular, with al elements below (or above) the diagona zero.
In this case the diagonal elements are already the eigenvalues, as you can see by
mentally evaluating (11.0.2) using expansion by minors.

There are two rather different sets of techniques for implementing the grand
strategy (11.0.14). It turns out that they work rather well in combination, so most
modern eigensystem routinesuse both. Thefirst set of techniques constructsindivid-
ual P;’sas explicit “atomic” transformations designed to perform specific tasks, for
example zeroing a particular off-diagona element (Jacobi transformation, §11.1), or
a whole particular row or column (Householder transformation, §11.2; elimination
method, §11.5). In generd, a finite sequence of these simpl e transformations cannot
completely diagonalize a matrix. There are then two choices. either use the finite
sequence of transformations to go most of the way (e.g., to some special form like
tridiagonal or Hessenberg, see §11.2 and §11.5 bel ow) and follow up with the second
set of techniques about to be mentioned; or el se iterate the finite sequence of ssimple
transformations over and over until the deviation of the matrix from diagonal is
negligibly small. This latter approach is conceptually simplest, so we will discuss
it in the next section; however, for N greater than ~ 10, it is computationally
inefficient by a roughly constant factor ~ 5.

The second set of techniques, called factorization methods, is more subtle.
Suppose that the matrix A can be factored into a left factor Fy, and a right factor
Fgr. Then

A=Fp -Fgr orequivdently F;'-A=Fpg (11.0.16)

If we now multiply back together the factorsin the reverse order, and use the second
equation in (11.0.16) we get

Fr-FL=F'-A-Fg (11.0.17)

which we recognize as having effected a similarity transformation on A with the
transformation matrix being F;! In§11.3 and §11.6 we will discuss the QR method
which exploits this idea.

Factorization methods also do not converge exactly in a finite number of
transformations. But the better ones do converge rapidly and reliably, and, when
following an appropriateinitia reduction by simple similarity transformations, they
are the methods of choice.
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11.0 Introduction 461

“Eigenpackages of Canned Eigenroutines”

You have probably gathered by now that the solution of eigensystemsisafairly
complicated business. It is. It isone of the few subjects covered in this book for
which we do not recommend that you avoid canned routines. On the contrary, the
purpose of this chapter is precisely to give you some appreciation of what is going
on inside such canned routines, so that you can make intelligent choices about using
them, and intelligent diagnoses when something goes wrong.

Youwill find that almost all canned routinesin use nowadaystrace their ancestry
back to routines published in Wilkinson and Reinsch’s Handbook for Automatic
Computation, Vol. I1, Linear Algebra[2]. Thisexcellent reference, containing papers
by a number of authors, is the Bible of the field. A public-domain implementation
of the Handbook routines in FORTRAN is the EISPACK set of programs[3]. The
routinesin this chapter are trand ations of either theHandbook or EISPACK routines,
so understanding these will take you a lot of the way towards understanding those
canonical packages.

IMSL [4] and NAG [5] each provide proprietary implementations, in FORTRAN,
of what are essentially the Handbook routines.

A good* eigenpackage” will provideseparate routines, or separate pathsthrough
sequences of routines, for the following desired calculations:

e al eigenvalues and no eigenvectors

e al eigenvalues and some corresponding eigenvectors

e al eigenvalues and all corresponding eigenvectors
The purpose of these distinctionsis to save compute time and storage; it is wasteful
to calculate eigenvectors that you don’'t need. Often one is interested only in
the eigenvectors corresponding to the largest few eigenvalues, or largest few in
magnitude, or few that are negative. The method usualy used to calculate “some’
eigenvectorsistypically more efficient than cal culating all eigenvectorsif you desire
fewer than about a quarter of the eigenvectors.

A good eigenpackage aso provides separate paths for each of the above
calculations for each of the following special forms of the matrix:

e real, symmetric, tridiagona

e real, symmetric, banded (only a small number of sub- and superdiagonals

are nonzero)

e real, symmetric

e real, nonsymmetric

e complex, Hermitian

e complex, non-Hermitian
Again, the purpose of these distinctionsisto save time and storage by using the least
general routine that will serve in any particular application.

In this chapter, as a bare introduction, we give good routines for the following
paths:

o al eigenvalues and eigenvectors of areal, symmetric, tridiagonal matrix

(§11.3)
o dl eilgenvaluesand eigenvectorsof areal, symmetric, matrix (§11.1-§11.3)
e al egenvalues and eigenvectors of a complex, Hermitian matrix
(§11.4)
e al eigenvalues and no eigenvectors of a real, nonsymmetric matrix
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462 Chapter 11.  Eigensystems

(§11.5-§11.6)
We also discuss, in §11.7, how to obtain some elgenvectors of nonsymmetric
matrices by the method of inverse iteration.

Generalized and Nonlinear Eigenvalue Problems
Many eigenpackages also deal with the so-called generalized eigenproblem, [6]
A-x=\B-x (11.0.18)

where A and B are both matrices. Most such problems, where B is nonsingular,
can be handled by the equivalent

(B™'-A)-x=Xx (11.0.19)

Often A and B are symmetric and B is positive definite. The matrix B~! - A in
(11.0.19) is not symmetric, but we can recover a symmetric eigenvalue problem
by using the Cholesky decomposition B = L - LT of §2.9. Multiplying equation
(11.0.18) by L™, we get

C-(LT-x) =ML -x) (11.0.20)
where

C=L"'A-LH (11.0.21)

The matrix C is symmetric and its eigenvalues are the same as those of the original
problem (11.0.18); its eigenfunctionsare LT - x. The efficient way to form C is
first to solve the equation

Y. LT =A (11.0.22)
for the lower triangle of the matrix Y. Then solve
L-C=Y (11.0.23)
for the lower triangle of the symmetric matrix C.
Another generalization of the standard eigenvalue problem is to problems
nonlinear in the eigenvalue A, for example,

(AN +BA+C)-x=0 (11.0.24)

This can be turned into a linear problem by introducing an additional unknown
eigenvector y and solving the 2N x 2NN eigensystem,

(_A—Ol.c —A‘11~B> : (;) =\ (;) (11.0.25)

Thistechnique generaizesto higher-order polynomialsin A. A polynomial of degree
M produces alinear MN x M N eigensystem (seel7]).
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11.1 Jacobi Transformations of a Symmetric
Matrix

The Jacobi method consists of a sequence of orthogona similarity transforma-
tions of the form of equation (11.0.14). Each transformation (a Jacobi rotation) is
just a plane rotation designed to annihilate one of the off-diagonal matrix elements.
Successive transformations undo previously set zeros, but the off-diagona e ements
nevertheless get smaller and smaller, until the matrix is diagonal to machine preci-
sion. Accumulating the product of the transformations as you go gives the matrix
of eigenvectors, equation (11.0.15), while the elements of the final diagonal matrix
are the eigenvalues.

The Jacobi method is absolutely fool proof for all real symmetric matrices. For
meatrices of order greater than about 10, say, the algorithm is slower, by a significant
constant factor, than the QR method we shall givein §11.3. However, the Jacobi
algorithm is much simpler than the more efficient methods. We thus recommend it
for matrices of moderate order, where expense is not a mgjor consideration.

The basic Jacobi rotation P,,, is a matrix of the form

1 -

Py = SR (11.1.1)

1

Here al the diagonal elements are unity except for the two elements ¢ in rows (and
columns) p and ¢. All off-diagona elements are zero except the two elements s and
—s. Thenumbersc and s arethe cosineand sineof arotationangle ¢, so c? + 52 = 1.
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