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Abstract. Entanglement witnesses are observables which when measured, detect entangle-
ment in a composed system. It is shown what kind of relations among eigenvectors an observable
should fulfill to be an entanglement witness. A similar analysis shows some relations among
eigenvalues and eigenvectors of a density operator, which are necessary for the operator to be
separable.

1. Introduction
The most important information resource in quantum-information science, which distiguishes
it from classical information theory, is entanglement. It is important to check whether a given
state is entangled, i.e. whether it can be used in a given quantum-information protocol. Despite
the fact that there are different incomparable types of entanglement, at present we cannot even
judge whether a given mixed state is separable or not. One of the ways of detecting entanglement
is provided by a class of special observables called entanglement witnesses. This paper discusses
the question of how separability of a given state determines its spectral properties and what
spectral properties entanglement witnesses have.

From now we will consider only finite-level quantum systems. Having a quantum system
which is composed of two subsystems, the Hilbert space of the system is a tensor product of
the subsystems Cd1 ⊗ Cd2 . In fixed bases of subsystems, any element of the space of the tensor
product can be written as a matrix of its coordinates. For a given vector Ψ, we will denote this
matrix by A(Ψ). We define a Schmidt rank of a vector in Cd1 ⊗Cd2 as the rank of its coordinate
matrix. The set of vectors of Schmidt rank 1 will be denoted by S1. Such vectors can be written
as φ⊗ ψ for some vectors in the Hilbert spaces of the subsystems.

We define pure separable states as projectors onto vectors in S1. Following Werner [1], we
extend this definition to mixed states, defining the set of mixed separable states as a convex
hull of the set of separable pure states. Namely a state is separable when it can be written as a
convex combination of projectors onto vectors of Schmidt rank 1: ρ =

∑
i λi|φi ⊗ ψi〉〈φi ⊗ ψi|.

States which are not separable are called entangled.
The problem of separability is then the problem of membership in a convex set whose

extremal points are given. One of the ways to handle this problem is a concept of entanglement
witnesses introduced in [2]. We define the dual cone of the subspace of separable states:
{W : ∀ρ ∈ S1 〈ρ|W 〉HS ≥ 0}. The members of this cone, which are not positive, are called
entanglement witnesses. The state is separable iff the mean value of all entanglement witnesses



in this state is positive. For a given entangled state, there exists an entanglement witness whose
mean value on the given state is negative. The kernel of this state is a hypersurface, which
separates two convex sets - the set of separable states and the singleton of the given state.

The observable W fulfills then two obvious conditions:

• ∀Ψ ∈ S1 〈Ψ|W |Ψ〉 ≥ 0
• 〈ρ|W 〉HS < 0

An observable which fulfills these two conditions is called entanglement witness. A state ρ which
fulfills the condition 〈ρ|W 〉HS < 0 is said to be detected by W .

The problem of classification of entanglement witnesses remains unsolved, in general.
However, in low dimensions (2 × 2, 2 × 3) we have such a classification. Any entanglement
witness is of the form: W = AΓ + B, A,B ≥ 0, where Γ denotes partial transpose in one
of the subsystems (see [3]). Such witnesses are called decomposable, and states which can be
detected by witnesses from this class are called NPT entangled states. In higher dimensions
this class of entanglement witnesses is a proper subset of the set of all witnesses. We have then
entangled states not detected by this class. They are called PPT entangled states. A simple
criterion exists to check whether a given state is NPT (see [4], [5]). The most interesting are
then non-decomposable witnesses and tools to detect PPT entanglement based on them.

2. Spectral properties of entanglement witnesses
Having a given hermitian observable W , one can decompose its domain according to its spectral
decomposition: Cd1 ⊗ Cd2 = V+ ⊕ V− ⊕ V0, where the positive subspace V+ is spaned by
eigenvectors of positive eigenvalues, the negative subspace V− is spaned by eigenvectors of
negative eigenvalues, and V0 is the kernel of W . In similar way, one can write W as a difference
of two positive operators: W = W+ −W−, where W+ is W restricted to V+, and W− is W
restricted to V−.

For further considerations yet another notation will be very usefull. For a given state Ψ, we
define ṼΨ = ImTr2|Ψ〉〈Ψ| ⊗ Cd2 ⊕ Cd1 ⊗ ImTr1|Ψ〉〈Ψ|.

Necessary condition: When an observable W is an entanglement witness, then the
following conditions should be fulfilled:

(i) V− ) {0}
(W should be able to detect anything)

(ii) ∀Ψ ∈ S1 Ψ ∈ V0 ⊕ V− ⇒ Ψ ∈ V0

(the mean value of W in any separable state cannot be negative)
(iii) ∀Ψ ∈ S1 ∩ V0 ṼΨ ∩ V− ⊕ V0 ⊂ V0

Making the third condition stronger: ∀Ψ ∈ S1∩V0 V− ∈ Ṽ ⊥Ψ , one gets a kind of weak inversion
of the above theorem:

Sufficient condition: When the conditions (i) - (iii) are fulfilled, the third one in its stronger
form, then for λ large enough the observable λW+ −W− is an entanglement witness.

Conditions (i) - (iii) with the intersection theorem for varieties in complex projective space
(see [6]) give some restrictions on the signatures of entanglement witnesses.

Similarly, one can define the set of k−separable states as the convex hull of projectors onto
Schmidt rank k vectors (see [7]), and the corresponding set of k−witnesses (see [8]). Both the
necessary and sufficient conditions, as well as algebraic-geometric constraints mentioned above
have straighforward generalization for k−witnesses.



3. Parametrization of the boundary of the set of entanglement witnesses
The set of operators Y which take positive mean value on vectors of Shmidt rank 1 can be
divided into the convex subset of positive operators and its complement - the set of entanglement
witnesses. To detect entanglement, it is enough to use witnesses from the boundary of Y - any
other entanglement witness is a combination of the identity and some witness from the boundary,
so set of states detected by such a witness is a proper subset of set of states detected by the
witnesses from the boundary.

One can assign to any density operator ρ the entanglement witness from the boundary of Y
of the form:

Wρ = ||√ρ||2S−supI − ρ (1)

The operator ρ is positive, so its square root is defined properly. The norm is defined as
follows: ||X||S−sup = sup{XΨ : ||Ψ|| = 1 ∧ Ψ ∈ S1}, and the following inequality takes place:
||X||S−sup ≤ ||X||sup.

In the case when ||√ρ||2S−sup = ||√ρ||2sup, the boundary of the set of witnesses meets the
boundary of the set of states.

4. Spectral properties of separable states
State ρ is separable iff the mean values of all entanglement witnesses on it are positive. As
it was shown in the previous section, one can restrict the quantified set to the boundary of
the set of observables which are positive on vectors from S1, parameterized by (1). Using this
parametrizations, one gets the equivalent definition of separability of ρ:

∀η 〈η|ρ〉HS ≤ ||√η||2S−sup (2)

Restricting now the quantified set to some special classes of density operators, one can get some
neccesary conditions for separability.

First class which is worth to distiguish is the class of normalized projectors, i.e. density
operators which have all their non-zero eigenvalues degenerated. For a projector onto subspace
V we have the formula: ||

√
ΠV ||2S−sup = ||ΠV ||2S−sup = sup{||A(Ψ)||sup : Ψ ∈ V ∧ ||Ψ|| = 1}.

In the special case of one-dimensional subspace V , spaned by a vector Ψ, the above formula
reduces to ||

√
ΠV ||2S−sup = ||A(Ψ)||sup, which is equal to the maximal Schmidt coefficient of the

vector Ψ. Then one gets the separability criterion:

∀Ψ 〈Ψ|ρ|Ψ〉 ≤ ||A(Ψ)||2sup. (3)

This criterion detects all separable pure states but is to weak to detect any PPT entangled state.
Nevertheless it leads to some results having an interesting physical interpretation.

Properties of statistical mixtures: Consider a mixing machine which, using the system
of beam splitters, gives as the output the mixture of states from n inputs. States from any input
can occur in the output with equal probabilities. On the input i there is a source of pairs of
particles in some pure entangled state |Ψi〉〈Ψi|. We can assign to the sources their normalized
efficiencies pi. The output state of the machine is the density operator ρ =

∑
i pi|Ψi〉〈Ψi|.

Now we want to find some restrictions on the efficiencies pi as a neccesary condition for the
separability of ρ.

Let us apply the condition (3) to the state ρ =
∑

i pi|Ψi〉〈Ψi|, and then restrict the inequality
to one element of the sum:

pi|〈φ|Ψi〉|2 ≤ 〈φ|
∑

i

pi(|Ψi〉〈Ψi|)|φ〉 ≤ ||A(φ)||2sup

In particular, it should be fullfiled for φ = Ψi, and it leads to the condition λi ≤ A(Ψi).



Properties of the spectrum of a separable state: A special case of statistical mixture
is the spectral decomposition. Using the previous result to spectral decomposition one gets a
criterion for the eigenvalues:

When a state is separable, then its eigenvalue is not greater than the supremum norm of the
coordinate matrix of the corresponding eigenvector.

Example: Consider the density operators acting in C2 ⊗ C2, whose eigenbasis is the Bell
(magic) basis:

A(Φ1) = 1√
2

[
1 0
0 1

]
A(Φ2) = 1√

2

[
1 0
0 −1

]
A(Φ3) = 1√

2

[
0 1
1 0

]
A(Φ4) = 1√

2

[
0 1
−1 0

]
It is very easy to calculate the supremum norms of the matrices of coordinates of the basis
vectors. Using the criterion for eigenvalues one gets: λi ≤ 1/2. For this eigenbasis, it is also
sufficient condition (see [9], [10]).

Generalization using higher-dimensional projectors: Having a spectral decomposition
ρ =

∑
i∈I0

pi|Ψi〉〈Ψi|, one can define for I ⊂ I0 a subspace Vi = span{Ψi : i ∈ I}. Using mutual
orthogonality of eigenvectors, one gets the condition:

∑
i∈I λi ≤ ||ΠVI

||2S−sup.
If the power of the set I is large enough, then the intersection theorem mentioned before

implies the existence of a separable vector in VI . Then the right-hand side is equal to one,
and the condition becomes trivial. It is worth noticing that this criterion is already able to
detect some PPT entangled states - it is based on entaglement witnesses with all negative and
positive eigenvalues degenerated. According to a paper by B. M. Terhal [11], one can construct
indecomposable witness with such a property.

5. Conclusions
It was shown that when an observable is an entanglement witness, it fulfills some necessary
conditions concerning its kernel and its negative subspace. It was also shown that when one of
the conditions is strengthened, then it guarantees that the given observable is an entanglement
witness, possibly after rescaling its positive part. Although among isospectral density martices
are both separable and entangled states, one can provide some necessary conditions for a
density matrix with given spectrum to be separable, which uses the propetries of its invariant
subspaces. A hierarchy of conditions is presented, where every weakening provides a condition
which is simpler to check. Morover, such a conditions can be applied not only to the spectral
decomposition, but to any statistical mixture, possibly consisting of states of non-orhogonal
supports.
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