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The log-derivative algorithm of Johnson is further generalized to evaluate transition
amplitudes of orders up to third between states of free or bound character. These quantities
appear in particular as constituents of a variety of low-order variational expressions for the
reactance matrix which are based on the Lippmann-Schwinger type equations of scattering
theory. The new algorithm is exploited to investigate relative accuracy of a number of these
expressions on simple inelastic scattering test problems. Some findings of previous
investigations, e.g., that of superior convergence of the expressions involving expansions of the
amplitude density over the expressions based on expansions of the wave function, are revised.
Superiority of the symmetric expressions over the asymmetric ones is demonstrated. The
features of the new algorithm, such as relatively high efficiency and low storage requirements,
make it well suited to variational calculations for reactive scattering. An exemplary
implementation is presented to solving the Baer—-Kouri-Levin—Tobocman (BKLT) equations
for the collinear H + H, s H, + H reaction. Two new elements which improve the previous
numerical treatment of these equations are exposed: the use of the Schwinger variational
expression for the reactance matrix instead of the expression of the method of moments for the
amplitude density and the use of distortion potentials producing inelastic transitions.

I. INTRODUCTION

A renewed interest in variational methods for determin-
ation of scattering matrices is observed recently in connec-
tion with the search for effective techniques of solving rigor-
ously atom—~diatom reactive collision problems formulated
in the frame of the arrangement channel quantum mechan-
ics.'™ A variety of such methods has been investigated com-
putationally on simple potential scattering problems*~’ with
the motivation of providing some guidelines for their utiliza-
tion in more advanced calculations. Actually, applications
of basis set (variational) methods to reactive scattering cal-
culations started much earlier, with the first successful nu-
merical implementations of the Baer-Kouri-Levin—-Toboc-
man (BKLT) equations to collinear reactions,®*™'! which
were made with the method named in Ref. 5, the method of
moments for the amplitude density. Though later efforts to
promote the use of the BKLT equations concentrated rather
on improving the structure of these equations itself, i.e., on
making the arrangement channel permuting coupling
scheme more flexible and symmetric,'>'? the methodolog-
ical investigations have been continued on analogous equa-
tions in the Fock coupling scheme (resulting from the
Miller’s formulation'*). Systematic studies of various dis-
crete and continuous basis set approaches'>!® on one-dimen-
sional (1D), i.e., collinear, reactive collision problems had
led to an implementation of the Schwinger variational prin-
ciple'” and to a conclusion of feasibility of corresponding 3D
calculations with the aid of this method.'® Unfortunately,
dealing with multichannel Green’s functions in the proposed
implementation appeared to be too cumbersome and the
procedure was not further pursued. The first basis set calcu-
lations for 3D reactive scattering'®-2° were performed again
with the method of moments. This method, similar to the
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above mentioned implementation of the Schwinger method,
combines a distorted-wave description of scattering within
particular arrangements with a basis set treatment of rear-
rangement process and also involves Green’s functions for
respective distorted-wave Hamiltonians. With the simple
choices of the distortion potentials made in Refs. 8-11 and
18-20, only one-channel Green’s functions had to be genera-
ted. However, incorporation of multichannel, i.e., producing
inelastic transitions, distortion potentials was suggested'® as
one of desirable improvements to be made in further devel-
opment of the method.?! Thus, the problem of efficient eval-
uation of matrix elements involving multichannel Green’s
functions returned. It became even more important when
utilization of higher-order variational functionals was start-
ed. Much effort has been devoted to efficient treatment of
multichannel Green’s- functions in the work by Kouri,
Schwenke, Truhlar, and collaborators®*-** on utilization of
the Newton variational principle.?

Difficulties with the Green’s functions, encountered in
the earlier implementation of the Schwinger principle,'®
have given rise to the most recent tendency to completely
eliminate these functions from the variational calculations
for reactive scattering. This tendency has naturally led to an
increase of interest in the Kohn principle.?® Novel ways of
using this principle have been found and demonstrated to be
appropriate for treating large scale problems.?’*

The successful applications of the new Kohn-type pro-
cedures to reactive scattering calculations, reported recent-
1y,25-3! should not, however, discourage us from seeking
more efficient ways of implementing to these calculations
the variational methods based on the Lippmann-Schwinger
(L-S) equations. Inspiration for continuing efforts in this
direction comes from the studies of McKoy and co-workers
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on the relationship between the Kohn and the Schwinger
variational principles,>>* which have shown that the latter
principle is capable of giving higher-order accuracy results.
Moreover, the expressions for the scattering matrices result-
ing from the Schwinger principle, though considerably more
complicated than the Kohn-type expressions, are definitely
simpler than those resulting from the Newton principle.
Thus, it is our opinion that despite the enormous progress
which has been already made in establishing the generalized
Newton method®*-** utilization of the Schwinger principle
in atom—diatom reactive scattering calculations is at least
worth reconsidering; more so as the arguments raised
against the Schwinger method in some of the computational
studies mentioned above (Ref. 5) seem not to be fully justi-
fied (cf. Ref. 6 and Secs. IV and VI B of this paper).

The main purpose of the present paper is to call atten-
tion to some simplifications which are possible in evaluation
of the various matrix elements involved in the Schwinger or
Schwinger-like expressions for the reactance matrix when an
invariant imbedding approach®®-” is followed. The particu-
lar aproach proposed is the L-matrix propagation method
which has been introduced and exploited in a series of pre-
vious papers devoted to improving®® and extending the
Johnson’s log-derivative method*® to reactive*®*? and half-
collision problems.**—**

Il. CONTENTS OF THE PAPER

In Sec. II1, a brief analysis is presented of the variational
expressions for the reactance matrix based on L-S-type inte-
gral equations, including the generalized L-S equations with
nonsymmetric matrix potentials.'™ A number of relations
existing between these expressions is written explicitly, sym-
metry properties of the expressions are exposed, and an at-
tempt is made to assess theoretically relative performance of
the methods exploiting these expressions. Of practical im-
portance seems to be what is implied concerning the relation
of the method of moments to the Schwinger method. Name-
ly, it is recognized that both (!) methods use variationally
stable expressions and both expressions are of the same order
(this means roughly, of comparable complexity). Of the
two, however, only the Schwinger expression gives results of
correct symmetry irrespective of the size of basis set em-
ployed. On this ground, one may expect that the Schwinger
method should offer a definite improvement over the meth-
od of moments, especially in solving multichannel problems.
However, the conclusions reached from the computational
studies of Ref. 5 do not seem to support such an expectation.
Thus, a need for further tests of the methods, clarifying the
relations between them, arises. Performing such tests on
simple model problems was the second goal of the present
work. A discussion on the results is given in Sec. VI B. The
prediction of superiority of symmetric variational expres-
sions over asymmetric expressions (of the same order) is
fully confirmed and the conclusion of Ref. 5 on superiority of
the methods based on expanding the amplitude density over
the methods involving expansions of the wave function is
found not to be generally valid.

Sections IV and V are devoted to the main theme of the
paper—a presentation of a new generalized log-derivative

algorithm and a description of how it can be implemented to
variational calculations. In Sec. IV, transition amplitudes—
the constituents of the variational expressions—are intro-
duced, categorized, and converted to respective integrals
over one, i.e., over an appropriate scattering coordinate. In
Sec. V A, Jintegrals—the counterparts of the transition am-
plitudes within the L-matrix formalism—are defined and
their relations to the “true” amplitudes of orders up to third
and for transitions of three types—free—free, bound—bound,
and bound—free—are determined. In Sec. V B, a sketchy der-
ivation of invariant imbedding relations for accumulation of
the J integrals over subsequent sectors of the integration
range is presented and a hybrid approximate-solution ap-
proximate-potential algorithm for these integrals is con-
structed.

The following are the attractive features of the algo-
rithm:

(i) All the J integrals, also those related to the second-
and third-order transition amplitude, i.e., involving Green’s
functions, are evaluated in one-way propagation along the
integration coordinate, simultaneously with the related log-
derivative matrix. A few working quantities, related to cur-
rent propagation step only, have to be kept in storage. This is
in contrast to the standard, i.e., noninvariant imbedding ap-
proaches which require determination of the Green’s func-
tions,'>'® or of the “half-integrated Green’s functions”?>2*
for the entire range prior to evaluation of the integrals.

(ii) The algorithm is stable with respect to inclusion of
closed channels into propagation; so, it applies equally well
to one- and to multichannel problems.

(iii) The growth of errors with increasing energy in cal-
culations is linear or close to linear for all quantities genera-
ted. For comparison, cubic growth of errors with energy is
characteristic for the standard Numerov*® and for the purely
approximate-solution log-derivative algorithms.*’

A numerical illustration to the point (iii) is provided in
Sec. VI A. All features of the algorithm are exploited in the
numerical investigations of the variational methods, report-
edin Sec. VI B. Part of the algorithm, including formulas for
evaluation of the first-order bound-free and second-order
bound-bound transition amplitudes, has been already pre-
sented and tested on half-collision problems in Refs. 43—45.
In Sec. VIC, this algorithm is implemented to solving the
BKLT equations for the collinear H + H,=2H, + H reac-
tion. There are two new elements in the implementation: (i)
the use of the Schwinger variational expression for the reac-
tance matrix and (ii) the use of inelastic distortion poten-
tials. Both are demonstrated to lead to an improvement of
the previous numerical treatment of the BKLT equations.

lll. VARIATIONAL EXPRESSIONS FOR THE
REACTANCE MATRIX BASED ON THE LIPPMANN-
SCHWINGER EQUATIONS

Let us consider a three-atom collision system described
by Hamiltonian /¥ and, to begin with, take into account the
range of total energy E, where only one two-cluster, i.e.,
atom—diatom arrangement channel is accessible. The system
with the two clusters infinitely separated is described by the
asymptotic form of #°, H,. The following basic partition of

J. Chem. Phys., Vol. 93, No. 2, 15 July 1990
Downloaded 20 Nov 2006 to 129.6.136.123. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Felicja Mrugala: Calculations for inelastic and reactive scattering 1259

S is assumed at any collision stage:
K =Hy+ 7. n
It is convenient to divide the corresponding potential 7" into

two parts, distortion and coupling potentials (each vanish-
ing asympototically),

P =Vo4+ V (2)
and introduce yet another partition
' =H+V withH=H,+V, (3)

Let |¥) denote an N,-dimensional row vector of standing-
wave type scattering states of 77, i.e., the solution of the
following L-S equation:

(I - GN)|¥) = [¢), (4)

where G is the respective Green’s operator related to the
distorted Hamiltonian H;

G=Z[1/(E—-H)] (5)
and |¥) is the vector of the distorted-wave states
|9} = (I + GVo)|tho) (6)

corresponding to the N, free-wave states of H, grouped in
the vector |¢,). N, is the number of rovibrational channels
open at given E. The reactance matrix & describing the
asymptotic form of |¥),

R = (Y| 7"Y), N
can be written in the two-potential form
R="R+'%

with °Z = (| Vo) and 'Z = (VTy|¥) = (¥|£).  (8)

In the second formula for the matrix ', the vector of ampli-
tude density states is introduced

&) =V|¥). )

The symbol of Hermitian conjugation is written above to
make the relations formally applicable also to reactive colli-
sions treated within the arrangement channel quantum me-
chanics [i.e., in terms of (not necessarily Hermitian) matrix
operators acting on vector wave functions built by a decom-
position of ordinary wave functions into pieces associated
with different arrangement channels'~}]. Allowing for more
than one atom—diatom clustering in the collision process,
one has to include into consideration a number of appropri-
ate free-wave and distorted-wave Hamiltonians, distortion
and coupling potentials. To distinguish between them, the
superscript “c”( = a,f3,y) will be added to respective sym-
bols Hy, H, ¥, and V. Equation (4), considered as the gener-
alized LS equation of the arrangement channel approach, is
a matrix equation with respect to the arrangement channel
index, i.e.,

G={G<}, v={r<}, |¥)={¥9},
|¥) ={|¥°)}, and |¢) = {|¥5)}.
where G = G5, withG°= Z[1/(E—-H],
[97) = 8ez|¥°),  |¥6) = b.z145),
and ¢ is the index of the initial arrangement. The elements

V< are constructed, essentially from the channel coupling
potentials ¥'¢, accordingly to the assumed scheme of the de-

composition of the ordinary total wave function. Most of the
schemes'='*!? lead to non-Hermitian matrix operators ¥,
ie.,

( VT)cc’ —_— ( Vc'C)‘r — Vc’r';é Vcc'. (10)
Because of these non-Hermitian operators, it is necessary to
introduce, in addition to Eq. (4), the equation in which the
potential V'is replaced with ¥ *. The solution of this equation
and all quantities related to it will be denoted by adding the
left subscript ““ + ” to letters denoting the quantities intro-

duced for Eq. (4). Obviously, the respective reactance ma-
trices # and | 2 are simply transpositions of one another

R= (A" (11)

This relation expresses automatically symmetry of the
matrix % for (nonreactive) problems described by the ordi-
nary L-S equations (when the subscript *“ + ” can be omit-
ted). The proof of symmetry of the matrices # or %
(more precisely, '# or L.@) in the generalized case re-
quires considering additionally some rules of construction of
the matrix potentials and consists essentially in showing that
the generalized L-S equation is equivalent to the ordinary
Schrédinger equation.'™

The quantity to be determined variationally is the ma-
trix 'Z. In the following discussion on this matter, the
standpoint of R. R. Lucchese et al.** is adopted which allows
for a unified presentation of a variety of iteration—variation
expressions used for determination of matrix elements

M(R,SK):=(R|F)
involving solutions of the L-S-type integral equations
I—K)|F)=|S), K=GV. (13)

The general iteration—variation approximation to such ma-
trix elements, given in Ref. 33, reads

(12)

M} ,(R,S,K = GV;B,B)
n—1
= IZO (RIK'S) +(R|(G,V);_,B)

X [D,(K;B,B)]"(B|[GV]1.S), (14)

where
D! (KB,B):=(B|[GV],I-K)GV),_1,_,B)
(14a)
=BI[(GV) 5]
X V(G (I — GM(G,V);_,,_B).
(14b)

The first term results from applying the n-term Born series
approximation to |F ) and the second term is a variational
approximation to the residual integral

n—1

M(R,S,K) — Z (RIK'S)
=}

=M[(K)'RSK]1=(R|K"F)=(F,|S), (15)
where (f,, | is defined as satisfying the equation
(F,|(I-K)={(R|K" (16)

More precisely, the second term gives the stationary value of
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the following bilinear functional:
M[FLF = (RIK"F') + (F,|S)
— (Fi|d - K)F')
{4"[F, F1=M[(K"'RSK], forn=01..} (17)
within the class of trial states represented by the following
expansions:
|F'Y = (G,V);_2u_.|B)a; |F})=(V'G),[B)3,

(18)
where |B) and [B) denote row vectors of given (usually
bound-type) states; @ and @ are the corresponding vectors of
expansion coefficients; the symbol (,); denotes the following
operations:

(4B)*, if i=2k
= 19
(4.B), {(AB)"‘A, if i=2k+1; (19
and
[4,B],=[(B'4"),]" (19a)

Expression (14) applied in particular to the two (matrices
of) matrix elements for '# [cf. Eq. (8)] gives the following
two expressions for the reactance matrix %:

Z7,(B,B) ="R + M ,;(V'$,4,GV;B,B); (20)
7,(B,B) =% + M},($,V,VGB.B). 1)
|B)and I§ ) havein the generalized case the matrix structure
|BY ={|B<)},

|B=) = iB ) 8- (22)

There exists, of course, a relatlon between the two (sets of)
approximations to the reactance matrix @” and .9?" which
are based on the L-S equation for the wave functxon
(F = V) and for the amplitude density (F = {), respective-

ly. This relation can be established by exploiting the follow-

ing property of the operation (19):

(A:B)s = (A:B)2k+ 1 (-B:A);_ wh—1 & (AyB)zk (A,B):‘—Zk:
for 2k + 1,2k<i (23)

and reads

Z",(BB) = [ F#_1,:1(BB)]T. (24)

One can also show that the matrices %} satisfy the
following symmetry relation if j=1i:

#:.(BB) = [, Z1(BB)]" (25)
and that the following “index raising” relations hold:
R%.;(V'B.B) =A% .\ ,;(BB); (26)
R12(BVB) = Rz, 1 (B.B); Q@n
@;k,2k+1(§sVB) ='@gk+l,2k+l(§13)- (28)

An intermediate result in the proof of Eq. (24) is formula
(14b) for the matrix D ;

Noting that Eq. (16) with K = GVand (R| = (V|
gives basically the amplitude density state (F,| = (£ |, one
can readily find out that in the derivation of the expression
7 ,(B,B) the following states:

‘f(j:n)):= [(GyV)j_zn_l)]—llF)

= [(V,G);] 7' (VG)"V|¥), (29)
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and

(Fim|: = FJUGV1) ' = L (GN™GV])™!

(29a)

have been actually expanded in the bases [B) and (B, re-
spectively. The states expanded in the derivation of #} ; are
obtained after exchanging in the above formulas the opera-
tors ¥'= G and replacing the states |¥) - ), (L& |- (. ¥|.

The significance of the relations presented above lies in
that they can serve (i) to make some predictions concerning
practical usefulness of the methods convertible to the expres-
sions of .@ jor .9?” type, or (ii) to confirm or verify some
findings concemmg relative performance of the expressions
already tested. To the latter belong the expressions
78 +1,2n+ 1 (B,B) of the lowest orders n = 0,1 which corre-
spond to the Schwinger®* and to the Newton>*** variational
methods, respectively, and the expression @;‘,,,2,, (B,B) with
n == 1 which was proposed (in T-operator versions) in Refs.
34 and 47 and recommended recently (under the term reac-
tance operator variational principle) in Ref. 5. One should
note also that the expression of the S-matrix version of the
Kohn variational principle, as proposed in Refs. 27 and 28
(not in Refs. 29 and 30), has the structure of the expression
R 1.1, proposed for the first time in Ref 34. A more extensive
list of assignments of the @" ,—Or %”" ,—exprcssxons to the
methods investigated recently5“7 is given in Table L. It is
perhaps worth noting that all the methods of moments, for
the wave function (W M), for the amplitude density ({M),
for the scattered wave function (CM), and for the scattered
amplitude density ({M), presented in Ref. 5 as nonvaria-
tional Aappear in Table I as equivalent to the expressions
R, RS, PR, and P! 2.1 respectively. So, these methods
are in fact both variationally correct (first-order errors of
both trial states, i.e., of trial amphtude density and of trial
wave function in the cases of #3, and .9?0 1» do not produce
first-order contributions to the error of the reactance ma-
trix) and stationary. In this context, the existence of the
simple connection between the WM method and the
Schwinger method, noted in Ref. 5, becomes much less sur-
prising; it is an example of validity of the general relation
(26). The equivalence of the methods WM and {M in appli-
cation to problems with ¥ = ¥, experienced also in Ref. 5,
follows from Eq. (24).

Postponing further discussion on relations between the
methods listed in Table I to Sec. VI B, we would like to close
the present section with some remarks on three lines of pro-
ceeding which seem acceptable and useful when a compari-
son of convergence properties of the various .@” (3§ B) and

(B B) expressions with respect to the length of the bases
B and Bis attempted. First, one may compare expressions of
different orders involving, however, expansions of the same
states| f) and ( f|ingivenbases|B ) and (B |. Thisisthemost
obvious test, but the result is obvious too. The expressions of
higher orders should reveal faster convergence with the
bases length (except perhaps for cases of completely inap-
propriate choices of these bases). Still open remains the re-
lated practical question to indicate the most effective expres-
sion, ie, to compromise between accuracy and
computational effort, both increasing with the order index 2.
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TABLE I. A list of basis set methods which use the expressions of % ;(B.B) or .5?: ;(B,B) type.

Notation Variational _ States expanded®
Method of Ref. 5 expression (fl=a"(B|,|f)=|B)a

Of moments for

wave function M #3,(B,B) (4 [¥)
Of moments for N

amplitude density M %}, (B,B) (¥ £
Refined Born approximation for #°,(B.B) (¥ 1&)

amplitude density 414 B | = (VI — VG)B|
Refined Born approximation for 7°,(B.B) (¥ [¥)

wave function vy B j=(I-GV)B|
Schwinger vs #,(B,B) (¥ |¥)
Newton for amplitude density £s #),(B,B) {a 1£)
Newton for wave function 2.,(BB) (¥ [¥)
Takatsuka-McKoy cs #3,(B.B) (G| IGV¥)
Takatsuka-McKoy for .

amplitude density s #,,(B,B) {(VGL [VGE)
Of moments for scattered N

wave function M 2. ,(B,B) (4l |GV¥)
Of moments for scattered . N

amplitude density M #;,(B.B) (v [VGS)

= cf. Eqs. (29) and (29a). It is assumed here that ¥ = V'™,
The second possibility is to compare expressions of the same =(S|V(GV)"~'S), 7 2= (S|(VG)"~'S),

order involving expansions of the same states, but in differ-
entbases | B ) and/or (B |. Suchacomparison, however, gives
merely information on adequacy of the bases employed to
describe given states | f) and ( f|. Finally, one may try to
compare expressions of given order based on expansions of
different states | /) and/or ( f|. However, one should be
aware that conclusions drawn from such a comparison are
likely to be highly basis dependent. Therefore it seems rea-
sonable at least to optimize nonlinear basis parameters (if
present) before comparing convergence of the expressions

; (or .@ ;) which differ only in the indices / and/or j.
Wlthout any tests, however, one may predict that the expres-
sions .5?2 ; (B,B) with i = jand B = B should be superior to
others since they give results of proper symmetry {i.e., satis-
fying the relation (11)] irrespective of the basis length [cf.

Eq. (25)].

IV. TRANSITION AMPLITUDES

Directing further consideration towards evaluation of
(some of) the variational expressions of the previous section
and towards practical demonstration of the relations exist-
ing between them, let us introduce the following nth order
transition amplitudes between states |S ) and |S ) having free
or bound character (i.e., |S),|S) = (¥),|B)):

forn=1,2,...,
and T4s: = (S|(GV)"~?GS), forn=23,..

In terms of these amplitudes, all the %7 ,—and .5?;: j—ex-
pressions can be rewritten. Of particular interest are the
cases (cf. Table I)

~;n+12n+l(§B)

(30)

Og_l_ z T¢¢+T"+1[T"+l T%’ZZ —1

X(.TpEH7T, forn=0,1, 3D
'g?;’nZn(B’B)

=% + 2 T,y + 105 [Tab' — T332

l-—l

X(, T T;3H7, forn=1, (32)
ﬂ;n 2n 41 (E:B)

0.@_*_ 2 T¢¢+ n+l[Tn+l '7\"% 2]

X (4 T33H7, forn=0,1, (33)
~%:,qzmuw)

0‘@_*_ 2 T’¢+T”+1[TBB—-T B]_l

X Ti3H7T, forn=1, (34)
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Rt 2w 2 (BB)
2n+1 _
=02 + 2 T{M,+T [ —Ti—w]‘l
><(+T;§2)T, forn=1. (35

Consistent with the previous notation, the symbols with the
left subscript “ + ” appearing above denote respective am-
plitudes for transitions caused by the potential V'*.

The following are the basic steps necessary for evalua-
tion of the transition amplitudes: (i) introduction of coordi-
nate representation of states and operators involved in the
transitions; (ii) partial integration of the amplitudes over
internal coordinates via expanding respective integrands in
appropriate basis functions in these coordinates; and (iii)
integration over remaining, i.e., scattering coordinates.

To describe given atom—diatom arrangement channel c,
two vectors x, and §_ are introduced which join the atoms in
the molecule and the center of mass of the molecule with the
unbounded atom, respectively, and are scaled by appropri-
ate mass-dependent factors to give the kinetic energy opera-
tor for both the bounded and unbounded motions with com-
mon and channel independent reduced mass z. The sets of x,
—and §_—vectors corresponding to different channels are
connected by orthogonal transformations—the kinematic
rotations.*® In these coordinates, the Hamiltonian H § reads

HG(x.,8) = —#/(2u) (A + A )+ V.  (36)

In order to separate out the motion in the channel scattering
coordinate x,, x.: = |X,.|, spherical components of x, are
exploited giving the Laplacian A, in the form

- a x4 a
¢ ¢ ¢?xc ‘ Ox,
where the index d is connected with the spatial dimensionali-
ty of the problem D, d = D — 1, and A,(0,) is the Lapla-
cian on the unit sphere depending on d angular coordinates
denoted by £2,. Thus, H§ can be partitioned in the required
way

A (Q), (37)

d a
Hc Vo) = _ﬁZ/ 2 —d d
(%) (). I, ° ox,

+ Hrovub (xc’yc )’
(38)

wherey,: = (%,,E) denotes the internal coordinates describ-
ing the bounded ro- (if d 5£0) vibrational motion.

As mentioned above, evaluation of the scalar product
(|} is carried out in two successive integrations. To denote
them, the following symbols will be used:

XY= [y XY,

c

(39)

(X|Y)c:=de,XTY, (39a)

where J° = x? and J ° dx, dy, equals, of course, the volume
element dv =dx_ d§..

Let ¢ °(x.,p.) denote an N *-dimensional row vector of
functions which are assumed to form an orthonormal set
with respect to the scalar product [{]., i.e.,

leclpl. =T, @ (x.p.):=[J(x)]""*B(.).
(40)

‘matrices Gy ne(X5X,),

A suitable choice of @ °(, ) is the set on N © eigenfunctions of
the Hamiltonian H ¢, :
Houn =@ [+ #/(2ux)I], (41)

€° is the corresponding diagonal matrix of rovibrational en-
ergies of the diatom and I° s the diagonal matrix of eigenval-
ues of the respective angular momentum operator for atom-
diatom relative rotation. I° denotes hereafter the N X N ¢
unit matrix.
In the basis ¢ °, the Green’s function G*(x,,y,;X..J.)
and the vectors of functions ¥ g (x.,¥.), ¢§, (xc,yc),
B ,-(x.y.), and leMc(xc,yc) are represented by the
Yy esns (Xe)s my . s (%),
chMc(x ), and B¢ (x.), respectively, i.e.,

NeXM®
G(x.;x.):
= el [ . G ChepeFo )P oo e
=le¥l., m=[p 5], B =g B,
B = [¢p°|B].. (42)
The matrices representing the operators ¥ and V' are
Vc — [¢7c|Vcc¢c]c, Vcc’:= [¢C|Vcc'Bc’]c’

V<= [@ | (FY*B°].. (43)
The matrix $°(x, ) satisfies the equation
D(x)¥°(x.) =0 I, (44)
where
D(x.): = 2u/#[@|(E — H)g ], = D5 (x.) — V5 (x.),
(44a)
D (x,): = Id %/dx% — 1/x2 + (k%)% (44b)
(k)% = 2u/F(ET — &), (44c)

and the following boundary conditions:

P(x, =0)=0 I, m°(x,) + n°(x,)° %",

(45)
where m° and n° denote, respectively, regular and irregular
solutions of Eq. (44) with the operator Dj standing in place
of D°. The solutions are normalized to give Wronskian
W[m‘n‘] equal to — I°. The respective boundary value
problem for the matrix Green’s function reads

D(x, )G (x ;%) = 2u/#16(x, — X.),

Px,) ~

X o0

(46)

G(x.;x.) ~
Xo—

G(x, =0X.) =0T, n“(x.)g(x,).

(47)

After integration over the internal coordinates, the formulas
for the amplitudes of inelastic (i.e., purely nonreactive V<
=6, V) transitions read like the following formula for
(T3s)™

(T§5) = [SV(GV)" '8, (48)
where S¢ and S° stand for one of the matrices ¥°, B, or B-.
The following formulas are obtained for the lowest-order
amplitudes of reactive transitions (listed are the formulas
used in the tests described in Sec. VI C):
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(T4 ) = (B|V), = (,VIB);
(Tys)™ = (H V)

(Tf,,B )“’ = Z (+V"°|G‘"V"")c.; (49)
(T1p) = (BB 6,5
(T ) = (W|B)b.e; (T30 = (LV|G'B),.

At the last stage, the evaluation of the transition ampli-
tudes requires solving the boundary value problems (44)
and (45) and Eqs. (46) and (47) and evaluating the inte-
grals (48) and (49) over the channel scattering coordinates.
These two tasks can be performed in succession, which
seems to be the common practice now, or simultaneously as
recommended in the present paper. The way proposed—a
generalized version of Johnson’s log-derivative method*—
is a particular realization of the well-known invariant imbed-
ding approach to solving linear two-point boundary value
problems.>**” The advantages, listed in Sec. II, will become
apparent after more detailed presentation of the method in
the next section.

V. DETERMINATION OF THE TRANSITION
AMPLITUDES BY THE GENERALIZED LOG-
DERIVATIVE (L-MATRIX PROPAGATION) METHOD

A. The transition amplitudes in the L-matrix formulation

Let [x°x>] denote the range of the x_ coordinate rel-
evant for the scattering process under consideration and let
[x'x"] be a subinterval of [x%x~], e,
[x’, x"]1C [x° x=]. For the sake of clarity, the channel in-
dex will be omitted in this section.

The following are the three basic boundary value prob-

lems considered in the L-matrix formalism:*>*

[1d%/dx?® + C(x) 12 .- (X) = 8,00(x),

for a= +,—,0; (50)

e ={5 wae =) (50a)
’ 0 ’ I

v (X)) =92 . (x") =0, (50b)

where C,, . v and & ., are matrices of given functions and
C is assumed to be symmetric. In terms of the solutions
¥* , the L-matrix propagator is defined

x',x"

»
NxN

LY). L®. bie (X)) i (x)
Lo =\po, 1./ T\bie ) bz )]
(51)
(L2.)T= — LY., (LO)T=LY,., for i=14,
(52)

and through the solution ¢% -, the matrix Green’s function

G.. .- (x;X) which vanishes at both boundaries, ie., for
x = x' and for x = x", is introduced;

L) = [ dRGEL DD, (53)

An overdot denotes hereafter a derivative with respect to x.

The following (matrices of) integrals involving the so-

lutions of the above problems are of interest here:

Jg’,x" L= (‘b:',x' |¢)9 for a = +,—, (54)
Jg’,x": = ({i’g'.x" |¢)’ (55)
IVt = (W X, (56)

J:;,bx': = (ng’,x" 'X‘!’ﬁgz ):
b =B,O,0(B)r and a’B= + s Ty (57)

where V°. .. and ¥°¥). denote solutions of Eqgs. (50)-
NxM NXN
(50b) with @ =0 corresponding to the inhomogeneities

$(x) and $(x) = x(x)¥2 .. (x), respectively; &y, 5 and
X~ x v are given matrices of functions. (|) denotes the scalar
product defined in Eq. (39a), but with the range of integra-
tion confined to the interval [x',x"].

Now, assigning to C in Eq. (50) the respective part of
the operator D from the problems of the previous section
[Eqgs. (44)-(47)] and imposing conditions (45) and (47)
at the respective boundaries of the interval [x°x= ], one can
determine the connection between the solutions of those
problems, the matrices ¥(x) and G(x;X), and the solutions
of the above problems with a= —,0 and [x',x"]

= [x°%x>] (cf. Ref. 45);
B(x) =, . (X)Y(x~)

for a = a,0(a),

=1, (0 [m(x*) +n(x=)°Z], (58)
where
°R = [a(x<) =LY .n(x=)] ™"

X [Lg-m(x™) —m(x~)], (59)

G(x;%) = 2u/7{G, . (x%) + ¥ . ()L =LY )~

X[z (®] for xxe[x*x=],  (60)
where
L™ =n(x*)[n(x=)] "% (60a)
On the basis of this connection, some of the transition ampli-
tudes (T%s )° can be expressed in terms of the J integrals
[Egs. (54)-(57)]. To these belong the amplitudes of orders
up to_third for nonreactive E'ansitions of bound-bound
(S=B,S=B), free-bound (S = 9,5 = B), and free—free
(8= 1,5 =1) types
(T35)° -

gyt JO+d7J, for n=2,
= (—") IO 4 (I Td+d"I 0+ d7I 7,

# for n=3,
(61a)
(61b)
n—1
(o= () T e e @)
with
J——, forn=1, (62a)
IO 4 (@)Y,
()" = for n=2, (62b)
JUOIO) 4§ 4 (A7),
for n=3, (62¢)
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n cc 2” n=1 o T (n)
(Typ)"= 2 [$(x=)17C---) (63)
with
J7, forn=1, (63a)
n J704+ @)Y, for n=2,
()= JOC=)0 4 J=0C=)g 4 (d=)T(+++)®, (63b)
for n =3, (63c)
where
d:=(L"-L*)"J7, &=(@L"-L9"J",
d=:= (" —L*)~J—, (64)

and all the J integrals and the matrix L refer to the interval
[x'x"] = [x°x*]and é = VB, ¢ = VB, x = V°.J " and
J~° denote the quantities obtained after replacing ¢ with ¢
in the respective formulas (54) and (57). The ,a\bove formu-
las apply also to the analogous amplitudes of 7'and T type
[cf. Egs. (30) ], if only appropriately modified substitutions
for the matrices ¢ and $ are made, and can be easily adapted
to the reactive amplitudes which are needed for evaluation of
the zeroth order expressions %9, or #9,. [These are the
amplitudes listed in Egs. (49).]

Concerning the other reactive transition amplitudes
which would appear in the higher-order expressions .@,’{ j
[cf. Egs. (31)-(35)], an essential complication arises from
the fact that these amplitudes involve within one matrix ele-
ment Green’s functions or distorted-wave functions corre-
sponding to different arrangement channels, e.g.,

(T(B:,il)i' )cc’ — Z (B cl VcEGEVRG?VEc'B c’>,

Ve () = [.p;x, () 85 + )5 (x) 85,

W08 (x) = [

The coefficients assuring continuity of the solutions ¥?. .
(x),a= +,—,0,0(3), and of their derivatives at the point
yare

LY, for a= +,

x',p?

e, =80, =1 ."{(— L), fora= —,
Iy +d,5), for a=0,
+a;:y =_a,.. = L +ap, = —ay-,tt" =0,
+a?:',y = _82,x~ =0,
_al) = +a2.(xﬁ") = Loy [Jep™ + 8507 )—ag‘,y
+ Jyj;c'”_. —af.:t” + J;.J * +af’,y ] ’
for = +,—, (66)
where
L= (LY —L{D) L (66a)

‘pr,y (X) —ag',y + be‘ty (X) +a:',y + 601,01"’?:',}: (X),

e+ BaoWpar (X)),
oy (x) el + 37 (x) _af , + 43
11’;::" (x) +ag,(xﬂ") + ‘pg,(x”_ )(x) —af,x" + tbg,(x:“ )(x) +a§,x" »

(x).2% ,

Felicja Mrugala: Calculations for inelastic and reactive scattering

(T'(Z; )cc’ — Z <¢c| VcEGEVEc’B c')’

(T3 = (V=)
Such matrix elements cannot be expressed entirely in terms
of the above J integrals because of the assumed local charac-
ter of the operator .

B. The algorithm for the J integrals

The log-derivative related algorithms for evaluation of
the integrals J™—, J°, and J~ involved in the first-order
free—free and free-bound and in the second-order bound-
bound transition amplitudes, have been derived in the pre-
vious papers.*>** Here, these algorithms will be generalized
to the additional five integrals J*°, J—0, J—%—) J¥=)0 ang
J%=2%=) which are involved in the amplitudes up to third
order [cf. formulas (61a)—(62)]. The generalization is es-
sentially a matter of deriving appropriate recurrence rela-
tions for accumulation of the required integrals over subse-
quent sectors (or half-sectors) of the integration range and
applying these relations to so-called half-sector L matrices
and half-sector J integrals—the specific quantities arising
from discretizing the boundary value problems (50)—(50b)
as described in Refs. 40, 43, and 45.

The derivation of the recurrence relations is straightfor-
ward if one exploits the following linear superposition rela-
tions for the solutions of problems (50)-(50b) on intervals
[x'.x"1, [x',p], and [y,x"], where x' <p<x";

for xe[x',y] (653)

for xe[y,x"], a= +,—,0,

for xe[x’,y] (65b)

for xe[y,x"], B= +,—.

Two examples of the recurrence relations obtained by insert-
ing the relations (65a)—(66a) into the formulas (54)-(57)
are listed below:

JxT,Q"_ = Jy,—x"_ + J.v.—x"+ IX’.y.x' L}(’,zx)ﬂ - L;.sx)" lx‘.y.X" Jy?:c; B
- , o)
- L)('3x) IX'.y,x" (JX'.y + Jy‘.tc"+ )lx’.y,X' L.v-X" ’
xT,:;? = Jy,_x:'o - Jy,_xz'+ IX'.y.x" (J;..v + JyJ,:t” - L.St)" IX',y,x'
— ’Q K 3

X (Jx',y + Jytc”o) + L;l,x)" lx',y,x"

XWJey ™ + 850y oy + 350 (68)
The first relation was given previously in Ref. 43 in terms of
the matrices T4 and Q% ;

Tf’,x" L= 4’2’(,52 (x” ): Qg’,x" c = ‘bg'(,gz (x,)’
forﬂ=+;_r (69)
which can be shown (cf. Ref. 45) to be connected with the J

(67)
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integrals as follows:
QB= _J+’ﬁ! Tﬁ=J_'B’ B= +,—. (693)
At the second stage of derivation of the algorithms, the
boundary problems (50)~(50b), converted to integral equa-
tion form, are discretized on subsequent sectors of the inte-
gration range [x%x*], i.e, on the intervals [xzp 2 X2p
=Xx,,_,+2h] for p=1,.,L, where x,=x° and x,;
= x*, by means of the modified Simpson quadrature for-
mula,“9 and counterparts of the L matrix and of the J inte-
grals are introduced on intervals consisting of two points x,
andx,,, =x,+h forl=2p—2,2p—1l,and p= 1,...,L,
i.e., of the boundary points of the half-sectors. The precise
definition and the formulas for the blocks of the half-sector L
matrix
L, L,
Ly, = (L(g) L& ) s

LI+ 1 LI+ 1

are given in Refs. 40 and 45. The half-sector J integrals are
defined by analogy to the formulas (54)-(57), e.g.,

Jll+l

= {¢71,1+ 1 |X‘l’21+ 1}:

for a= a’o(a)’ b =Br010(ﬂ)’ a,ﬁ= + y T s
(70)
where
I+1
Xy Y=Y o [(Xp 1 () ]7Y(x),  (702)
k=1
w, =2h/3 (h/3), forodd (even) k. (70b)

The half-sector functions ¥, . , (x, ) assume the values*®

Y (x) = [qf, Vi (X)) = [ 0 ) (7
’ 0 L
Wi 1 () = b (x0), (72)
‘l’%fl)(xk) =, X (x)VF, (x), for k=1L1+1
and /I=2p—22p—1, (73)
where
@:=[I+7Cx)] " (74)
C’(x,) =C(x,) — C., (75)
C2p: = diag[C(x,, ) ]: = (K)?, (76)
7, =h?/6 (0), for odd (even) k. an

Since the resultant expressions for the half-sector J integrals
are to be inserted at the final stage into the recurrence rela-
tions (67) and (68) and into even more complicated rela-
tions for J—), JO—)0 300 and JX—¥=) it is important to
note that many of these integrals, namely the integrals
J&F 1, IG0B), and IV with e, B= +, —, but a#pB
vanish. Further simplification in the form of the algorithm is
achieved by making use of the relations
J_on= LA

_ Y+ _
Jl—l,I“‘JI,I+1’ I—1,0 =95+

(and of analogous relations for the other types of the J inte-
grals) and by introducing the following working quantities:

te=h(Js; + 35 0), tPi=hJe%+

Il+l)»

69 = AT+ INN), w=hT5r T + I,
l1(2) _h(J—O(—)+J+ 0(+))’ “(3).=h(J0(—),0(—)

J0(+)0(+)) J(2) _h(JOI+JII+1)’
I =hI0+ B0
Jg, and J¢} with @ = —,0 and a,b = — ,0,0( — ) denote

the quantities assembled according to appropriate recur-
rence relations from the half-sector integrals. For even val-
ues of /, these quantities give approximations to the respec-
tive J integrals in the interval [x,,x;]. Obviously, Jg, =0
and JO ¢ = 0for all values of the indices a, a, and b. Through
the notation chosen for the working quantities, the J inte-
grals are classified according to the type and order of the
transition amplitudes to which they are primarily related
[cf. Egs. (61a)—(64)]. The letters t, u, and j are used to
denote bound-free, free—free, and bound-bound transitions,
respectively. The order index n = 1 is omitted.

The formulas of the algorithm concerning the ampli-
tudes of the lowest orders considered within the three types
are
to="h2/3b, P =0, uy=h?/3x,

h/6gbdb,, for I=2p—1

tl — spzl—_ll t[_l + [ ) gfd’l p
2h%/38,, for I=12p,

i =32, T

+ [ 4/3607gtd,, for I=2p—1
0, for [ =2p,
u =sz_w,_,z; ¢
[h 2/43g0x .80, for I=2p—1
2h2/3%)s for /= 2p, p=1,.,L,

Joa = (ty — h 2/?"1)21. )/h,
Joor = (g, —h?/3x0 )/, I =J517A.
The formulas for the higher-order amplitudes read

tP =t =0, u®=u=0, j& =0,

2 =¢[(t2)] + [ ’4/288(--')4’1' :; j:iﬁ"‘ 1,

where [ (t{)]: =2z t{2, — (-t _,

i =z, Lt — (Ot -z hu,_, [(tfz))]}
for I=2p—1,

[ h®/13 824(- - -)x,8¢,,
0, for /=2p,
u® =¢[ (uf?)]s”
h*/2304(---)x,g}, for I=2p—1,
[0 for [=2p,
where[(u,z))]'= s —zhu (00),
uP=¢[(G i D—zZhw_ Gi)— [@P) w27, |8
h©/110 592¢0x, (- - -)x,85, for I=2p—1,
+ [0, for /= 2p,

jfs)_J(S—)l +E1T—1( Ot _tl—lzl—-ltl—l —(;ﬁ—)l)T
he/1728b7(---)d,, for I=2p—1,
le——lltl—l +[ 4’1 ¢, -
0, for I=2p, p=1,.,L

J. Chem. Phys., Vol. 93, No. 2, 15 July 1990
Downloaded 20 Nov 2006 to 129.6.136.123. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



1266

(2) 4(3) p@) B 53

1/h(t37,t57 ’HZL)!UZL)’ J)
— (T~ (=)0 J—0(—) JO(=).0(—) JOO
= (Joz Jo Jor ’Jg,(ZL ¢ )’Jg,ZL)

where

vee)e = g1 ~1 ey g1 () 1
( )'_‘zl—lul——lzl—l’ (---)-—21—1“5—)111—1,

1

(::3):=zYu¥ 2],
("'==8‘7X187, 85’==807a 'bl::d’(xl)’ X1’=X(x1)s

t, and t{? are counterparts of t, and t{?, respectively, for the

inhomogeneity ¢, (the formulas for them are omitted).

The evaluation of the integrals proceeds simultaneously
with propagation of the log-derivative matrix L to which
the matrix z occurring above is related;

z:=hL{Y +V — ho,gC;, for I=2p—1,
and

z, =%, + &%, for [=2p,
where

Z:=h(LY — 0,C)),

@ =V 4+ h?/3C,,

C,: = C(xl), Cf: = Cp(x,),
t(h |k?|), if (k*)2>0
’ =h|k"|[°° (R i), i (7>
coth(k |k?]), if (kP)?<O.
The formulas for propagation of z read®®**
io = 7’19 7’> 1’
=17 af
Z_ z, ,+ 1 ], for 1=2p_1,
2, =20 — 81 + g — sz s
Z, =a"—2h%*/3C, —sz_\\s", for I=2p, p=1,.,L.

The matrices s” for p = 1,...,L, related to the nondiagonal
blocks of the half-sector L propagators, i.e., to L{}’ ,
— (L{P, ) forI=2p — 2, 2p — 1, are given by the for-

mulas
‘kp‘{[sin(h k17, if (kf)*>0
[sinh(k |k?|)] Y, if (k*)?<O.

The part of the above algorithm including the formulas for z,
t, and j® was presented in Ref. 45 as the “half-hybrid” ver-
sion of the generalized log-derivative algorithm for second-
order (bound-bound) transition amplitudes and the formu-
las for u (J™7) give a hybrid version of the algorithm
derived for T~ ( = J ) in Ref. 43. (The factor of 442/3
appearing there in place of the present factor 4 2/48 is incor-
rect). The term “hybrid” refers here to the use of the sector-
reference potentials C2... Two terms, “hybrid” and half-hy-
brid, were introduced in Ref. 45 to distinguish between
algorithms which do and do not use additional reference
inhomogeneities. Superiority of the hybrid and especially of
the half-hybrid versions of the log-derivative method over
the purely approximate-solutions versions has been shown
in that paper. This gave a motivation for presenting here the
new generalization of the method in the hybrid version. An
approximate-solution version can be, however, readily ob-
tained by setting C?; =0,V =1, ands’=Iforp=1,...,L.

It often happens (cf. the problem of Sec. VI C) that the
range of the functions ¢(x) and x(x) occurring in the J

Felicja Mrugala: Calculations for inelastic and reactive scattering

integrals is much shorter than the range of variation of the
matrix C in the coupled equations (50) for which the log-
derivative matrix must be found. Thus, the interval [x°x>]
can be divided into two intervals [x°, x°] and [x%, x*] in
such a way that ¢(x) ~0 and x(x) =0 for xe[x*, x=] and,
in consequence, all the half-sector J integrals in the second
interval vanish. Instead of continuing propagation of the J
integrals throughout the second interval, it is recommended
in such cases to start propagation of all the four blocks of the
matrix L., . and, at the end, to “add” this matrix, using
appropriate recurrence relations*® to the quantities deter-
mined in the first interval. For completeness, the formulas
for evaluation of the matrices L{). and L{.
= — (L‘ > )T are listed below (their approx1mate-solu-
tion counterparts were given in Refs. 40 and 41):

LY = —1"/h+ h/3C), L) = —s'/h,
LY =2 L L§Y_\,
L((),ll) = L((),ll)—- 1+ h( I— 1 )TLc()g'l)»

for I=2,2p—1,2p, and p= 2,..L,

where L denotes the number of sectors of length 24 in the
range [x°, x~].

Of the features of the above algorithm, announced in
Sec. I1, the most attractive in comparison with the currently
available techniques'®-?* may be that of low storage require-
ments. Indeed, the procedure completely avoids evaluation
of the functions ¢ . (x) [¢:',x°° (x)] and 1/1‘;,,}, (x),
whereas counterparts of these functions in the standard ap-
proaches (cf., the finite difference boundary value meth-
0d?*?*)—the regular (irregular) distorted-wave solutions
and the “half-integrated Green’s functions”, respectively—
have to be calculated and stored for x points covering the
entire scattering range [x°x=]. Advantages of this and of
the other features of the proposed algorithm can be fully
taken in variational treatments of inelastic scattering prob-
lems employing any of the expressions for the reactance ma-
trix listed in Egs. (31)~(35). Concerning exploition of the
new algorithm in variational calculations for reactive scat-
tering, it should be noted that quite large savings are possible
when the Schwinger or a Schwinger-like (i.e., zeroth order)
expression is chosen for evaluation. The higher-order ex-
pressions involve reactive transition amplitudes which, as
was mentioned in the previous subsection, cannot be han-
dled by the present algorithm without extending it to inte-
grals J%%.. [cf. Egs. (56) and (57)] with nonlocal operators
x. Such an extension, however, would lead inevitably to a
considerable enlargement of the present storage require-
ments.

VIi. NUMERICAL TESTS

The goal of this section is threefold and is specified in the
titles of the three subsections. In order to establish a com-
mon reference for the test problems considered in these sub-
sections, let us put together the various partitions of the total
Hamiltonian introduced in the text

H=Hi+7 =H +V'=T, +H{ o, +Vo+V"
(78)
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and the respective operators appearing in the Schrodinger
equation represented in the basis of the eigenfuctions of

?ro-)vib:
D:=2u/#e|(E—-)p°],
=D+ 7°=D+V =D + Vg + V- (79)
T, denotes the kinetic energy operator for the motion along

the channel scattering coordinate. The channel index “¢”
will be necessary only in the Sec. VI C.

A. A demonstration of accuracy of the new
generalization of the log-derivative algorithm

The test problem is the simplified version of the Secrest—
Johnson model of vibrational excitation in atom—diatom
nonreactive collisions*® in which the partlcular operators of
Eq. (78) take the form

T,=(—1/m)d%¥dx’>, Hy = —3%/dy* + ),

V, = exp( — ax), (80)

o and m are the parameters of the model. The transition
probabilities in this model can be determined analytically*
within the distorted-wave Born approximation which gives a
:good opportunity to check numerical accuracy of the respec-
itive approximation to the reactance matrix

.@DWBI 0‘@_*_ T¢w, (81)

and, indirectly, the accuracy of the integral J—"~ [cf. Egs.
(62) and (62a)]. In Ref. 43, the performance of the approxi-
mate-solution version of the log-derivative algorithm for this
integral was tested on the same problem. Superior accuracy
of the present hybrid version and, in particular, a consider-
able reduction in growth of errors with energy are demon-
strated in Table II. Since the integral J—'~ is involved in
evaluation of all the new integrals considered in Sec. V, it is

V=ayexp( —ax).

1267

obvious that also in cases of these integrals the hybrid algo-
rithm should give more accurate results than the approxi-
mate-solution version.

B. An illustration of relative performance of the
variational methods on simple nonreactive scattering
problems

The test problems are the N ( = 1,2)-channel problems
with the operators (79) in the form

(DO)i,j =5i,j(d2/dx2 +E—' 6,-),

for i,j=1,...,N and N=1,2 (82)
v, {1 —exp[ —B:(x—%) ]} —v,
(7)., =1 fori=12if N=2, (82a)
y,exp( —v;x), for i=1if N=1, (82b)
()12 = Y12 €XP( — ¥5X) (82c)
6, (7)), for ,j=12 if N=2, (82d)
(Vo),',j =40r0 (826)
0, for i=j=1if N=1. (82f)

The values of the parameters chosen in the N = 2-channel
problem are (€;,0;,8:,%;) = (0,2.0,1.8,0.8),
(0.5,1.0,1.5,1.0) for i= 1,2, respectively, and y,, = 0.5,
vi2=20; E=1 and the mtegratlon range [x°x<] is
[0,12]. For the N=1 problem, E = (0.55)% €, =0,

y.= —2, v,=1, and [x°x*] = [0,20]. The bases B
NXxXM

(x)and B (x), B =B, used in the tests are of the form
‘NXM

B(x) =I1eh(x), (83)

TABLE II. Accuracy test of the nonhybrid®* (nH) and hybrid (H) log-derivative algorithms for the J~~
integral on the distorted-wave version of the Secrest-Johnson problem [cf. Egs. (76), (78), and (79)].

Errorof P, _,*

Parameters |Pgte /Pg — 1|/R*
Energy Step size
m a E A nH H po
2/3 0.3 8.0 0.2 0.58( — 1) 020(-1) 0.354 12
10.8365 O.11(+ 1) 032(—1) 1.23397
12.8365 0.16(+ 1) 041(—-1) 217413
1/13 0.1287 6.0 0.4 0.29( — 2) 0.30( — 3) 0.030 72
6.0 0.2 0.29( — 2) 0.30( - 3)
8.0 0.60( — 2) 0.49(—3) 0.110 81
12.8365 0.20(—-1) 0.94( - 3) 0.474 61
16.8365 0.24(-1) 0.13(—2) 0.889 13
18.8365 0.46( — 1) 0.15( —2) 1.119 88
18.8365 0.1 040(—1) 0.15(—-2)
574 0.2973 12.7882 049(+ 1) 0.64( — 1) 1.041 89

* The purely approximate-solution version of Ref. 43.

*The integration range was [ — 30, 170] in the cases with a@ = 0. 1287 and [ — 20. 80] in the remaining cases.

¢The probability of the v == 0-»» = 1 excitation.
9 Obtained by the Jackson-Mott formula (Refs. 49 and 50).
¢ The numbers in parentheses denote powers of 10.
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for i=1.2,..m, NXm=M.

(83a)

Mean-square relative errors of the reactance matrices
obtained from the variational expressions % ;(B,B) with
n<3,

/2
error ('@) _[ ;: ( cnl cxnct 1) ] /NZ,

(b); = x"exp( — ax),

(84)

where Z§: = ('%:;i)k.l = (9?}'_ Li+1 )1« are plotted vs the
number of the basis functions used in these expressions in
Figs. 1-3. #7°*°' = 2.200 38 for the N = 1-channel problem
and

2.246 47
—0.22117

for the N = 2-channel problem.

Figure 1 gives a comparison of convergence rates yleld-
ed on the one-channel problem by the expressions 9?0 1
.@, ., and Z#} 3.3 corresponding to the method of moments,
the Schwinger, and the Newton methods, respectively, for
two values of the nonlinear parameter in the basis functions
a = 1.5and a = 0.5. The relations shown between the meth-
ods are perfectly clear if analyzed along the lines given in
Sec. II1. The expression .9?3 5 as the proper first-order coun-
terpart of the expression 5?, ,—in the sense of involving ex-
pansions of the same quantities (cf. Table I)—yields better
convergence in both cases. The relation between the method
of moments and the Schwinger method changes, however,
essentially with the value of a as it concerns the expressions
based on expansions of different quantities. Since the maxi-
ma of the subsequent functions in the basis b are shifted by a
distance equal to 1/a, it is obvious that for approximating
the wave function in the Schwinger method a smaller a
should be used than for assuring simultaneously a good rep-
resentation of the wave function and of the localized ampli-
tude density, as required in the method of moments. The

—0.221 17)

exact __
7z "( 1.689 19

1074 |

1073

ERROR (R)

107

107

10-%

IR 1 1 L
6

1 2 3 4 $

m

FIG. 1. Mean-square relative errors of the reactance matrix [Eq. (84)]
yielded on the N = 1-channel problem, Eqs. (82}, (82b), and (82f), by the
expressions 9? o1 (+ ), 9? 1 (A), and 9?,, () vs the basis length [cf. Eq.
(83) and (83a) ] for two values of the parameter . The value @ = 1.5 gives
the best convergence of the expression %73, and the value a = 0.5 is optimal
for the expressions #9, and ) .

10!
1072
073
107

1079

ERROR (R)

107
1077

108

FIG. 2. The best convergence rates yielded on the N = 2-channel problem,
Eqs (82), (82a), (82c), and (82e) by the asymmetric exErmsmns
0, (+) and .@230( ), and by the symmetric expressions %9 (A),
1,(0),and 2}, (Q). The values of the parameter o are 3.4, 3.4, 10 10,
and 3.0, respectively.

convergence in the Schwinger method is the best and superi-
or to the convergence of the method of moments when
a = 0.5. It worsens systematically with increasing the value
of a, i.e., when the basis becomes more and more localized
near the origin. The fastest convergence in the method of
moments is achieved with @ = 1.5. This convergence is bet-
ter than the convergence in the Schwinger method obtained
with the same a, but definitely worse than the convergence
obtained with a optimal for this method (compare the re-
spective full lines in Fig. 1). The last fact testifies undoubted-
ly to the superiority of the symmetric expression of the
Schwinger method 3?“’,‘ over the asymmetric expression of
the method of moments %3 ;. This conclusion contradicts

oz OW (X}
SN
\sz 10}
B3 (0}
—— DWB1 (4)
— pws2 (O}
* -.,\ «~— DWB3 (0)
@ "5. ..... -
o ., -
g g
w R
' 1 1
8 2 10

FIG. 3. Convergence rates yielded by the expressions %9, (X ), %2, (0),
R),(A), and 5?2,. () on the N = 2-channel problem with the distortion
potential [Eq. (82d) }—the full lines—and without the distortion poten-
tial—the dotted lines. The values of & used (close to) optimal for the four
expressions are 1.0, 1.0, 3.0, and 3.0, respectively. The convergence of the
related distorted-wave Born and Born series is shown in the right side of the
figure.
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the conclusion of Ref. 5 drawn from tests on the same model.
As an explanation, one should state that the values of & used
preferably in those investigations a = 2.5, 1.5 favor expan-
sion of the amplitude density.

In Fig. 2 are shown the best convergence rates yielded
on the two-channel p;\oblem with V, = 0 by the asymmetric
expressxon .9?0 , and #| ,, and by the symmetrlc expressions

#,, R 5, and R},. The expression @1 5 is the first-order
counterpart of the expression P o1 [cf. Eq. (33)] in the
same sense as used above in the case of the expressions Z}
and .@, .- Thus, it is not surprising that the optimal values of
the parameter & are the same for both expressions within
these two pairs. Again, the first-order expressions .@ 13 and
.Z?;J converge faster than their lower-order counterparts
A3, and #9,, respectively, and, among the expression of
the same order, the symmetric expressions are superior to
the asymmetric ones. A new contribution to the discussion
follows from comparing the two symmetric expressions of
the same order .%’;’3 and # 3.2» which correspond to the two
versions of the Newton method involving expansions of the
wave function and of the amplitude density, respectively.
Superiority of the wave function version is clearly seen in
Fig. 2. In order to give an explanation to it, one should resort
to the relations (26)~(28), which applied to the present case
give

#}5(BB) =Z},(VBVB) (V=V-V,).

This means, of course, that both versions of the method
would perform identically if the basis used in the expression
% ! ; were multiplied by the potential matrix before inserting
it into the expression R 32 Interpreted less literally, the
above relation says that given basis B, serving to represent
the product of the matrices V and 1 in the amplitude density
version, has to account for a larger amount of information
than in the wave function version, where it serves to approxi-
mate only the matrix J and the relation of this matrix to the
amplitude density matrix, § ( = V), is treated exactly.
Only in cases exceptionally simple, such as the one-channel
problem considered above, the basis of the form (83) is capa-
ble of fulfilling equally well both roles. This is because in this
problem the replacement B— VB is only a matter of shifting
appropriately the parameter a. (This is also why the results
shown in Fig. 1 as obtained by the wave function version
with ¢ = 0.5 and 1.5 coincide with the results presented in
Ref. 5 as obtained by the amplitude density version with
a = 1.5 and 2.5, respectively). Obviously, in multichannel
cases or even in one-channel cases, but with potentials, e.g.,
of Morse type, the higher requirements of the amplitude den-
sity version are harder to meet with bases of simple forms.
This must result, of course, in lower convergence rates of this
version in comparison to the wave function version.

Superior convergence properties of the wave function
version of the Newton method on one-channel test problems
were noticed and discussed for the first time in Ref. 6.

Figure 3 is enclosed to compare convergence properties
of the Takatsuka-McKoy expression R? 31 [cf. Eq. (34)]
and of its amplitude density analog R} 24 [cf. Eq. (35)] with
properties of the Schwinger 29, and of the Newton R},
expressions, respectively. Though such a comparison does

not match the scheme of testing the methods proposed in
Sec. IT1, the motivation for it comes from the particular con-
nection which exists between the quantities expanded in
these two sets of expressions (cf. Table I}. Whereas expan-
sions of the total wave function and of the total amplitude
density function are involved in the expressions .5?1 , and
5?2 ,, respectively, only the scattered parts of these functions
V: =¥ — ¢p=GVWand & = ¢ — Vi = VG are represent-
ed in a basis, i.e., treated approximately, in the expressions
A%, and A3, respectively. This gives a good reason to ex-
pect that the latter expressions are better suited than the
former to problems in which the scattered functions are only
small corrections to respective unscattered functions or, in
other words, for which the Born series converges well. The
above two-channel problem with the distortion potential V,,
chosen in the form (82d) can be considered a problem of
such type where the role of unscattered functions is played
by respective distorted-wave solutions. The results of the
tests performed on this problem with the four expressions
are represented in Fig. 3 by the points joined with the full
lines. It is demonstrated that almost no change in conver-
gence rate with the basis length, but a considerable improve-
ment in overall accuracy of the calculated reactance matri-
ces can be achieved if the expression .@i, is used instead of
.9?‘,’, or the expression #} a,4_instead of 5?2 ,. The superior
accuracy of the expressions R 33 and »3 2.4 originates indeed
in the accuracy and high convergence rate of the related
distorted-wave Born (DWB) series which is also demon-
strated in Fig. 3. The difference in errors between the reac-
tance matrices obtained in the DWB2 and in the DW ap-
proximations is close to the distance between the lines
representing the errors of the matrices obtained from the
expressions #2 , and %9, ; a similar relation can be noticed
between the errors of the DWB3 and the DWBI1 approxima-
tions and the errors yielded by the expressions .5?:’;‘4 and
B 3.2 Obviously, the subtraction of the unscattered wave or
amplitude density functions which is, in a rough description,
the way the expressions %2, and %3, have been derived
from the expressions %9, and #} ,, respectively, should not
be expected to lead to any significant improvement in cases
characterized by slow convergence of the Born or distorted-
wave Born series. This is confirmed by the results of the tests
performed on the two-channel problem in the formulation
not using the distortion potential, i.e., with V, = 0 (the dot-
ted lines in Fig. 3), for which the Born series converges poor-
ly. Slow convergence of the Born series for the one-channel
problem used in the tests of Ref. 5 is the reason why the
advantages of the Takatsuka-McKoy expressions could not
be noticed in those investigations. ’

C. Solving variationally the BKLT equations. An
illustration of usefulness of the log-derivative
algorithms in reactive scattering calculations.

The test problem is the collinear H + H,=
reaction described by the Hamiltonian

H(x,.p.) = —#/(2u)(8%/3x> + dY/W2) + 7 (x.0.)s
(85)

where ¥~ denotes the electronic energy potential surface for

H,+H
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the three H atoms (the Porter—Karplus potential®' was used
in the tests). The detailed definition of the (x,,y.) coordi-
nates for the two arrangements in this reaction ¢ = a,B as
well as the formula for the angle of the kinematic rotation

xﬁ) _ (1 O)( cos y sin)()(;u)
5 N0 —1/\—siny cosy/\y,
can be found, e.g., in Ref. 8.

As Egs. (78) imply, the potential 7 is partitioned in

each arrangement channel into vibrational, distortion, and
exchange potentials

(86)

Felicja Mrugala: Calculations for inelastic and reactive scattering

where

Vie ) =7 (x2p.), for y. e[y =0y0"].
[12.57%%] denotes the range of the y, coordinate which is
important for dynamics of the process at given energy (well
below the three-body dissociation limit). The following two
choices of the distortion potentials were considered:

(i) V§(x,) =7 (x5 —

Ve 20, (88)

T =V + 7=V +Vi+ Ve, for c=ap, where y°9 denotes the position of the minimum of V¢, (cf.
(87)  Ref. 8);
J
T (xepe) = Vi 0e), for yely'(x).p"(x.)]
(i) V§(xop.) =4 V5[ (x)], for pe[yly'(x.)] (89)
Ve[xyl(x.)], for p.e[y” (x.)min(y7™x, taﬁ)()],
where [y (x.),y/ (x.)] is an interval around the line y, (x,) =y chosen as follows:
yi(x,) =0.75y%,
Y29+ 0.25p59(x, — X2/ (x8 — x29),
yi(x) =1 for x.€[xx;] (89a)

1.25p%9, for x.e[x{,xZ].

[x2,x¢] is the range of the x, coordinate where exchange
interaction occurs (i.e., ¥ “#0). The coordinates x;! and x3'
correspond to the point of intersection of the lines y, (x, )
=y and y,(x5) = yg. The values used in the tests are x?

=0.74A, x5 =254, and x° =9.5Aforc=a,B.

The BKLT equations are examples of the generalized
L-S equations (cf. Sec. I1I) which correspond to the use of
the channel permuting coupling scheme in construction of
the matrix potentials. For the present problem, this scheme
gives

(5 ) -2 )
Ve 0 ve 0

The equations with the potentials ¥ and ¥t were solved for
the reactance matrices using the expressions of the method
of moments .9?0, and ﬂo ., respectively, and also the
expression ﬂ, , O 5?1 , of the Schwinger method. Since
both expressions of the two methods should converge in
principle to the same result, the reactance matrices obtained

with the given basis were subject to a symmetrization such as
the following:

(90)

G, = [R,(B.B) + . R, (B.B)]/2. (91)

It should be stressed, however, that this operation gives
strictly symmetric reactance matrices only in the case of the
Schwinger method which is a consequence of relation (235).
Because of the same relation, separate evaluation of the
expression +9~?‘,’_1 becomes unnecessary. This reduces, of
course, the number of the transition amplitudes which have
to be evaluated. Namely, two second-order amplitudes

—
(T )%= (LV#|G’B?),
and (,T2,)% = (V5|G’B?),
and three first-order amplitudes
T ®=TL) ™ ((Ti ™,
and (T),)%,

have to be evaluated to determine the matrix ,@g_, , and only
one second-order transition amplitude

(Tig,a )aa = (+Vﬂa|GﬂvBa)By

in addition to the three first-order amplitudes (T,',,' B)s
(.Th5)"%, and (T )" is necessary for calculating the
matnx %"1’ ;- (Obviously, twice as many amplitudes would
be necessary for asymmetric reactive systems. ) The transla-
tional bases B°(x, ) for ¢ = a, B8 were chosen in the form

Bc(xc) =Ie® bc(xc)y

(b°); = [2/(x¢ — x2) | 3sin[im(x, — x2)/(x{ —x0) ],

(92)

In evaluation of the transition amplitudes, L =75 and
L = 140 sectors were used in the exchange [x%,xg] and in
the inelastic | x5,x5 ], regions of the x; coordinate, respec-
tively.

All the reactance matrices generated both the symme-
trized and the unsymmetrized were converted to the corre-
sponding probability matrices and the accuracy of the latter
was estimated relative to the results yielded by the standard
approaches, i.e., based on the ordinary Schrédinger equation
like the R matrix propagation method,*">? using the follow-
ing error formula:

fori=1,..,m
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FIG. 4. Variational solutions of the BKLT equations for the collinear
H + H, = H, + H reaction. Errors of the probability matrices [Eq. (93)]
obtained by the method of moments with the matrix potentials ¥ ( — ) and
V' (— +) [Eq. (90)] and by the Schwinger method (~ ). The longer
straight and waved lines show errors of the symmetrized results obtained
from the matrices , %3, and , %9 ,, respectively. E; fori = 1,..., 5 denote the
following values of the total energy (measured from the bottom of the po-
tential valley corresponding to infinite separation of H and H,): 0.897 60,
1.0, 1.1, 1.2, and 1.3966 eV. N §( = N§) = 2 for E; with i = 1,..., 4 and
N8(=N¢g) =3 for E;. The asterisk means that the multichannel distor-
tion potential [Eq. (89)] was used in the calculation. In all cases
N #( = N*) = 8 vibrational and m = 10 translational basis functions [cf.
Eq. (92)] were employed.
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FIG. 5. Covergence with the translational basis size of the symmetrized
results obtained by the method of moments (@) and by the Schwinger
method (X ) in some of the cases shown in Fig. 4.

N§ 172
S 3 (rsenL-1r]

C=a,Bij=1

error (P): = [

[2(N5)?], Ng=N§. (93)

The errors of the symmetrized and of the unsymmetrized
results obtained at five energies, mostly in the two open
channel range, by the method of moments and by the
Schwinger method with m =10 translational and
N B( = N ) = 8 vibrational basis functions are compared in
Fig. 4. A comparison of the two methods with respect to the
convergence with the translational basis length is given in
Fig. 5. Both figures demonstrate clearly the superiority of
the Schwinger method. The errors of the probability matri-
ces are reduced on an average by a factor of 2. This gain in
accuracy may be considered not large, but it should be said
that the tests performed, being to our knowledge the first
attempt to implement the Schwinger variational principle to
solving the BKLT equations, had only preliminary charac-
ter. For example, no search for bases optimal for the two
methods was made and, as demonstrated in the previous
subsection, this might affect strongly the picture of relative
accuracy of these methods. The second aspect of the tests
concerned the use of multichannel distortion potentials in
the numerical treatment of the BKLT equations. No at-
tempts were made to give any prescription on how to find the
best distortion potential, but the tests with the rather arbi-
trary choice (ii) indicate the effectiveness of using such po-
tentials. Larger advantages in accuracy and in convergence
rate than those demonstrated in Figs. 4 and 5 (compare the
panels denoted by E5 and *E;) can certainly be expected in
cases of reactive systems which behave less adiabatically
than the H, + H system outside the exchange region of the
configuration space. The point to be stressed again is that
with the log-derivative algorithm, the multichannel distor-
tion potential (ii) could be treated equally as easily as the
one-channel potential (i).
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