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Abstract. The geometry of orbits of a group of local operations is analyzed. It depends on
the form of orbit stabiliser and is found by knowing the stabiliser. Discrete stabilisers for generic
orbits are obtained. We prove that local group acts freely on a generic orbit.

1. Introduction

1.1. Physical situation

Consider three two-level systems (qubits), initially interacting, and then separated.

Now the dynamics of the system is given by a one-parameter, strongly continuous

subgroup of the group of local operations U(2) × U(2) × U(2). The local group

does not act transitively on CP 7, so it splits the space of states of the system

into local orbits. The orbit cannot be changed by a local operation, and becomes

fixed, when the interaction between subsystems disappears. Local orbit is then

the domain of any prescribed dynamics. The dynamics of entangled qubits gives

us knowledge about properties of correlations among them. Topological properties

of the domain of the dynamics are closely related with properties of the dynamics

itself. Topological properties of an orbit tell us a lot about general local dynamics

on this orbit.
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1.2. Mathematical tools used

In general, the local group does not act freely, i.e. there are non-identity operations

which do not move points in an orbit. Such operations for a fixed orbit form a

subgroup which is called the stabiliser of this orbit. All non-discrete stabilisers

were found in [1]. In this paper, all discrete stabilisers are obtained (stabilisers of

orbits of full dimension). The geometry of all orbits will be found using only the

form of stabiliser, by aliasing points differing by an element of the stabiliser.

The orbits have topological structure of fibre bundles. A bundle which belongs

to this class has a typical fibre. Let us recall that a fibre bundle is a generalization

of cartesian product. In cartesian product there are two projections to both factors.

In total space of a bundle there is only one projection to the base of the bundle,

but in general there’s no possibility to define the second projection to the fibre.

When it is possible, the bundle is homeomorphic to a cartesian product of the base

and the fibre and is called a trivial bundle. When it is not possible, the bundle

is called nontrivial. The simplest example of nontrivial bundle is the universal

covering of S1, given by the exponential function φ : R → S1, φ(x) = eix. The

fibre over a point, i.e. the preimage of the projection, is Z, and the base is S1. The

covering space R is connected but S1 × Z — the family of circles parameterized

by Z — is not connected. It means that this bundle cannot be homeomorphic to

a cartesian product of the base and the fibre. The bundle will be denoted by the

base
∐

the fibre.

The fundamentals of fibre bundle theory can be found in [2]. The basic facts
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of algebraic topology can be found in e.g. [3].

1.3. Review of existing results

The geometry of all local orbits of two entangled systems of dimension lower than

4 was found in [4] by using the non-uniqueness of Schmidt decomposition. This

method cannot be extended to three entangled qubits, because Schmidt decompo-

sition does not work for more than two particles (see [5]).

The problem of geometry of orbits of two entangled qubits was considered in

[6] using the second Hopf bundle. The orbits of separable and maximally entan-

gled states was found there. The geometry of an orbit of an entangled (but not

maximally entangled) state can be found by a simple adaptation of the method

used for an orbit of the maximally entangled state.

The analogous structure describing three qubits is the third Hopf bundle, con-

sidered in [7]. That work, however, does not touch the problem of the geometry

of orbits.

2. Manifold of Local Operations on the Set of States

Consider an element of the group U(2). It can be written as eiφ × U, where

U ∈ SU(2) and φ ∈ [0, 2π). The symbol × denotes here and from now on direct

product of elements of the respective groups. This representation is not unique.

To get a unique representation, one should alias antipodal points of such manifold.

It gives S1 × S3/ Z2 = S1
∐

RP 3.
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This bundle is not trivial. Suppose that on the contrary S1 × S3/ Z2 = S1 ×

RP 3. One of the known facts from algebraic topology says, that

Π(A×B) = Π(A)×Π(B) . (1)

It implies that the projection of a loop in U(2) should be a loop in the fibre. Con-

sider a path in S1×S3 — the universal covering of U(2) joining points (eiφ, U) and

(ei(φ+π),−U). These points represent the same element of U(2), so the considered

path is a loop in total space. The fundamental group of the base of this bundle

— RP 3 is Z2. The projection of the loop represents 1 in the fundamental group of

the base space. When going along this loop, a point in the fibre changes by π, so

the projection of the loop in the fibre is not closed. For this loop formula (1) does

not work, so the contradiction implies, that the bundle is not homeomorphic with

a cartesian product of the base and the fibre, so is not trivial.

The symbol
∐

means that U(2) is a bundle with base space RP 3 and the

fibre S1.

Consider now an element of U(2) × U(2). It can be written as eiφ×U×V, where

U, V ∈ SU(2). Again, to get unique representation one should alias antipodal

points on both manifolds. It gives S1×S3/ Z2×S3/ Z2 = S1
∐

(RP 3×RP 3). This

bundle is not trivial again. Going along the loops representing the elements (1, 0)

and (0, 1) of the fundamental group, the parametrization of the fibre changes by π.

Similarly the manifold of the U(2) × U(2) × U(2) group is S1
∐

(RP 3)3. The

parametrization of the fibre changes, when going along loops representing the

elements

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) ∈ Π(RP 3 × RP 3 × RP 3) = (Z2)3 .
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By aliasing the vectors representing the same state (differing by a phase factor),

each fibre collapses to a point, and the manifold of the group of local operations

on the set of states of one, two, or three qubits is a proper cartesian power of RP 3.

3. The Geometry of Orbits in Two Qubit Problem

It is possible now to find the geometry of orbits of local operations on the set

of states of two qubits using only the knowledge about the form of a stabiliser

of such orbits. In case of two qubits, the set of orbits is parameterized by one

real parameter — the concurrence (see [8]). There are only three different types

of orbits: when the concurrence is 0 (separable states), when the concurrence

is 1 (maximally entangled states) and for remaining values of the concurrence

(entangled, but not maximally entangled states). Each of that types has different

stabiliser. Admissible forms of stabilisers were found in [1].

3.1. Separable states

The stabiliser of this orbit has the form eiθσz × eiφσz , where θ and φ are arbitrary

angles, so the elements of SU(2)× SU(2) (the universal covering of RP 3 × RP 3 )

of the form 1[
eiθ 0
0 e−iθ

]
·
[

a b
−b̄ ā

]
×

[
eiφ 0
0 e−iφ

]
·
[

c d
−d̄ c̄

]

=
[

a · eiθ b · eiθ

−b̄ · e−iθ ā · e−iθ

]
×

[
c · eiφ d · eiφ

−d̄ · e−iφ c̄ · e−iφ

]
1The “×” denotes here the direct product of group elements represented by above matrixes.

If however the reader is inclined to think in terms of representations, × thould be replaced by ⊗.
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represent the same state for all θ and φ. Each element of such torus has its antipodal

element on the same torus, so aliasing the points on the torus aliases the antipodal

points in SU(2)× SU(2).

As a representant of a point of the orbit, the element where arg a = −θ and

arg c = −φ can be taken. After redefining the parameters:

a · eiθ → a
b · eiθ → b
c · eiφ → c
d · eiφ → d

(2)

such representant can be written as:

[
a b
−b̄ a

]
×

[
c d
−d̄ c

]
, (3)

where a, c ∈ R+ and b, d ∈ C. A pair (a, b) represents a point from a closed two-

dimensional hemisphere, similarly for the pair (c, d). When a = 0, the first matrix

in the product (3) has the form

[
0 eiα

e−iα 0

]
.

All such matrices differ by an element of the stabiliser, so they represent the same

point of the orbit, and similarly for the second qubit. Aliasing the points from the

boundary of the hemisphere gives the sphere, so the set of orbits in this case is

S2 × S2 (the product of Bloch spheres of both qubits).
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3.2. Entangled, but not maximally entangled states

The stabiliser of this orbit has the form eiνσz×e−iνσz . Any element of SU(2)×SU(2)

of the form[
eiν 0
0 e−iν

]
·
[

a b
−b̄ ā

]
×

[
e−iν 0
0 eiν

]
·
[

c d
−d̄ c̄

]

=
[

a · eiν b · eiν

−b̄ · e−iν ā · e−iν

]
×

[
c · e−iν d · e−iν

−d̄ · eiν c̄ · eiν

]
represents the same state for all ν. As a representant of a point of the orbit, the

element with arg a = −ν can be taken. After redefining the parameters:

a · eiν → a
b · eiν → b

c · e−iν → c
d · e−iν → d

(4)

such representant can be written as[
a b
−b̄ a

]
×

[
c d
−d̄ c̄

]
. (5)

The set of pairs (a, b) forms again the Bloch sphere (after aliasing of the boundary

of hemisphere, as in the former case). Aliasing antipodal points in second factor

of (5), one gets RP 3. Such an orbit is then a bundle

S2
∐

RP 3, (6)

where S2 is the base, and RP 3 is the fibre. This bundle is not trivial. Suppose it

is. Then it is possible to define a continuous function from S2 to S1 (the global

section of the bundle — see [2]). Such a section can define the global phase of

first qubit (see (4)), which is impossible due to the nontriviality of the first Hopf

bundle — see [6, 7] and references therein.
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3.3. Maximaly entangled states

The stabiliser of this orbit has the form U × U †, where U ∈ SU(2). It means,

that every operation on the first qubit is equal to identity up to an element of the

stabiliser. Deciding to represent the state of the first qubit, one has to choose a

proper element of the stabiliser, and the representative of the state of the second

qubit becomes fixed and unique. It gives RP 3 as the manifold of this orbit.

The present section reproduces the results of [4], but without using Schmidt

decomposition, which makes it possible for this method to be used in three qubit

problem later on.

4. The Geometry of Orbits in Three Qubit Problem

4.1. Bystander states

This class of states, introduced by Carteret and Sudbery in [1], groups the states,

where one of qubits is not entangled with the other two. Assume, that the first

qubit is not entangled with the other two. Using again the results of [1], the

stabiliser of such states can be written as eiασz × U, where U is an element of the

stabiliser of two other qubits. The stabiliser is now the product of two subgroups,

namely of the first qubit stabiliser and the second qubit one. It means, that the

set of states is a product of two manifolds: SU(2) / U(1) and one of the manifolds

from the previous section. The result of aliasing in the first factor of this product

was found in the previous section and it is the Bloch sphere of the first qubit. The
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geometry of an orbit of a bystander state is:

• S2 × S2 × S2, when two other qubits are not entangled,

• S2 × (S2
∐

RP 3), when two other qubits are entangled, but not maximally

entangled,

• S2 × RP 3, when two other qubits are maximally entangled.

Because the first qubit is not entangled with the other two, the set of states of

such system should be the product of the set of states of first qubit and the set

of states of the other two, so it makes it easy to predict the form of the above

manifolds.

4.2. GHZ class

The orbits from this class are represented by vector states of the form: |Ψ〉 =

p|000〉+q|111〉, where p, q ∈ R+. For p = q, |Ψ〉 = 1√
2
|000〉+ 1√

2
|111〉 is called GHZ

(Greenberger, Horne, Zeilinger) state. This is a state which maximally violates

Bell’s inequality for three particles (see [9]). When the system is in GHZ state, all

three qubits are entangled, but the mixed state of every pair, obtained by tracing

out one of the qubits, is separable (see [10, 11, 12]). When p 6= q, the stabiliser of

such orbit has the form

eiθσz × eiασz × e−i(α+θ)σz (7)

The elements of the form[
eiθ 0
0 e−iθ

]
·
[

a b
−b̄ ā

]
×

[
eiα 0
0 e−iα

]
·
[

c d
−d̄ c̄

]
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×
[

e−i(α+θ) 0
0 ei(α+θ)

]
·
[

r s
−s̄ r̄

]
=

[
a · eiθ b · eiθ

−b̄ · e−iθ ā · e−iθ

]

×
[

c · eiα d · eiα

−d̄ · e−iα c̄ · e−iα

]
×

[
r · e−i(α+θ) r · e−i(α+θ)

−s̄ · ei(α+θ) r̄ · ei(α+θ)

]
represent the same operation for all α and θ. Taking α = − arg a and θ = − arg b,

after reparametrization
a · eiα → a
b · eiα → b
c · eiθ → c
d · eiθ → d

r · e−i(α+θ) → r
s · e−i(α+θ) → s ,

(8)

one gets the unique (up to aliasing the boundary of hemispheres) representative

of the form [
a b
−b̄ a

]
×

[
c d
−d̄ c

]
×

[
r s
−s̄ r̄

]
, (9)

where a, c ∈ R+ and b, d, r, s ∈ C. After aliasing the boundaries of hemispheres in

two first factors, one obtains the manifold

(S2 × S2)
∐

RP 3, (10)

where S2 × S2 is the base, and RP 3 is the fibre. Fixing a point on one sphere,

one gets the bundle (6), which is not trivial, so the whole bundle cannot be trivial

either.

When p = q (GHZ state), a different subset of the stabiliser appears:[
0 eiθ

−e−iθ 0

]
×

[
0 eiα

−e−iα 0

]
×

[
0 e−i(θ+α)

−ei(θ+α) 0

]
, (11)

because the element

σy × σy × σy (12)
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is now in the stabiliser, and the subset (11) is the image of multiplying (7) by

(12). The square of (12) yields identity, so this additional element in the stabiliser

aliases the pairs of elements differing by (12). Acting by (12) on a representative

of an element of the first factor of the base of (10), one obtains

[
0 1
−1 0

]
·
[

a b
−b̄ a

]
=

[
−|b| · e−i arg b a · ei arg b · e−i arg b

−a · e−i arg b · ei arg b −|b| · ei arg b

]

=
[

ei(arg b+π) 0
0 e−i(arg b+π)

]
·
[

|b| a · ei(arg b+π)

−a · e−i(arg b+π) |b|

]
.

The same is obtained when the antipodal (on the Bloch sphere) element is used,

so that antipodal elements on S2 should be aliased. The same operation aliases

the antipodal point in the second factor of (10). The antipodal points on S2 × S2

(the base of (10)) should be aliased. A pair of points differing by a sign should also

be aliased to a point. Such a point can be uniquely represented by the element of

the pair with positive first coordinate in the first factor. The base of (10) in this

case becomes the bundle

RP 2
∐

S2,

where RP 2 is the base, and S2 is the fibre. Consider a loop which represents 1 in

Z2 = Π(RP 2). Such a loop connects the antipodal points in S3 — the universal

covering of RP 2. Fix an element in the fibre over the beginning point of the loop.

Going along the loop, the fixed element changes to the anipodical, so the bundle

is not trivial (see (1)). The third factor reparametrizes the fibre of (10):

(a, b) → (−b̄,−ā) ∼ (b̄, ā) . (13)
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The manifold of GHZ state is

(RP 2 ”×” S2) ”×” RP 3.

4.3. Slice ridge

There are also extended GHZ states [10]. Such orbits are represented by states of

the form: |Ψ〉 = p|000〉+ q|101〉+ t|111〉.

When p, q and t do not satisfy the condition

|p|2 = |q|2 + |t|2, (14)

then the stabiliser has the form

eiθσz × e−iθσz × I. (15)

It means, that the set of operations[
eiθ 0
0 e−iθ

]
·
[

a b
−b̄ ā

]
×

[
e−iθ 0
0 eiθ

]
·
[

c d
−d̄ c̄

]
×

[
1 0
0 1

]
·
[

r s
−s̄ r̄

]
=

[
a · eiθ b · eiθ

−b̄ · e−iθ ā · e−iθ

]
×

[
c · e−iθ d · e−iθ

−d̄ · eiθ c̄ · eiθ

]
×

[
r s
−s̄ −r̄

]
,

represents the same state for all θ. Choosing θ = − arg a and then reparameterizing

as
a · eiθ → a
b · eiθ → b

c · e−iθ → c
d · e−iθ → d

(16)

one gets the unique (again, up to aliasing the boundary points of hemisphere in

the first factor) representation in the state of the form[
a b
−b̄ a

]
×

[
c d
−d̄ c̄

]
×

[
r s
−s̄ r̄

]
, (17)
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where a ∈ R+ and b, c, d, r, s ∈ C. Such orbit is then

(S2 ”×” RP 3)× RP 3, (18)

where in the internal bundle S2 is the base, and RP 3 is the fibre. The last two

equations in (16) establish an isomorphism between the fibre at a point of the

base, and the typical fibre. The internal bundle is isomorphic with (5), so is not

trivial.

When the condition (14) is satisfied, an additional subset of the stabiliser

appears. Its elements are of the form[
0 eiθ

−e−iθ 0

]
×

[
0 e−i(θ+χ)

−e−i(θ+χ) 0

]
× −i

p
·
[

|q| t̄ · eiχ

t · e−iχ |q|

]
, (19)

where χ = arg(q). The operation on the third qubit depends only on the orbit.

Fixing an orbit and properly reparametrizing SU(2) groups of the second and the

third qubit, (19) becomes[
0 eiθ

−e−iθ 0

]
×

[
0 e−iθ

−e−iθ 0

]
×

[
1 0
0 1

]
. (20)

Changing θ, the parametrization of the third factor of (18) remains unchanged,

so the cartesian product structure in (18) is conserved. It is easy to observe, that

(20) is an image of (15) when multiplied by[
0 1
−1 0

]
×

[
0 1
−1 0

]
×

[
1 0
0 1

]
. (21)

Acting with (21) on an element of (18) of the form (17) changes the point of the

base of internal bundle in (18) to the antipodal one, and reparameterizes the fibre

over this point. Such points in the base should be aliased (in the same way as in

the GHZ-state problem), and the geometry of such orbit is

(RP 2
∐

RP 3)× RP 3. (22)
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4.4. Beechnut states

The states of the form

|Ψ〉 = p|000〉+ q|101〉+ t|110〉 (23)

are called beechnut states [1], and the orbits they represent have the stabiliser of

the form

eiφσz × eiφσz × e−iφσz . (24)

It means, that all local operations of the form[
eiφ 0
0 e−iφ

]
·
[

a b
−b̄ ā

]
×

[
eiφ 0
0 e−iφ

]
·
[

c d
−d̄ c̄

]
×

[
e−iφ 0

0 eiφ

]
·
[

r s
−s̄ r̄

]
=

[
a · eiφ b · eiφ

−b̄ · e−iφ ā · e−iφ

]
×

[
a · eiφ b · eiφ

−b̄ · e−iφ ā · e−iφ

]
×

[
a · e−iφ b · e−iφ

−b̄ · eiφ ā · eiφ

]
represent the same state for all φ. Choosing φ = − arg a, after reparametrization

a · eiφ → a
b · eiφ → b
c · eiφ → c
d · eiφ → d

r · e−iφ → r
s · e−iφ → s ,

(25)

one obtains the representative of the state in the form[
a b
−b̄ a

]
×

[
c d
−d̄ c̄

]
×

[
r s
−s̄ r̄

]
, (26)

where a ∈ R+ end b, c, d, r, s ∈ C+, and the boundary points in the first factor of

(26) should be aliased. Hence the geometry of the orbit is

S2
∐

(RP 3 × RP 3) , (27)

where S2 is the base, and (RP 3 × RP 3) is the fibre. The last four lines in (25)

define an isomorphism between the fibre at a fixed point and the typical fibre.
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Notice that the local operation[
0 1
1 0

]
×

[
1 0
0 1

]
×

[
1 0
0 1

]
on the representative of the form (23) gives the state

|Ψ〉 = p|100〉+ q|001〉+ t|010〉 .

When

p = q = t =
1√
3

then |Ψ〉 is the famous Werner state |W 〉. When a 3-qubit system is in the Werner

state, every two qubits are entangled, and the entanglement of the system consist

of two-qubit entanglement only, in opposition to the GHZ state (see [10, 11, 12]).

5. Full-Dimensional Orbits

The generic orbit is an orbit of full dimension, so that the stabiliser is discrete.

Now the set of solutions of the equation

U × V ×W |Ψ〉 = eiφ|Ψ〉 (28)

in SU(2)×SU(2)×SU(2) forms a discrete subgroup. Because this is a discrete set

of solutions of a polynomial equation, it is finite. Taking the state |Ψ〉 in the form

|Ψ〉 =
1∑

i,j,k=0

tijk|ijk〉 , (29)

(28) can be written as

tijk = eiα
1∑

l,m,n=0

uilvjmwkntlmn . (30)
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Every state vector (29) can be written in the form [10]

|Ψ〉 = λ0|000〉+ λ1e
iα|100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉 (31)

where
λ0, λ1, λ2, λ3, λ4 ≥ 0 ,

λ0 + λ1 + λ2 + λ3 + λ4 = 1 ,

φ ∈ [0, π]

using local operations. Only vector states of this form will be used from now on.

5.1. Generic states

One can split the 2× 2× 2 matrix [tijk] from (29), (30)1 with respect to the first

qubit and then (30) turns into two matrix equations

V
(
u11

[
λ0 0
0 0

]
+ u12

[
λ1e

iφ λ2

λ3 λ4

])
W T = eiα

[
λ0 0
0 0

]
,

V
(
− ū12

[
λ0 0
0 0

]
+ ū11

[
λ1e

iφ λ2

λ3 λ4

])
W T = eiα

[
λ1e

iφ λ2

λ3 λ4

]
. (32)

Taking the determinants of the above, one gets two equations:

u11u12(λ0λ4) + u2
12(λ1λ4e

iφ − λ3λ2) = 0 , (33)

−ū11ū12(λ0λ4) + ū2
11(λ1λ4e

iφ − λ3λ2) = eiα(λ1λ4e
iφ − λ3λ2) . (34)

When λ0 = 0, the state belongs to the bystander states, so only the states

with λ0 6= 0 will be considered now. When (λ1λ4e
iφ − λ3λ2) = 0 (assumption

Gen1 in Theorem 1 of [1] fails) then the state belongs to the GHZ class or slice

ridge, with the exclusion of the case when λ1, λ2, λ3, λ4 6= 0. This class is called

semigeneric states and will be considered in the next subsection. When λ4 = 0,

1The theory of such matrices and its relationship with the theory of entanglement were con-
sidered in [13].
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then assumption Gen2 in Theorem 1 of [1] fails and the state belongs to the

beechnut states considered in the previous section.

Consider now the situation when

A
df= λ0λ4 6= 0 ,

B
df= λ1λ4e

iφ − λ3λ2 6= 0 .

The number u11 cannot be zero. If u11 = 0, then (33) takes the form

u2
12(λ1λ4e

iφ − λ3λ2) = 0 ,

which implies u12 = 0 — a contradiction with SU(2) condition |u11|2 + |u12|2 = 1.

When u12 = 0, then (34) implies u11 = e−iα/2. The solution is of the form

U =
[

e−iα/2 0
0 eiα/2

]
. (35)

When u11, u12 6= 0, then the first equation divided by u12 and the condition

|u11|2 + |u12|2 = 1 yields two equations

u11A + u12B = 0 ,

|u11|2 + |u12|2 = 1 , (36)

which give the solution

U =
1√

A2 + |B|2

[
−Beiβ Aeiβ

−Ae−iβ −B̄eiβ

]
. (37)

Because the set of solutions should have a group structure, the second powers

of (35), (37) should be either solutions, or the identity in SU(2). This condition

implies that α = ±π and β = ±π/2− arg B.
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The group of solutions is

Gu =

{[
1 0
0 1

]
,

i√
A2 + |B|2

[
−|B| Ae−i arg B

Aei arg B |B|

]
,

[
−1 0

0 −1

]
,

−i√
A2 + |B|2

[
−|B| Ae−i arg B

Aei arg B |B|

]}
.

This group is generated by the element

i√
A2 + |B|2

[
−|B| Ae−i arg B

Aei arg B |B|

]
of rank 4, so it is isomorphic to Z4. This is the maximal group whose elements

satisfy (33) and (34).

Splitting the 2 × 2 × 2 matrix [tijk] from (29), (30) into two 2 × 2 matrixes,

with respect to the second qubit, the equation (30) changes into two equations

U
(
v11

[
λ0 0

λ1e
iφ λ2

]
+ v12

[
0 0
λ3 λ4

])
W T = eiα

[
λ0 0

λ1e
iφ λ2

]
,

U
(
− v̄12

[
λ0 0

λ1e
iφ λ2

]
+ v̄11

[
0 0
λ3 λ4

])
W T = eiα

[
0 0
λ3 λ4

]
. (38)

Taking the determinant of above yields

v11λ0(v11λ2 + v12λ4) = eiαλ0λ2 ,

−v̄12λ0(−v̄12λ2 + v̄11λ4) = 0 . (39)

When λ0 = 0, then the set belongs to the bystander states, so consider λ0 6= 0.

When λ4 = 0, then the state belongs to the beechnut states (see above). The

situation, when λ2 = 0 (semigeneric states) will be considered later. The situation

when λ0, λ4, λ2 6= 0 is considered now.

The number v11 6= 0 for the same reason as the number u11 6= 0 (see above).

When v12 = 0, the solution of (39) is

V =
[

eiα/2 0
0 e−iα/2

]
(40)
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similarly as for U in (35).

When v11, v12 6= 0, then the two equations

v̄12λ2 − v̄11λ4 = 0 ,

|v11|2 + |v12|2 = 1 (41)

(analogous to (36)) give the solution

V =
1√

λ2
2 + λ2

4

[
λ2e

iβ λ4e
iβ

−λ4e
−iβ λ2e

−iβ

]
. (42)

The group condition for the set of solutions of (39) gives α = ±π in (40) and

β = ±π/2 in (42). The set of solutions of (39) is then the group

Gv =
{[

1 0
0 1

]
,

i√
λ2

2 + λ2
4

[
λ2 λ4

λ4 −λ2

]
,

[
−1 0
0 −1

]
,

−i√
λ2

2 + λ2
4

[
λ2 λ4

λ4 −λ2

]}
,

generated by the element

i√
λ2

2 + λ2
4

[
λ2 λ4

λ4 −λ2

]
of rank 4. This group is isomorphic to Z4 and is the maximal group contained in

the set of solutions of (39).

Splitting the 2 × 2 × 2 matrix [tijk] from (29), (30) into two 2 × 2 matrices,

with respect to the third qubit, equation (30) changes into

U
(
w11

[
λ0 0

λ1e
iφ λ3

]
+ w12

[
0 0
λ2 λ4

])
V T = eiα

[
λ0 0

λ1e
iφ λ3

]
U

(
− w̄12

[
λ0 0

λ1e
iφ λ3

]
+ w̄11

[
0 0
λ2 λ4

])
V T = eiα

[
0 0
λ2 λ4

]
. (43)

Taking the determinants of above equations one obtains now

w11λ0(w11λ3 + w12λ4) = eiαλ0λ3

−w̄12λ0(−w̄12λ3 + w̄11λ4) = 0 . (44)
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When λ0 = 0, then the set belongs to the bystander states. When λ4 = 0, then

the state belongs to the beechnut states (see above). The situation when λ3 = 0

(semigeneric states) will be considered later. The situation when λ0, λ4, λ3 6= 0 is

considered now.

The number w11 6= 0 for the same reason as for the numbers u11, v11 6= 0 (see

above).

When w12 = 0, the solution of (43) is the matrix

W =
[

eiα/2 0
0 e−iα/2

]
, (45)

similarly as for U and V above.

When w11, w12 6= 0, then the equations

w̄12λ2 − w̄11λ4 = 0 ,

|w11|2 + |w12|2 = 1 (46)

(analogous to (36) and (41)) give the solution

V =
1√

λ2
3 + λ2

4

[
λ3e

iβ λ4e
iβ

−λ4e
−iβ λ3e

−iβ

]
. (47)

The group condition for the set of solutions of (44) gives α = ±π in (45) and

β = ±π/2 in (47). The set of solutions of (44) is then the group

Gw =
{[

1 0
0 1

]
,

i√
λ2

3 + λ2
4

[
λ3 λ4

λ4 −λ3

]
,

[
−1 0
0 −1

]
,

−i√
λ2

3 + λ2
4

[
λ3 λ4

λ4 −λ3

]}
,

generated by the element

i√
λ2

3 + λ2
4

[
λ3 λ4

λ4 −λ3

]
of rank 4. This group is isomorphic to Z4 and is the maximal group contained in

set of solutions of (44).
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Equations (34), (39), (44) are more general than equations (32), (38), (43),

so set of solutions of (32), (38), (43) (group) is contained in set of solutions of

(34), (39), (44), which is not a group in general, as it has been shown above. The

maximal group satisfying equations (34), (39), (44) is Z4 × Z4 × Z4. The solution

of (32), (38), (43) is then a subgroup of Z4 × Z4 × Z4.

The group Z2×Z2×Z2 satisfies the stabiliser equation (28) in an obvious way

(each operation changes the global phase by π). This subgroup divides the group

Z4 × Z4 × Z4 into eight cosets (64/8 = 8 — Lagrange’s theorem) represented by

elements:

(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1) . (48)

Now, all the cosets except for the first one will be excluded by substituting the

elements representing them into the stabiliser equations.

Consider the element (1, 0, 0), and substitute it in the first equation of (32):

−i|B|√
|B|2 + |A|2

[
λ0 0
0 0

]
+

iAe−i arg B√
|B|2 + |A|2

[
λ1e

iφ λ2

λ3 λ4

]
=

=
i√

|B|2 + A2

[
−|B|λ0 + Ae−i arg Bλ1e

iφ Ae−i arg Bλ2

Ae−i arg Bλ3 Ae−i arg Bλ4

]
= eiα

[
λ0 0
0 0

]
.

Because A, λ4 > 0 by assumption (if A = λ0λ4 = 0, then the state belongs to the

beechnut states), the element (1, 0, 0) is not in the stabilizer, so it excludes the

coset represented by this element.

Consider the element (0, 1, 0), and substitute it in the second equation of (38),

iλ4√
λ2

2 + λ2
4

[
λ0 0

λ1e
iφ λ2

]
− iλ2√

λ2
2 + λ2

4

[
0 0
λ3 λ4

]
=

=
i√

λ2
2 + λ2

4

[
λ0λ4 0

λ1λ4e
iφ − λ3λ2 0

]
= eiα

[
0 0
λ3 λ4

]
.
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Because λ0, λ4 > 0 by assumption (if not, the state belongs to the beechnut states),

the element (0, 0, 1) is not in the stabilizer, so it excludes the coset represented by

this element.

Likewise consider the element (0, 0, 1), and substitute it in the second equation

of (43)

iλ4√
λ2

3 + λ2
4

[
λ0 0

λ1e
iφ λ3

]
− iλ3√

λ2
3 + λ2

4

[
0 0
λ2 λ4

]
=

=
i√

λ2
3 + λ2

4

[
λ0λ4 0

λ1λ4e
iφ − λ2λ3 0

]
= eiα

[
0 0
λ2 λ4

]
.

Again since λ0, λ4 > 0 by assumption, the element (0, 0, 1) is not in the stabilizer,

so it excludes the coset represented by this element.

Similarly, substituting (0, 1, 1), in the first equation of (32),

i√
λ2

2 + λ2
4

[
λ2 λ4

λ4 −λ2

] [
λ0 0
0 0

]
i√

λ2
3 + λ2

4

[
λ3 λ4

λ4 −λ3

]
=

=
iλ0√

λ2
2 + λ2

4

√
λ2

3 + λ2
4

[
λ2λ3 λ2λ4

λ4λ3 λ2
4

]
= eiα

[
λ0 0
0 0

]
.

Leads to exclusion of the coset represented by this element since again λ0, λ4 > 0

by assumption.

Repeating the same way of reasoning for (1, 0, 1), and substituting it in the

second equation of (38),

i√
|B|2 + A2

[
−|B| Ae−i arg B

Aei arg B |B|

] [
0 0
λ3 λ4

]
i√

λ2
3 + λ2

4

[
λ3 λ4

λ4 −λ3

]
=

= −
√

λ2
3 + λ2

4√
|B|2 + A2

[
Ae−i arg B 0

|B| 0

]
= eiα

[
0 0
λ3 λ4

]
The asumption that λ4 > 0 excludes the coset represented by this element.

Next (1, 1, 0), is substituting in the second equation of (43),

i√
|B|2 + A2

[
−|B| Ae−i arg B

Aei arg B |B|

] [
0 0
λ2 λ4

]
i√

λ2
2 + λ2

4

[
λ2 λ4

λ4 −λ2

]
=



Geometry of Local Orbits in Three-Qubit Problem 23

= −
√

λ2
2 + λ2

4√
|B|2 + A2

[
Ae−i arg B 0

|B| 0

]
= eiα

[
0 0
λ2 λ4

]

Once again λ4 > 0 excludes the coset represented by (1, 1, 0)

Finally, consider the element (1, 1, 1), and plug it in the first equation of (32).

i√
λ2

2 + λ2
4

[
λ2 λ4

λ4 −λ2

]( −i|B|√
|B|2 + |A|2

[
λ0 0
0 0

]
+

+
iAe−i arg B√
|B|2 + |A|2

[
λ1e

iφ λ2

λ3 λ4

]) i√
λ2

3 + λ2
4

[
λ3 λ4

λ4 −λ3

]
=

=
i√

λ2
2 + λ2

4

[
λ2 λ4

λ4 −λ2

]
×

× i√
|B|2 + A2

[
−|B|λ0 + Ae−i arg Bλ1e

iφ Ae−i arg Bλ2

Ae−i arg Bλ3 Ae−i arg Bλ4

]
×

× i√
λ2

3 + λ2
4

[
λ3 λ4

λ4 −λ3

]
= eiα

[
λ0 0
0 0

]
,

which implies

i√
|B|2 + A2

[
−|B|λ0 + Ae−i arg Bλ1e

iφ Ae−i arg Bλ2

Ae−i arg Bλ3 Ae−i arg Bλ4

]
=

=
−i√

λ2
2 + λ2

4

[
λ2 λ4

λ4 −λ2

]
eiα

[
λ0 0
0 0

]
−i√

λ2
3 + λ2

4

[
λ3 λ4

λ4 −λ3

]
=

=
−λ0e

iα√
λ2

2 + λ2
4

√
λ2

3 + λ2
4

[
λ2λ3 λ2λ4

λ4λ3 λ2
4

]
.

It yields two equations

iA√
|B|2 + A2

=
−λ0λ4e

i(α+arg B)√
λ2

2 + λ2
4

√
λ2

3 + λ2
4

iA√
|B|2 + A2

(
− |B|

A
λ0 + λ1e

iφ
)

=
−λ0λ2λ3e

i(α+arg B)√
λ2

2 + λ2
4

√
λ2

3 + λ2
4

(49)

Dividing the second equation by the first (it is allowed because of the assumptions

on the positivity of A and lambdas) one obtains

Bλ0 = λ1λ4 − λ2λ3 = B ,
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so λ0 = 1. Normalization of the state gives the condition λ0 + λ1 + λ2 + λ3 +

λ4 = 1, so the above result implies λ1 = λ2 = λ3 = λ4 = 0. The contradiction withPlease correct

assumptions of the positivity of lambdas excludes the last coset.

The stabilizer of a generic state (in SU(2)× SU(2)× SU(2)) is

S3/ Z2 × S3/ Z2 × S3/ Z2 = RP 3 × RP 3 × RP 3,

so the group of local operations acts freely on such orbits.

5.2. Semigeneric states

Consider again (32),

V
(
u11

[
λ0 0
0 0

]
+ u12

[
λ1e

iφ λ2

λ3 λ4

])
W T = eiα

[
λ0 0
0 0

]
V

(
− ū12

[
λ0 0
0 0

]
+ ū11

[
λ1e

iφ λ2

λ3 λ4

])
W T = eiα

[
λ1e

iφ λ2

λ3 λ4

]
. (50)

Assume that

det
[

λ1e
iφ λ2

λ3 λ4

]
= 0

and λ1, λ2, λ3, λ4 6= 0. Then the state belongs to the semigeneric states and has

a discrete stabilizer (see [1]). Taking the determinant of (32) (recalled above as

(50)) gives now only one equation

u11u12λ0λ4 = 0 ,

which has two solutions

U1 =
[

eiβ 0
0 e−iβ

]
, U2 =

[
0 eiβ

−e−iβ 0

]
. (51)
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Consider now the first possibility. Substituting such U1 in the first equation of

(32) one obtains: [
v11w11 v12w12

−v̄12w11 −v̄12w12

]
= ei(α−β)

[
1 0
0 0

]
. (52)

The solution of this equation is

V =
[

eiγ 0
0 e−iγ

]
, W =

[
eiδ 0
0 e−iδ

]
,

where the angles α, β, γ, δ fulfill the condition: α − β = γ + δ. Substituting U, V

and W in the second equation of (32) produces four equations for the angles:

γ + δ = α + β ,

γ − δ = α + β ,

−γ + δ = α + β ,

−γ − δ = α + β ,

implying β, γ, δ ∈ {0, π}. The solution of (32) is then

U = ±
[

1 0
0 1

]
, V = ±

[
1 0
0 1

]
, W = ±

[
1 0
0 1

]
. (53)

Consider now the second possibility of (51). Substituting U2 in (32) one obtains

eiβ

[
λ1e

iφ λ2

λ3 λ4

]
= λ0e

iα

[
v̄11w̄11 v̄11w̄12

v̄12w̄11 v̄12w̄12

]
−λ0e

iβ

[
v11w11 −v11w̄12

−v̄12w11 v̄12w̄12

]
= eiα

[
λ1e

iφ λ2

λ3 λ4

]
. (54)

The solution of (54) exists iff φ ∈ {0, π}, and then it is

U = ±
[

0 i
−i 0

]
,

V =
±i√

λ2
2 + λ2

4

[
λ2 λ4

λ4 −λ2

]
, V =

±i√
λ2

1 + λ2
2

[
λ1 λ2

λ1 −λ2

]
. (55)
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The typical orbit of semigeneric state (when φ ∈ (0, π)) has the stabiliser of

the form (53) — the group Z2 × Z2 × Z2. Then the orbit of such state is a trivial

bundle:

S3/ Z2 × S3/ Z2 × S3/ Z2 = RP 3 × RP 3 × RP 3.

When φ ∈ {0, π} (so when it is possible to represent the state by state vector with

real coefficients), another subset (55) of the stabiliser appears. Then the stabiliser

group is given by (53) and (55) — the group Z4×Z4×Z4. The orbit of such special

state is

S3/ Z4 × S3/ Z4 × S3/ Z4

When the 2 × 2 × 2 matrix [tijk] of (29), (30) is divided with respect to the

second qubit, then the state is described by two matrices

T1 =
[

λ0 0
λ1e

iφ λ2

]
, T2 =

[
0 0
λ3 λ4

]
.

Suppose that λ2 = 0, but the rest of the lambdas are positive (see the assumptions

to (39)). Acting on the state by the following unitary operation in the third-qubit

space

1√
λ2

3 + λ2
4

[
λ3 −λ4

λ4 λ3

]
,

the matrices above take the form

T1 =
1√

λ3 + λ4

[
λ0λ3 −λ0λ4

λ1λ3e
iφ −λ1λ4

]
, T2 =

√
λ3 + λ4

[
0 0
1 0

]
.

Now acting in the spaces of the first and the second qubit by operations

[
0 1
1 0

]
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(such operation relabels the base) and exchanging the labels of particles 1 and 2

one gets the same situation as above (when [tijk] has been split with respect to

the first qubit).

When the 2 × 2 × 2 matrix [tijk] of (29), (30) is divided with respect to the

third qubit, then the state is described by two matrices

T1 =
[

λ0 0
λ1e

iφ λ3

]
, T2 =

[
0 0
λ2 λ4

]
.

Suppose that λ3 = 0, but the rest of the lambdas are positive (see the assumptions

to (44)). Acting on the state by the following unitary operation in second-qubit

space

1√
λ2

2 + λ2
4

[
λ2 −λ4

λ4 λ2

]
,

the matrices above take the form

T1 =
1√

λ2 + λ4

[
λ0λ2 −λ0λ4

λ1λ2e
iφ −λ1λ4

]
, T2 =

√
λ2 + λ4

[
0 0
1 0

]
.

Now acting in the spaces of the first and the third qubit by operations[
0 1
1 0

]
and exchanging the labels of particles 1 and 3 one gets the same situation as above

(when [tijk] has been split with respect to the first qubit).

6. Remark

As mentioned in Sect. 3, lower-dimensional orbits have extreme values of con-

currence. In the three-qubit case there are five local invariants [14]. As in the
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two-qubit case, the nongeneric orbits have extreme values of some of these invari-

ants (see [1]). Their values were found in [10], and the subset of non-generic orbits

was embedded in the five-dimensional set of orbits parameterized (not uniquely)

by a canonical form of an orbit. These subsets lie in the boundary of set of orbits.

The results of this work generalize the above fact. Orbits of full dimension have

a trivial stabiliser (antipodal points in S3 represent the same unitary operation!),

excluding the case of semigeneric states with real coefficients. But orbits of such

states are in the boundary of the set of orbits (φ ∈ {0, π}). So the subset of orbits

with nontrivial stabiliser is contained in the boundary of the set of orbits.
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[4] M. M. Sino lȩcka, K. Życzkowski, M. Kuś, Manifolds of interconvertible pure states, Act. Phys.
Pol. B 33, 2081 (2002).

[5] A. Peres, Higher order Schmidt decompositions, Phys. Lett A 202, 16 (1995).

[6] R. Moseri, R. Dandoloff, Geometry of entangled states, Bloch spheres and Hopf fibrations, J.
Phys. A: Math Gen. 34, 10243 (2001).

[7] B. A. Bernevig, H. D. Chen, Geometry of three-qubit state, entanglement and division alge-
bras, J. Phys. A: Math. Gen. 36, 8325 (2003).
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