
28 Chapter 1. Preliminaries

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

1.3 Error, Accuracy, and Stability

Although we assume no prior training of the reader in formal numerical analysis,
we will need to presume a common understanding of a few key concepts. We will
define these briefly in this section.

Computers store numbers not with infinite precision but rather in some approxi-
mation that can be packed into a fixed number of bits (binary digits) or bytes (groups
of 8 bits). Almost all computers allow the programmer a choice among several
different such representations or data types. Data types can differ in the number of
bits utilized (the wordlength), but also in the more fundamental respect of whether
the stored number is represented in fixed-point (int or long) or floating-point
(float or double) format.

A number in integer representation is exact. Arithmetic between numbers in
integer representation is also exact, with the provisos that (i) the answer is not outside
the range of (usually, signed) integers that can be represented, and (ii) that division
is interpreted as producing an integer result, throwing away any integer remainder.

In floating-point representation, a number is represented internally by a sign bit
s (interpreted as plus or minus), an exact integer exponent e, and an exact positive
integer mantissa M . Taken together these represent the number

s×M × Be−E (1.3.1)

where B is the base of the representation (usually B = 2, but sometimes B = 16),
and E is the bias of the exponent, a fixed integer constant for any given machine
and representation. An example is shown in Figure 1.3.1.

Several floating-point bit patterns can represent the same number. If B = 2,
for example, a mantissa with leading (high-order) zero bits can be left-shifted, i.e.,
multiplied by a power of 2, if the exponent is decreased by a compensating amount.
Bit patterns that are “as left-shifted as they can be” are termed normalized. Most
computers always produce normalized results, since these don’t waste any bits of
the mantissa and thus allow a greater accuracy of the representation. Since the
high-order bit of a properly normalized mantissa (whenB = 2) is always one, some
computers don’t store this bit at all, giving one extra bit of significance.

Arithmetic among numbers in floating-point representation is not exact, even if
the operands happen to be exactly represented (i.e., have exact values in the form of
equation 1.3.1). For example, two floating numbers are added by first right-shifting
(dividing by two) the mantissa of the smaller (in magnitude) one, simultaneously
increasing its exponent, until the two operands have the same exponent. Low-order
(least significant) bits of the smaller operand are lost by this shifting. If the two
operands differ too greatly in magnitude, then the smaller operand is effectively
replaced by zero, since it is right-shifted to oblivion.

The smallest (in magnitude) floating-point number which, when added to the
floating-point number 1.0, produces a floating-point result different from 1.0 is
termed the machine accuracy εm. A typical computer with B = 2 and a 32-bit
wordlength has εm around 3 × 10−8. (A more detailed discussion of machine
characteristics, and a program to determine them, is given in §20.1.) Roughly



1.3 Error, Accuracy, and Stability 29

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

=
=
=
=
=
=

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

1

1

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

(a)

(b)

(c)

(d)

(e)

(f )

1⁄ 2

3
1⁄ 4

10 − 7



3 + 10 − 7

. . .

23
-b

it 
man

tis
sa

thi
s b

it 
co

uld


be
 “p

ha
nto

m”

sig
n b

it

8-
bit

 ex
po

ne
nt

Figure 1.3.1. Floating point representations of numbers in a typical 32-bit (4-byte) format. (a) The
number 1/2 (note the bias in the exponent); (b) the number 3; (c) the number 1/4; (d) the number
10−7, represented to machine accuracy; (e) the same number 10−7, but shifted so as to have the same
exponent as the number 3; with this shifting, all significance is lost and 10−7 becomes zero; shifting to
a common exponent must occur before two numbers can be added; (f) sum of the numbers 3 + 10−7,
which equals 3 to machine accuracy. Even though 10−7 can be represented accurately by itself, it cannot
accurately be added to a much larger number.

speaking, the machine accuracy εm is the fractional accuracy to which floating-point
numbers are represented, corresponding to a change of one in the least significant
bit of the mantissa. Pretty much any arithmetic operation among floating numbers
should be thought of as introducing an additional fractional error of at least εm. This
type of error is called roundoff error.

It is important to understand that εm is not the smallest floating-point number
that can be represented on a machine. That number depends on how many bits there
are in the exponent, while εm depends on how many bits there are in the mantissa.

Roundoff errors accumulate with increasing amounts of calculation. If, in the
course of obtaining a calculated value, you perform N such arithmetic operations,
you might be so lucky as to have a total roundoff error on the order of

√
Nεm, if

the roundoff errors come in randomly up or down. (The square root comes from a
random-walk.) However, this estimate can be very badly off the mark for two reasons:

(i) It very frequently happens that the regularities of your calculation, or the
peculiarities of your computer, cause the roundoff errors to accumulate preferentially
in one direction. In this case the total will be of order Nεm.

(ii) Some especially unfavorable occurrences can vastly increase the roundoff
error of single operations. Generally these can be traced to the subtraction of two
very nearly equal numbers, giving a result whose only significant bits are those
(few) low-order ones in which the operands differed. You might think that such a
“coincidental” subtraction is unlikely to occur. Not always so. Some mathematical
expressions magnify its probability of occurrence tremendously. For example, in the
familiar formula for the solution of a quadratic equation,

x =
−b +

√
b2 − 4ac

2a
(1.3.2)

the addition becomes delicate and roundoff-prone whenever ac � b2. (In §5.6 we
will learn how to avoid the problem in this particular case.)



30 Chapter 1. Preliminaries

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Roundoff error is a characteristic of computer hardware. There is another,
different, kind of error that is a characteristic of the program or algorithm used,
independent of the hardware on which the program is executed. Many numerical
algorithms compute “discrete” approximations to some desired “continuous” quan-
tity. For example, an integral is evaluated numerically by computing a function
at a discrete set of points, rather than at “every” point. Or, a function may be
evaluated by summing a finite number of leading terms in its infinite series, rather
than all infinity terms. In cases like this, there is an adjustable parameter, e.g., the
number of points or of terms, such that the “true” answer is obtained only when
that parameter goes to infinity. Any practical calculation is done with a finite, but
sufficiently large, choice of that parameter.

The discrepancy between the true answer and the answer obtained in a practical
calculation is called the truncation error. Truncation error would persist even on a
hypothetical, “perfect” computer that had an infinitely accurate representation and no
roundoff error. As a general rule there is not much that a programmer can do about
roundoff error, other than to choose algorithms that do not magnify it unnecessarily
(see discussion of “stability” below). Truncation error, on the other hand, is entirely
under the programmer’s control. In fact, it is only a slight exaggeration to say
that clever minimization of truncation error is practically the entire content of the
field of numerical analysis!

Most of the time, truncation error and roundoff error do not strongly interact
with one another. A calculation can be imagined as having, first, the truncation error
that it would have if run on an infinite-precision computer, “plus” the roundoff error
associated with the number of operations performed.

Sometimes, however, an otherwise attractive method can be unstable. This
means that any roundoff error that becomes “mixed into” the calculation at an early
stage is successively magnified until it comes to swamp the true answer. An unstable
method would be useful on a hypothetical, perfect computer; but in this imperfect
world it is necessary for us to require that algorithms be stable — or if unstable
that we use them with great caution.

Here is a simple, if somewhat artificial, example of an unstable algorithm:
Suppose that it is desired to calculate all integer powers of the so-called “Golden
Mean,” the number given by

φ ≡
√

5− 1

2
≈ 0.61803398 (1.3.3)

It turns out (you can easily verify) that the powers φn satisfy a simple recursion
relation,

φn+1 = φn−1 − φn (1.3.4)

Thus, knowing the first two values φ0 = 1 and φ1 = 0.61803398, we can
successively apply (1.3.4) performing only a single subtraction, rather than a slower
multiplication by φ, at each stage.

Unfortunately, the recurrence (1.3.4) also has another solution, namely the value
−1

2 (
√

5 + 1). Since the recurrence is linear, and since this undesired solution has
magnitude greater than unity, any small admixture of it introduced by roundoff errors
will grow exponentially. On a typical machine with 32-bit wordlength, (1.3.4) starts



1.3 Error, Accuracy, and Stability 31

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. P
erm

ission
is granted for users of the W

orld W
ide W

eb to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of

m
achine-readable files (including this one) to any
server com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes
books and diskettes,
go to http://w

orld.std.com
/~

nr or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

to give completely wrong answers by aboutn = 16, at which pointφn is down to only
10−4. The recurrence (1.3.4) is unstable, and cannot be used for the purpose stated.

We will encounter the question of stability in many more sophisticated guises,
later in this book.

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 1.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 2.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §1.3.

Wilkinson, J.H. 1964, Rounding Errors in Algebraic Processes (Englewood Cliffs, NJ: Prentice-
Hall).


