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The log-derivative method of Johnson is generalized to calculate matrix elements of
multichannel Green’s functions—second-order transition amplitudes—which arise from
description of a variety of physical processes involving weak interactions of initial and final
(bound) states with a set of strongly coupled continuum and/or bound intermediate states. A
purely approximate-solution algorithm and two hybrid approximate-solution approximate-
potential versions, based on the use of piecewise constant reference potentials, are presented
and tested on problems concerning investigations of nonadiabatic effects in the spectroscopy of
H,. A comparison with the renormalized Numerov method, extended to calculation of
considered transition amplitudes, is made and superior efficiency of the hybrid log-derivative
algorithms is demonstrated. It is shown both practically and theoretically that discretization
errors of the hybrid algorithms grow linearly with increasing energy in calculations, whereas
cubic growth of errors with energy is characteristic for the purely approximate-solution log-

derivative and Numerov algorithms.

I. INTRODUCTION

As pointed out in the recent paper by Singer et al.,' there
are many physical processes amenable to treatment in sec-
ond-order perturbation theory which involve (weakly al-
lowed) transitions through a manifold of strongly coupled
continuum or/and bound states and are quantitatively de-
scribed by matrix elements between initial and final state
functions of a multichannel Green’s function connected with
the Schrodinger equation for the intermediate states. Hence,
developing stable and efficient algorithms for numerical e-
valuation of these matrix elements—second-order transition
amplitudes—is a task of general importance.

Intending to employ a step-by-step integrator to a multi-
channel Schrodinger equation one has to remember, of
course, on some precautions against the loss of linear inde-
pendence of solutions in classically forbidden regions. Since
not only regular but also irregular solutions are involved in
evaluation of the second-order transition amplitudes, the ne-
cessity of maintaining the linear independence between these
solutions arises in addition to the usual stability require-
ments of standard scattering calculations (S-matrix evalua-
tions). Stressing this fact Singer et al.' propose to meet the
additional requirement by modifying the boundary condi-
tions for irregular solutions at each integration step in a way
dependent on behavior of stabilized regular solutions, gener-
ated simultaneously. This proposal is a generalization of the
standard stabilization techniques which were applied before
only to solutions of one (usually regular) kind. Following it,
the authors develop a general stable scheme for evaluation of
second-order transition amplitudes and show how within
this scheme the established scattering methods, like the R-
matrix propagation” and the renormalized Numerov® meth-
ods, can be exploited.

In the present paper, another approach to numerical
evaluation of second-order transition amplitudes is pro-
posed. The amplitudes are viewed as integrals of products of
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two functions, one of which represents the final state and its
coupling to the intermediate states and the second function
describes motion on the intermediate states driven by transi-
tions from the initial state. Functions of the latter type are
determined as solutions of appropriate two-point boundary
value problems for inhomogeneous coupled differential
equations. Numerical instabilities, being the matter of main
concern in Ref. 1, are completely circumvented in treatment
of these problems by making a consequent use of the invar-
iant imbedding concept.** More attention is given instead to
efficiency in evaluation of the quantities of interest.

Algorithms are derived on the basis of the inherently
stable L-matrix formulation of two-potential scattering
problems introduced previously® in connection with evalua-
tion of first-order transition amplitudes. In Sec. II, this for-
malism is supplied with a recurrence relation necessary for
propagation of second-order amplitudes. Simultaneously
with these amplitudes, two related first order amplitudes
and a log-derivative matrix have to be propagated. The com-
plete set of the recurrence relations involves, beside the basic
L-matrix propagator, quantities which are essentially coun-
terparts of the first- and second-order amplitudes defined for
small sectors of the entire propagation range. Formulas for
evaluation of these sector quantities have to be provided, of
course, in order to fully specify the way of evaluation of the
global quantities. Accuracy and efficiency of the final algo-
rithm critically depend on the approach chosen at this stage
of its derivation.

The approximate-solution type discretization proce-
dure of integral equations which was used in the derivation
of the original and of the generalized log-derivative meth-
ods®? to obtain approximate expressions for the sector and,
subsequently, for the half-sector L matrices and first-order
amplitudes is employed and extended in Sec. III to give the
needed expressions for second-order amplitudes. Modifica-
tion of this procedure, consisting in the use of piecewise con-
stant diagonal reference potentials and thereby admixing
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some approximate-potential features to it, has been demon-
strated recently'®!! to improve efficiency of the original al-
gorithm of Johnson. The same modification and its exten-
sion to driven equations (consisting in the use of piecewise
constant reference inhomogeneities) are considered also in
Sec. I1I for enhancing efficiency of the approximate-solution
approach in evaluation of first- and second-order ampli-
tudes. As a result, three new log-derivative related algor-
ithms are developed for evaluation of second-order ampli-
tudes: one of purely approximate-solution type and two
having hybrid approximate-solution approximate-potential
character.

The new algorithms have been already exploited and
found useful in the calculations concerning the realistic
problem of predissociation of the D 'IT} state of H, by pho-
ton impact, reported in Ref. 12. No computational details
were enclosed, however, in this report. An extensive descrip-
tion of performance of the new algorithms in exemplary ap-
plication to investigation of some nonadiabatic effects in the
spectroscopy of H, is given in Sec. IV. A model of the H,
molecule is constructed on which, at first (Sec. IV A), the
way of implementation of the log-derivative algorithms to
predissociation calculations, being carried out in both per-
turbative and nonperturbative approaches, is demonstrated.
Then, accuracy of the nonhybrid and of the hybrid versions
of these algorithms is compared in calculations of two pre-
dissociation profiles which appear in the cross section for the
photodissociation of H, (model) molecule from the ground
stateintothe H(n = 1) + H(n = 2) channel at energies just
above and well above the threshold, respectively. In Sec.
IV B, the energy range below this dissociation limit is taken
into consideration and the methodology of investigation of
predissociating (i.e., resonance) states, followed in Sec.
IV A, is adapted to bound state calculations. In particular, a
nonperturbative procedure of determination of nonadiabatic
energy shifts of bound rovibrational states is suggested in
which advantages are taken of numerical stability of the new
methods in one-way propagation of second-order transition
amplitudes. The amplitudes evaluated in the course of
searching for a nonadiabatic energy level involve the eigen-
function of the corresponding adiabatic level. The procedure
is initially tested (in Sec. IV B) on the model molecule for
consistency of results with perturbation theory predictions
in cases involving small nonadiabatic interactions. Its ade-
quacy in treatment of the real molecule is finally document-
ed in Sec. V where results obtained for nonadiabatic shifts of
selected rovibrational levels in the B'=, B' '3, C'I1,,
and D 'T1,, states of H, are shown to agree satisfactorily with
the values calculated for these shifts in Ref. 13, using the
renormalized Numerov method.® In the remainder of Sec.
IV B, numerical tests on the model molecule are described
which illustrate differences in performance between the non-
hybrid and the hybrid algorithms in the bound state calcula-
tions. A comparison is also made of the new log-derivative
algorithms with a Numerov-related scheme of evaluation of
second-order amplitudes, presented in Appendix A.

All the algorithms considered are of the same, fourth,
order. The important difference between them concerns be-
havior of errors with increasing energy in calculations. It is

observed in the tests that errors of results generated by the
hybrid log-derivative algorithms grow linearly with energy,
whereas errors of results obtained by the purely approxi-
mate-solution log-derivative and the Numerov algorithms
reveal a rapid cubic growth with energy. These observations
are confirmed theoretically in an analysis of local discretiza-
tion errors in the hybrid and in the nonhybrid versions of the
log-derivative algorithm, given in Appendix B. Accuracy
tests of the algorithms, completed with a count of matrix
operations required at a single integration step, are conclud-
ed with an estimate of their relative efficiency: the nonhybrid
version of the log-derivative algorithm is estimated to be
comparable with the Numerov algorithm in evaluation of
second-order transition amplitudes regardless of the value of
energy involved and the hybrid versions are found to be su-
perior to both the purely approximate-solution type algor-
ithms in high energy calculations.

No direct comparison is made with the methods pro-
posed in Ref. 1 since superior efficiency of the new log-deriv-
ativerelated algorithms seems to be guaranteed by simplicity
of their formulas.

Il. SECOND-ORDER TRANSITION AMPLITUDES IN THE
L-MATRIX FORMULATION

Let us consider a real Hermitian NV X N matrix operator
D;

D: = 1d?/dx* + B(x) N
and the following three boundary value problems for it:

DY o (xX) = 8,08(x)
I 0
+ AN + ”y
e = Yo ) = L,

Yo () =40 (x") =0, (2a)
with ¢(x) being an N X N, matrix of given functions and
with I denoting the N X /N unit matrix.

Let us define the following integrals;

Jz’,x”:= (¢z’,x'!¢) for a= +,_901 (3)
where

fora=+,—,0, (2)

b
(Y,,.Z): =f YI (x)Z(x)dx,

a

involving solutions of these problems, ¢ £ .. and ¢°, .. . In
NXN N XN,
terms of the same functions are also defined the 2N X2N

matrix L
LY. L.
o (L . L ;f*h) ;
7+ 4 7, — ’
x',x" (x ) x,x" (x )
Lx.’x~:=(‘+’ . '/’— ”),
x',x” (x ) ¢x’,x" (x )
and the N X N, matrices T, .- and Q,. .~;
Tx’,x': = ¢2',x" (x” )’ Qx’,x": = ¢g',x~ (x') 1) (5)
introduced and exploited in Refs. 8 and 6 as a set of invariant

imbedding type quantities propagating any solution of equa-
tion

Dy=¢

L

4
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across an interval [x',x"]. (x">x' is assumed for definite-
ness.) The respective propagation relation reads

'.ﬁ(x’) ) (¢(x,) ) (Qx’,x")
7 )=Ly o+ . (6)

(1/J(x ) T \(x") Ty
(Overdot denotes derivative with respect to x.) The J %,
integrals introduced here are simply related to the matrices
Tx’,x" and Qx’,x" :

J)j:x" = - Qx',x”’ JXT,x" = Tx’,x” ’ (7)
which becomes apparent if one (i) rewrites the problem (2)
and (2a) for the function 1/’2:: in the integral form

0, - G0’ . ¢

ie.,
L) = [ G g0y,

using the appropriate Green’s function G2, . (x,y);
D(x)G3 o (x,9) = I8(x — p) , (8)
G?c’,x" (x,’y) = Gg’,x” (x"9y) = 0 ] (83)

(ii) expresses this Green’s function in terms of the solutions

¢)Ix" and ¢XT,X';

G g’,x" (X,}’ )

_ [lﬁxT,x" (x) ( WxT,xl" )T [lp;:x" (Y) ] T for x <y

;:x” (x) Wx_’,xl” ['pr,x" (y) ] r
and (iii) exploits for the Wronskian of these solutions;
Wx‘,x”: = W[‘bx_',x""px‘r,x” ]’ W[¢’X] =¢Ti/_¢TX’
(9a)
the following equalities, resulting from the assumed proper-

ties of the operator D;

W Yow ] = — L) =L2%k. (9b)
From hermiticity and reality of D follows also symmetry of
the log-derivative matrix L {*). and of the matrix L {!). (cf.
Ref. 9).

The integral J ., expressed through the function
G ., takes the form of a “second-order transition ampli-

x',x"

tude” (more precisely, of an N, X N, matrix of such ampli-
tudes);

Jow =($.GLxd) .
A more general integral of this form
Jow:={8,Gex-8)
with the Green’s function satisfying inhomogeneous bound-
ary conditions instead of the conditions (8a);
Gyr (') =0, Gy (x,y) = 0(x)8"(y) for x>x(”8,b )

where O denotes an N X N matrix solution of the equation:
DO(x) =0 in the range-of x outside the x” boundary of
[x',x"], can be obtained from the integral J, .- by exploit-
ing the relation

f » (9)
or x>y

(10)

Jow =TL [Le— LB ] ' T +J% 0, (11)
where
Ly = ox"[ox")]". (11a)

This relation can be easily proved by making use of the fol-
lowing expressions for the function ¥, .-, ¥, -1 = G, .- &,
and its derivative

¢x',x" (x) = ¢J;",x' (x)o(x” )C + ¢?¢’,x" (x) ’

Yo (X") =0(x")C=L P Ox")C+ Ty, ,
where

C= (ga¢> .

Of crucial importance for the derivation of algorithms
presented in the next section are the following recurrence
relations for “addition” of the L™, T, and J° matrices de-

fined in the subintervals [x',y] and [y,x"] of the interval
[x'.x"];
L& =L® —~ L3I px")L 3., (12a)
Ty, =T, —L3Ixyx")[T,, —Q,.], (12b)

S =d% 4T — [Ty — Q17
XX yx")[Tey — Qpr ] » (12¢)
where
Ix'yx")y:=[LY —~L]7". (12d)

The first relation was given in Ref. 8, the second in Ref. 6,
and the third relation is new. It is derived by inserting into
the defining equation (3) with @ = 0 the following expres-
sions for the function ¥, ,.:
Ve (X) =95, (X) + ¥, (XNas,
g’,X” (x) = g.x" (x) + ¢y.,+;c" (x)ay,tc”

with

for xe[x',y],

for xe[y,x"]

ayy = ay_:c" = — l(xl»y’x”) [ Tx’,y - Qy,x" ] ’
which relate the solution 2. ,- (x) in the interval [x',x"] to
the basic solutions #{,,(x),@ = +, — ,0,in the subintervals
[p]l = [x'y] and [p] = [y.x"]. The coefficients occurring
in these expressions result from the continuity of the func-
tion 92 . and its derivative ¢ . at the common boundary
of both subintervals, from the form of the boundary condi-
tions satisfied by the respective solutions ¢f,;(x) [cf. Eq.
(2a) ], from the definitions (4) and (5), and from the rela-
tions (12a), (12b), and (12d).

In the limit of (y — x” ) — 0 the recurrence relations take
the form of the following differential equations:

d

;}-’Lff,}= —B(y) — (L3)?, (13a)
d T,, = LT 13b
d_y xy — ¢(y) - xydxy ( )
d J, = -TI T 3
7= Tl (13¢)
These equations together with the initial conditions
(L.Sc"t,gc’)_l =0’ Tx',x‘ =07 Jg’,x' =0 (13d)

might be used, in principle, for determining the matrix J 2. -
(and the matrices T, ,. and L ()., at the same time). How-
ever, direct integration of the differential equations (13a)—
(13c¢) is very impractical, if not impossible (without includ-

ing additional equations, at least) because of the singulari-
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ties of the log-derivative matrix L {*) (and of all other quan-
tities related to it) occurring at some isolated points y,;,, of
the integration range in most cases of interest.'* The use of
the recurrence relations (12a)—(12d) instead allows bypass-
ing these singularities without affecting the accuracy of the
quantities obtained at the end of the interval [x’,x"], pro-
vided the endpoint x” lies not too close to any y;,, point.
This stability is, in fact, an inherent property of the invariant
imbedding approach, irrespective of whether it is applied to
continuous (as here) or to discrete boundary value prob-
lems, and irrespective of specific choice of the propagator
(the L matrix, the R matrix, or others'>). An analytical
proof of this property is given, e.g., in Ref. 5. A practical
demonstration of the numerical stability of the recurrence
relations for the L ¥ and T matrices was given in Ref. 6.

lll. ALGORITHMS

Let us divide the integration range [x’,x” ] into M sec-
tors of length 2h, [x'x"] =2}, [x,,_,,x,,], where
x" = xoand x" = x,,, and consider the boundary value prob-
lems (2) and (2a) in the pth sector, i.e., replace [x',x" ] with
[x25 _2,%5, ] in Eq. (2a), denoting the corresponding solu-
tions by ¢f,, for @ = +, —,0. Partitioning the matrices
B(x) and ¢(x) within this sector into two parts;

Y(x)=Y?;+ Y?(x) for Y=B,¢

and for xe[x,,_,.x,,], (14)

with constant, and diagonal for Y = B, reference matrices
chosen at the midpoint x,, _,;

Pres: =(x55 1) (14a)

Bfy: = diag[B(x,,_,)]: = (k*)?, (14b)
and, correspondingly, partitioning the operator D;

D=D%¢+B”*, (15)
where

d2

D’r’ef:=E+B‘r’eu (15a)
let us specify the sector reference problems:

Diy@i,) =0u0ds for a= +,—.0, (16)

Pip1(X5p_2) = [é’ @ i1 (%25) = [(I)’

Plo1 (X 2) =@ ,(x;,) =0. (16a)

Obviously, in terms of the solutions of these problems, g o1
obtainable analytically, the solutions of the full problems in
the sector p, Y7, can be expressed

Vo1 =@ t X, fora=+,-.0, (n
where
X([zp] = - G([)p)(Bpﬁp] - 6a,0¢P) ’ (178.)

using the Green’s function for the operator D%, G{,,, anal-
ogous to the Green’s function G ,. introduced above for
the operator D. Thus, G ‘[’p ; can be evaluated according to the
formulas (9) and (9a) after replacing the functions /% ,.
with the functions @ £ ,. Now, let us introduce sector coun-
terparts of the J$ .. integrals, the integrals J{,,, J L

= (1//‘(’,, p@), fora = +, — 0, and separate from them the
terms which can be evaluated analytically (the first term in
the equation below):

Jio =g p10Pher) + (X?p]’¢(r)ef> + (pr#)

fora= +,~—,0. (18)

In order to evaluate the remaining terms, the functions Y
have to be found. With this purpose the integral equations
(17) and (17a) are discretized by means of the modified
Simpson quadrature formula (cf. Refs. 6, 8, 11, and 16 and
Appendix B), giving the following algebraic equations:

2p

Fipy(x) =@f)(x) — X

k=2p—2

4]
0, G, (xx ) g%

X [BP(x)F 7, (x) — 8,08°(x,)] (19)

for the functions F [p1(xy ) related to the functions Yo (xe)

through the formula
Fo ()= (g8) 7195, (%)

- 5a,0?’k¢p(xk) fora= +,— ,0( 193)
where

gi:=[I+rB(x)]"", (19b)

and

w, =4h/3 (h/3), y.=h?/6(0) forodd (even) k.

(19¢)

However, instead of solving Eqs. (19)-(19c¢) directly for the
functions ¢f, it is more profitable to exploit the concept of
invariant imbedding once more; this time, in connection
with the discrete boundary value problem given by Eq. (19).
Namely, breaking up the pth sector into half-sectors
[x;,%,, 1] with /=2p — 2, 2p — 1, let us introduce analo-
gous equations for half-sector functions F*, F§,, , (x;)
withl=2p—2,2p—1;

I+1

Flrox) =@l (x)— z &G4 (X2, q%
=1

X [BP(x )F L (x) — S0 (x) ],
(20)
where @, =2k /3 (h/3) for odd (even) k; the functions
@5, and G, are defined analogously to the sector
functions @ {,; and G ?P 1» respectively. [ This means that the
boundary conditions (16a) are imposed at the points x, and
X, in the case of the functions ¢ §, , ,. The reference ma-
trices B%,. and ¢%.; are kept the same, however, in both half-
sectors. |
Preserving analogy with the relation (19a), let us intro-
duce also half-sector functions ¥~, ¥7,, , (x;):

e (x): = qf[FZH 1 (x) + 7’i5a,o¢p(xi)]

=P e (X)) + xT (), (21
which assume the following values:
' 0
¢I,jl:+l(xl) = [01, ¢1,il+1(x1+1) = e s (21a)

¢21+1(xi) =X(1),1+ 1 (%) = 7,477 (%),
X1 (X)) =x5,1(x)=0 fori=LI+1.
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In connection with the above half-sector equations, the ef-
fective half-sector L matrices (cf. Ref. 8);

I '_(F1j+l(xl) FI,_I+1(xI) ) (22)
AU TUNF AL ) Fo, )]

and the following half-sector integrals come into considera-
tion:

Jfl+l:= (¢7¢17,[l+1!¢€ef) + {XZI+ 1’¢€ef}
+{v5, . #} fora=+,—,0, (23)
where

1+1
Y002 = Y & Y[ () Z(x) -

k=1
The following formulas can be derived for these quantities:

— P —hS0Y/h s°/h
L1,1+1 =

— s?/h (1" —hS{, \)/h
for/=2p—22p—1, (22a)
where
St=a,q)B% [Bf:=B"(x,)], (22b)
h|k?|/sin(h |k?|) if (k?)?>>0
§F = , 22
{hwﬂmmmhwq)iukn%m (22¢)
h|k?|cot(h |k?|) if (k7)?>0
l"=[ , 22d
h|kP|coth(h |kP|) if (k?)*<0 (22d)
Jho=b/h+ o, [H:=¢(x))], (23a)
Jiis1=b/h+&, g7, 185,15 (23b)
I+ 1
IO =¢/h+ Y .7 (85) g
k=1
forl=2p—22p—1, (23c)
where
bb:=h{p I:+I-+l’¢€cf> =h{p 1,_l+1’¢fef>
= (s —IP)/(kP)°¢".; , (23d)
ep: = h (¢(1),1+1’¢?cf = (¢‘r’ef)T[2(lp—sp)
+ (hkP)2)/| kP ¢ - (23e)

Use has been made in the derivation of the explicit form of
the functions ¢ /5, | (x):

@ 141 (x) =sin[|kP|(x — x;)]/sin(h |k?|), (24a)
@1 (x) = —sin[|k?|(x —x;, ;) ]/sin(h|k?|)
if (k*)2>0 (24b)

[the hyperbolic sines appear when (k” y2 < 0], and of the
function @9, (x):

¢7(1),I+1(x) =J

Xt

x|

G(I),l+1(xyy)dy'¢fef ’ (24C)

where

Gliy1= (W[¢l,7+1»¢’/7+1])_l¢’1,7+1(x< )P (%),

x_ (x, ): =min(max) (x,y) .

The expressions (22a)~-(22d) for the half-sector L propaga-
tor were obtained for the first time by Manolopoulos'® as the
result of his idea to implement the constant reference poten-
tials (the B%, matrices in the present notation) into the
original log-derivative method. A straightforward extension
of this idea is the use of the constant reference matrices ¢4
which has led to the expressions (23a)-(23e) for the half-
sector J integrals. Obviously, setting to zero all the reference
matrices one gets the purely approximate-solution-type ex-
pressions which have been derived previously for all the
quantities considered®® except for the J integral.
Having derived the formulas for the half-sector J inte-
grals one can insert them into the recurrence relations
(12a)—(12c) and obtain the corresponding formulas for the
sector integrals. Obviously, to get the values of the J integrals
over the desired integration range one has to “add” the inte-
grals evaluated in subsequent sectors of this range, also using
the relations (12a)—-(12d). An alternate and more efficient
way is to perform the “addition” by half-sectors. This way
has been assumed in all the log-derivative algorithms con-
structed so far and is assumed also in the algorithms to be
given below. According as the reference matrices can be in-
troduced only into the homogeneous equations or also into
the inhomogeneity terms, the following two hybrid approxi-
mate-solution approximate-potential versions of the log-de-
rivative method for calculating the J integrals are construct-
ed on the basis of the formulas (22a)-(22d) and (23a)-
(23e):
(1) (fully) hybrid version corresponding to the choice:
B’ 5£0 and ¢, #0 in all sectors, i.e.,, forp =1, 2,
vy M

(2) “half-hybrid” version in which B%;#0 but
#e=0forp=12,.., M.

To write the algorithms for both cases in possibly con-
cise forms, let us introduce the following working quantities:

zp=hL§Y + 17— hS?, (25a)
ty=h(Jg, + &,9/¢7) + b, (25b)
Jr=h [Jg,l + 517’1(¢7)T911,¢1] +é°

forl=2p—1, (25¢)

and

z:=h(L$Y —,B), (25d)
t:=h(Jg +a,4), (25¢)
jr=hJ3, forl=2p, p=12,.M. (25f)

In the fully hybrid case the matrices ¢7[ = #”(x,) ] vanish at
points x,, _; [cf. Egs. (14) and (14a)]. The algorithm in
this case reads:

(i) For the log-derivative matrix L (*). =~ L §%,,:

2,=C (aconstant diagonal matrix, C> 1),
z,=21"—8+ g0 — 527 |5

wherez,_, =%,_, +a°
Z,=a” —2h*/3B, — s’z s* forl=2p
Ly = Gope +h?/3Byy) /.

(ii) For the integral J ;.. =J gopr

} forl=2p—1,
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to=h%/34,,
=2bP 45z, 1,
wheret, , =1#,_, +¢*
t,=c’+2h%/3¢, + 2\t
Joam = (tg — h*/3¢50) /hr .
(iii) For the integral JS .. =J3,,,:
Jo=0,

] forl=2p—1,

forl/=2p,

Gimjiy —tT izt +{2e" forl=2p—1
1 1—1 I—141-1%—-1 0 for1=2p

SO =jom/h p=12,..M.
The quantities used above and not defined so far are

b

= [0.125 + h2/48(B, —
a’ —I"+h2/3B,ef,
F=b"—h2/3 .

rcf)]_l (=8qf),

In the half-hybrid case the matrices 4 and ¢’ are zero and
& = ¢, in the formulas (23a)—-(23¢) and (25a)-(25c).
Since 7, =0 and ¢ =1 for even ! [cf. Egs. (19b) and
(19c¢)] it suffices to use only one set of auxiliary quantities
related to the J g, integrals for both even and odd values of /:

t:=h(Jo, +a,979,) , (26a)
Je=h[J8,+ &y, ()¢ ]
for/l=2p—12pandp=1,.,M. (26b)

Obviously, the part of the hybrid algorithm concerning eval-
uation of the log-derivative matrix does not change; the re-
maining parts reduce in the half-hybrid case to the following
forms:

(i)’

to=h?*/3¢,,

2

e o[ o

Joom = (tapg — B/ 30300)/h .
(iii)’

Jo=0,

Jr=dioy =tz

4 [h ‘/3641g,4, forl=2p—1
0 forl=2p ’

Jg,ZM =jm/h, p=12,..M.

To switch from the half-hybrid case to the purely approxi-
mate-solution case one hastoset: s* =1, P =I,a* = I,and
87—8, = (0.125 + h%/48B,) " in the formulas (i), (ii)’,
and (iii)’. In that way one obtains: the original log-deriva-
tive algorithm of Johnson, the extension of this algorithm to
the J ~ integral derived in Ref. 6 (rederived and tested re-
cently in Ref. 11), and the most direct extension of the log-
derivative algorithm to the J° integral which is new.

IV. NUMERICAL TESTS ON A NONADIABATIC MODEL
OF THE H; MOLECULE

In the assumed model, the nuclear motion of H, in the
B'=},B''S}, and D 'I1, electronic states is described by
the following 3 X 3 matrix Hamiltonian:

HOO
= (o

with the matrices A and V having the structures

VOD) —1/(2p) Idi+A) FV QT

_(a 0 r_

A_(O 0), a‘'= —a, (27a)
00 D

V=(V Vo )
(V()D)T VD

(V9),; =6,V (V°?),=V,, fori=BB'. (27b)

Consistently, the structures of the Hamiltonians H® and
H? are

(H®),, =6, ,H — 1/(2,u)[2a,~,j —dd; + (a%),; + éi,j]

fori,j=B,B’, (27¢)

2
H= —1/(2u) %+ Vi fori=BB'D. (27d)
x

The respective adiabatic potentials and nonadiabatic cou-
plings are assumed in the form of the following functions of
the internuclear coordinate with parameters as listed in Ta-
ble I:
Viix) =D{1 —exp[B,(x — x™") ]} + pmin
fori= B,B'.D, (27e)

Vip(x) =a; exp( —a;x)/(2ux*) fori=B,B’,
276)

[a(x)]55- —g(x —x)%] . (27g)
Evidently, the model involves some approximations rather

= cx?(x — d)exp]

TABLE L. Parameters* of the model of the H, molecule.

Adiabatic potentials
State Jymin D xmin B
X —1.174 476 0.174 475 1.400 1.027
B —0.756 68 0.131 68 2.425 0.354
B' — 0.665 7575 0.040 7575 2.080 0.913
B"® —0.67 0.045 2.1 0.9
D — 0.655 314 0.099 760 1.984 0.687
D° —0.65 0.1 2.0 0.7
Nonadiabatic Transition
couplings moments
States a a States v
D-B’ 8.0 0.8 X-B 0.4
D-B 1.0 0.8 X-B' 03
X-D 0.2
B-B' ¢ = 0.0005 d=45
g=0.1 x=9.0 u=918.0764
900.0°

* All parameters are given in a.u.
®Parameters used in the tests of Sec. IV B.
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880 Felicja Mrugala: Generalized log-derivative method

crude from a physical point of view, like omission of the
centrifugal term or suppression of the total angular momen-
tum dependent factor from the coupling (rotational in ori-
gin) of the D state with the B and B’ states, denoted collec-
tively by the “0” superscript. Moreover, the Morse
oscillators used for the adiabatic potentials reproduce only
crudely the true ab initio potentials, especially in the case of
the B state. These approximations, however, are not essen-
tial for modeling the computational requirements connected
with determination of continuum or bound rovibrational
states of H, in the realistic nonadiabatic approach.

A. Predissociation of the D state by photon impact

The states of relevance in description of predissociation
of the D state of H, by photon impact are:

(i) the (energy normalized) scattering states, F® and
F%', of the Hamiltonian H in the range of energy E between
the D state and the B, B’ states dissociation limits, i.e., for
Eg(=Eg)<E<Eyg, where E? =D, + V7P, with
asymptotic behavior of outgoing waves (s waves in the pres-
ent model);

(E—H)F=0, F:=(F2F®%), (28)
F(x,=0) =0, (28a)

F(x) = i/2Qu/m)"*[0 ~(x) — 0 " (x)S] forx>x, ,
(28b)

where
[0 £(x)],; =6, exp( £ ik;x)/(|k;|)'?, (28¢)
;= [2u(E—E{)]"* fori=B,B'.D

(kp =ilkp]) . (28d)

(ii) The bound states y. with i = D,X, of the Hamilto-
nian H? and of the Hamiltonian H* defined analogously
[i.e., by Egs. (27d) and (27e)] for the ground X 'S/ state
of H,:

Hiy,=¢€y, fori=DJX. (29)
The cross section for transition of H, from the bound state
Y~ _, into the continuum F? and F?’ states by weak photon-

matter interaction simulated in the present model by the
following matrix operator M:

M ox Mp x

M= (Mp,x)’ M = (MB',X) , (30)
where

M,y =exp(—v,x) fori=BB'.D

(y; are also given in Table I) (30a)

is proportional to the quantity

o(E): = (E — €5 _,)mm", (31)
where

m: = (MyJ _,.F) . (31a)

(The dagger denotes hereafter Hermitian conjugate). The
D-state predissociation manifests itself in a peaked structure
of this quantity as a function of energy. The peaks [called the
D(v) «X(v' = 0) resonances below] occur in vicinity of the

adiabatic levels € with v>3 and reveal the asymmetric Fano
profiles'’;

og(e) =0, +0,(g+e)*/(1+¢€), (32)
where
ee=2(E—E)/T. (32a)

Numerical determination of the parameters of these profiles:
E..T,q,0,,0,,is atask on which the new algorithms will
be tested here. Both approaches to determination of the reso-
nance profile parameters employed in Ref. 12: the perturba-
tive configuration mixing (CM) approach of Fano'” and the
more rigorous lifetime (LT) matrix'® approach, will be ex-
ploited in the tests.

In the CM approach, the profile parameters of a
D(v) ~X(v' = 0) resonance are determined according to
the formulas

Ei =€+ Egis, Egin = /ﬁ,o ’ (33a)
r=27%,, (33b)
q9= (/g,x +'ID,X)//£),X ’ (33c)
0. = /T 5V fhp 0=Ep —€5_y, (33d)
O, =00—0, Oo=a/TF %xx, (33e)
which involve the following integrals:
M pxi= <X€’MD,XX§=O> s (34)
/:=<¢’g+¢>=(§X,X /X,D)’ (35)
DX /D,D
R:=Re(,f,;), Fli=—Im(f,,) forij=XD,
with
@: = (@%@ P): = (M*YE_,, V2D, (35a)

and with & * being the outgoing-wave Green'’s function of
the operator 2,9 : = 2u(E —H"),atE=E,_;

VWD I (xp) =15(x—y), (36)

G (xey) =0, H(xy) =0 (x)g"(y) for x>x_.
(36a)
Two analytical steps are necessary in order to make the al-
gorithms of the previous section applicable to these formu-
las. Firstly, the integral # is related to the integrals involv-
ing %° counterpart of the function ¥+, i.e., the Green’s
function which satisfies Eq. (36) and the boundary condi-
tions:
G¥xey) = G%x_») =0. (36b)

The respective relation reads [cf. Egs. (11) and (11a)]
= )V Lo— L VT + (0 F%),

(37)
where
Fan i =L @)= ((F L N5 )P)
fora= -0, (37a)
L xt = Fage (X )s (37b)
(@%%)=207" ., (37c)

and /75 . are solutions of the equations
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D L, =0g0p for a= —0, (38)

satisfying the boundary conditions (2a) in the interval
[x',x"] = [x,X,, ]. Secondly, the boundary value problems
for the functions /;”xm are converted to the form of Egs. (1)
and (2);

7T@7=1£—+B(x), (39)
dx?
where
B(x) =7 T(x)V®(x).7 (x), (39a)
$(x) =T T (x)p(x), (40)
by means of the orthogonal transformation .7 (x):
(Ii+ a)y*(x) =0, T (x,) =1, (41)
dx
giving the relations
L or, =T (XL TT(x,), (42a)
F rax, =T (XMW x s (42b)
e = G - (42¢)

The parameter oy, being the open-channel counterpart of the
cross section o, can be evaluated also in another way using
formulas analogous to the formulas (31) and (31a):

Og = (Eres - ei,c' =0 )m()(mO)T,
where
m’: = (M X _..f) (43a)

=i2Qu/m)'"*(F 2. ) [0 (x,) —O0*(x,)s].
(43b)

(43)

f is the solution of the problem (28)-(28d) after replacing
the operator H with its H® part and s is the corresponding
scattering S matrix:

s = [o+(x°° ) = L e O (x)] !
X[07(x,) = ZLyn 07 (x,)]. (44)

In the LT approach, the solutions of the full problem
(28)—(28d) are generated numerically and the resonance

profile parameters are determined by analyzing variation
with energy of the matrix S and of the cross section ¢ [evalu-
ated according to the formulas (31) and (31a)]. The E,,
parameter is determined first, as the position of maximum of
the maximal eigenvalue, Q... , of the lifetime matrix Q in the
vicinity of a given €” level;

d
E): =iS(E)— S'(E). (45)
Q(E): =iS(E) 5 (E)
Simultaneously, the I" parameter is obtained:
I'=4/Q,..(E.)- (46)

Then, the cross section o,.,: = 6(E,,) and its derivative
Ot = do,/dE at the resonance center are calculated, and
the minimum value of o within the resonance profile, o, is

found, giving the three remaining parameters:

O, = q=4(0res ~ Omin )/(Fa;es)’

and o, =0, I'/(49). (47)

Obviously, the log-derivative algorithms can be applied to
evaluation of the necessary matrices S and of the cross sec-
tion o in the analogous way as to evaluation of the matrices s
[cf. Eq. (44)] and of the cross section o, [cf. Eq. (43b)],
respectively. It should be stressed, however, that achieving
sufficiently high accuracy in the case of the former quantities
is much harder than in the case of the latter quantities vary-
ing smoothly with energy in the resonance regions.
Accuracy of the new algorithms in the predissociation
calculations will be demonstrated on two D(v) — X(v' = 0)
resonances, for v =3 and v = 6, which represent cases of
small and large relative kinetic energies of the receding
atoms, respectively. The positions of these resonances above
the E 7 ( = E 7. ) threshold and the parameters of their pro-
files in the cross section o are given in Table II. In figs. 1(a)
and 1(b) are compared: the rms errors of the matrices S:

Nope“ 172
rms error(S): = ( Y IS, — S 2) /N2

=1

(Nopen =2) (48)
and the relative errors of cross section o [cf. Egs. (31) and

pen

TABLE I Profile parameters® of two D(v) — X(v' = 0) resonances® obtained in the LT and in the CM ap-

proaches®
v=3 v==6
LT CM LT CM
Egin 0.5064 ( — 5)¢ 0.5039 ( —5) 02621 (—-95) 02601 (—-5)
r 0.2084 (—4) 02033 (—4) 02566 ( —4) 02547 (—4)
q 021379 (+2) 0.21506 ( + 2) 016277 (+2) 0.16709 ( +2)
g, 0.3841(+1) 03791 (+1) 0.1553(+ 1) 0.1471(+ 1)
a, 0.081 0.081 0.389 ( —2) 0.398 ( —2)
[ 0.3872(+1) 0.1475(+ 1)
E. —0.623006515 —0.623 006 54 — 0.600 334 97 —0.600 334 99

Ores 0.175551 (+4) 0.175345 ( + 4)

0.41150 ( + 3)

0.41069 (+3)

* All parameters except for the dimensionless parameter g are given in appropriate atomic units.
bel_, = —0.623011579au, €?_, = —0.600 337 591 au; Ey = —0.625a.u.

¢ The values listed here were obtained by the “half-hybrid” algorithm using the step & = 0.005 a.u. in the range

[x0. x.. ] = [0.001, 50.0] a.u.
YThe numbers in parentheses denote powers of 10.
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FIG. 1. (a) Errors of results generated (in the LT approach) by the haif-
hybrid (-) and by the nonhybrid (- - -) log-derivative algorithms at energy
equal to E,,, value of D(v = 3) — X(v' = 0) resonance (see Table II); (X)
rms error (S); ( + ) rel. error (0); (A) rel. error (I"). (b) Same as in (a)
but for E, energy of D(v = 6) «X(v' = 0) resonance.

(31a)] and of the profile width T" [cf. Eq. (46)]; rel. error
x: = |1 — x/x"!| for x = o, ', which were encountered in
the LT calculations at E,. energies of the two resonances by
the nonhybrid and the by the half-hybrid algorithms with
three different step sizes, 4. The results of the half-hybrid
algorithm with the step size # = 0.005 a.u., listed in Table I,
were used as reference values in error evaluations. It is dem-
onstrated that the rms errors of the matrices S generated by
both versions of the log-derivative algorithm were strictly
proportional to £* (cf. Ref. 10); the same feature was re-
vealed by the errors of . The errors of both quantities were
smaller, ten times in the v = 6 case and approximately four
times in the v = 3 case, when the hybrid algorithms were
used. (No significant differences in errors were encountered
between the results obtained by the half-hybrid and the fully
hybrid versions in the cases shown in Fig. 1.) Accuracy of
the matrices S is certainly the basic factor influencing accu-
racy of the resonance widths I" and also of the resonance
positions E, ., determined with the LT approach. The actual
errors of these quantities, for the I" quantity shown in Fig. 1,
account additionally for inaccuracies of numerical differen-
tiation involved in the evaluation of the lifetime matrix Q
[cf. Eq. (45)1;

Q(E)=i/(4dE)(S, +S_)(S, —S_)™, (49)
where
S,:=S(E+dE).

(The value dE = 10~° a.u. was used in all cases in Fig. 1.)
Except for the calculations with the small step size # = 0.01
a.u. the results for the I' parameter yielded by the hybrid
algorithms were definitely more accurate than the nonhy-
brid results.

Further test of the new algorithms provide the calcula-
tions of the resonance profile parameters in the CM ap-
proach, reported in Table II1. Both the J ~- and the J *-type
integrals, involving the strongly localized y¥_, and the less
localized y?_ ; ¢-bound state functions, had to be generated
in these calculations. giving an opportunity to expose some
differences in performance between the hybrid and the half-
hybrid versions. As shown in Table III, the hybrid algor-
ithms, both the half-hybrid and the fully hybrid versions,
give more accurate results than the nonhybrid version for
the profile parameters of the D(v=6) «X(v' =0) reso-
nance. The superiority of the hybrid algorithms is more or
less striking depending on the quantity generated. Though
accuracy of the results by the fully hybrid algorithm relative
to accuracy of the half-hybrid results changes also from
quantity to quantity in the present problem it can be expect-
ed that the hybrid version will excell in cases with less rapid-
ly varying bound state functions @ [cf. Eq. (35) ]. Inthe CM
calculations concerning the low lying D(v = 3) < X(v' = 0)
resonance the superiority of the hybrid versions over the
nonhybrid version is not as evident as it was in the corre-
sponding LT calculations. The factor which matters here is
the lack of a (highly) close channel component in the func-
tion f. Accurate treatment of such a component in the func-
tion F [cf. Egs. (28)-(28d)] was decisive for the reduction
of error in the LT calculations by the hybrid methods shown
in Fig. 1(a). Yet another point to note in Table III is the
almost perfect O(h *) behavior of the errors of all the quanti-
ties generated, irrespective of the version of the algorithm
used.

TABLE I1I. Errors of CM profile parameters calculated by the nonhybrid
(nH), half-hybrid (hH), and by the hybrid (H) log-derivative algorithms
error x: = |1 — x/x™F|/h*.2

D(v=3)~X(=0) Dv=6)~X(v'=0)

x h nH hH H nH hH H

Egin 0.04 87.9 45.2 149 7094 171.1 79.3
0.02 86.7 449 144 697.0 1700 77.4

r 0.04 28.8 4.8 18.7 66.3 16.5 344
0.02 28.6 49 18.7 65.3 16.6 345
q 0.04 13.6 10.1 59 46.6 1.1 204
0.02 13.5 10.2 5.9 45.9 1.3 20.3
o, 0.04 4.1 17.2 7.7 16.6 9.9 4.5
0.02 40 17.2 7.7 16.4 9.8 4.2
o 0.04 34 14.8 8.2 16.3 10.6 39

0.02 33 14.8 8.3 16.2 104 3.6

2 x™' —results by the half-hybrid algorithm with the step h = 0.005 a.u.,
listed in Table IL
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B. Nonadiabatic shifts of energy levels below
dissociation limit of the B and B states

In the range of energy E below the dissociation limit of
the B and B’ states, i.e., at E< E 5 ( = E §.), the only effect
of the nonadiabatic interactions between these states and the
D state are the shifts of the adiabatic energy levels lying in
this range:

Ef: _’E(iu) = 6:: + Eél’::t)‘t

fori=B,B',D,v<3ifi=D, (50)
to the positions corresponding to energies of bound states of
H;

(E, —H)F =0, j: = (i), (1)

F(x,) =F(x_)=0. (52)

The energy shifts E 52 for v = 0,1,2 are, of course, quanti-
ties completely analogous to the E, ;, parameter introduced
above for the predissociating D-state levels v>3.

The analogous perturbative formula for these shifts in-
volves only the Green’s function ¥° [cf. Eq. (36) and
(36b)], at energy E = E,,, = €2 + E 3¢, and reads

E g8 = (V. 9°Vo)y =2u(f, . )°

forv=0,1,2. (52)
Like the formulas (33a), (35), and (35a), this formula can
be exploited in calculations in an iterative way. At the first
iteration step, the right-hand side integrals are evaluated us-
ing the Oth order approximation t0 E ., (Egir )@ = 0.

There is also a possibility to apply the new algorithms to
determination of nonperturbative values of the nonadiabatic

bound state energies E;,,. To describe it, let us write the
Hamiltonian H as the sum:

H= Had + ﬂ' Hnad’
with
(H*);:=6,,H' for i=B,B'D, (53a)

and with a parameter A characterizing strength of the non-
adiabatic interactions. Now, let us introduce the &°-type
Green’s function for the operator H, using the 1/(E — H)
notation this time, and consider the following integral:

(53)

Ty (EA):= (@} ,1/(E—H* - AH™Yp)), (54)
where
(¢y);:=8,x, for ij=BB'D. (54a)

(As before, y, denotes an eigenfunction of H'). T, is, of
course, a J °-type integral in the notation of Sec. I1. One can
easily establish that energy dependence of this integral in
vicinity of an €, level describes the formula

T(iu) (EA) = Ciivy (A)/(E— E(iu) ) + LTS (EA), (5%)

where ¢, is a quantity of the order of 1 and r;,, is a small
contribution changing smoothly with energy, in cases of
E ., being well separated from other eigenvalues of H at
least. Thus, E,,, can be easily determined as position of the
pole of T, (E,A) near the adiabatic level €,. As a better
estimatjon of the pole position, the value of E;,, determined
initially by the perturbative formula (52) can be exploited.
In the numerical tests performed as an illustration to the

present subsection the B state was not accounted for. Thus,
the respective parts of the Hamiltonian actually used are

H® 0 0 Ve
H“":( ) ﬂH““":( . (56
0 HP Vep O (56)

[The role of the strength parameter A plays the parameter
ag., cf. Eq. (27f).]

In Table IV, a comparison is made of the perturbative
and of the nonperturbative E (3¢ values of the v = 0,1,2 lev-
els calculated in several cases with different strength of the
nonadiabatic interaction V., . The consistency of the results
of both kinds testifies to the adequacy of the above nonper-
turbative procedure, in application to the present problem at
least.

An illustration of performance of the three versions of
the log-derivative algorithm in evaluation of the integrals
T, (E,A) and in determination of the bound state energies
with the aid of these integrals is given in Figs. 2(a) and 2(b)
and in Table V. A comparison is also made of these algor-
ithms with the Numerov algorithm (strictly speaking, with
the invariant imbedding Numerov-related algorithm pre-
sented in Appendix A ). Accuracy of numerical results yield-
ed by the algorithms considered is tested most rigorously on
theintegrals T ,,, (E,A = 0) (since their poles are given ana-
lytically in the present model);

T (BEA=0)=1/(E—€). (57)

In Fig. 2 are shown the relative errors of the numerical val-
ues of these integrals obtained by the four algorithms in the
D-state (i = D) cases, v = 3 and v = §, at energies around
the respective poles, €2_ ; and €”_ ;. Again, the hybrid ver-
sions of the log-derivative algorithm appear to be more accu-
rate than the nonhybrid version, especially in the case with
the highly lying pole €”_ ;. The errors of the calculations by

TABLE 1V. Nonadiabatic shifts* E,,,, — €2 for v =0, 1, 2, obtained with
Hamiltonian of Egs. (53) and (56) for several values of coupling parameter
A (: = ag- ). Comparison of perturbative and nonperturbative results.”

A v Perturbative® Nonperturbative
8.0 0 0.0170 0.0169 (2) 0.0169
1 0.0177 0.0176 2) 0.0176
2 0.0760  0.0749 2) 0.0749
10.0 0 0.0265 0.0264 (2) 0.026 35
1 0.0276 0.0274 2) 0.027 35
2 0.1188  0.1161 (2) 0.116 0
12.0 0 0.0382  0.0380 (2) 0.037 8
1 0.0398  0.03%4 (2) 0.0392
2 0.1711  0.1656 (3) 0.1653
30.0 0 0.2389  0.2301 3) 0.2229
1 0.2487  0.2335 3) 0.2263
2 1.0693  0.8977 7N 0.8919

*The shifts are given in 10~ % a.u.

® All tesults were generated by the half-hybrid algorithm using the step
h = 0.01 a.u. The integration range [x,,x_ ] was {0.001,6.0] a.u. in the
v=0, 1 cases and x = 20.0 a.u. in the v = 2 cases.

¢ Results by formula (52). In first column are listed resuits obtained at first
step, i.e, at respective adiabatic energies €2 — 0.644 850 56,
—0.634 960 07, — 0.625 613 93 a.u., forv = 0, 1, 2; in second column are
the results iterated over energy; the number of iterations is given in paren-
theses.
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FIG.2. (a) Errorsof T, _ 3, (E,A = 0) integrals generated by the nonhy-
brid ( X ), half-hybrid (A), and hybrid (@) log-derivative, and by the Nu-
merov { + ) algorithms at energies around the pole €’_;. error
(D): = |1 — T/T*"|. T™** values are obtained by the formula (57). The
errors are proportional to the fourth power of the step size (see Table V).
(b) Same as in (a) but for T, 5, (E,4 = 0) integrals.

the Numerov algorithm reveal, as expected, similar energy
dependence as the errors yielded by the nonhybrid log-deriv-
ative algorithm. The latter errors were always found to be
larger by a factor of ~2.67.

One can infer from the above comparison that the poles
of the integrals T, (EA = 0), i.e., the respective bound
state energies €, should be determined most accurately by
the hybrid log-derivative algorithms. This is confirmed in
Table V where the errors of several €2 energies calculated by
the hybrid log-derivative algorithms (the fully hybrid and
the half-hybrid versions give exactly the same results here)
are shown to be smaller than the errors of the nonhybrid log-
derivative and of the Numerov results by factors ranging
from 26 and 10, respectively, in the case of the high v = 12
level to about 3.6 and 1.3 in the v = 3 case. It follows from
these factors that the errors in the hybrid log-derivative al-
gorithms grow with energy much less rapidly than the errors
in the two purely approximate solution algorithms. Analyz-

TABLE V. Energies €7 determined as poles of T, (E.A = 0). Errors® of
results obtained by the nonhybrid (nH) and half-hybrid (hH) log-deriva-
tive algorithms and by the Numerov (N) algorithm.

€(exact) — €?

€
v (exact) h® nH hH N

3 —0.616 812 379 0.04 101.9 28.1 37.8
0.02 6.2 1.7 2.2

0.01 0.3 0.0 0.1

4 —0.608 555072 0.04 181.3 329 76.2
0.02 11.2 2.0 4.2

0.01 0.7 0.1 0.3

5 — 0.600 842 311 0.04 280.1 36.3 103.8
0.02 17.2 2.2 6.4

0.01 1.1 0.1 0.3

6 —0.593 673 994 0.04 391.3 38.5 144.8
0.02 240 2.3 8.9

0.01 1.4 0.1 0.5

8 — 0.580970 692 0.04 615.5 39.9 227.2
0.02 37.8 2.4 14.1

0.01 23 0.1 0.9

12 —0.562 097 424 0.04 824.7 31.2 303.0
0.02 50.3 1.9 18.7

0.01 3.0 0.0 1.1

*Given in 1072 a.u.
®Step size (in a.u.). The integration range [x,,x_, ] was [0.001,6.0] a.u. in
the cases with v =3 tov =6 and x,, = 10 a.u. in the v = 8, 12 cases.

ing more closely energy dependence of the errors listed in
Table V one can find that in cases with v = 3 to v = 6 the
nonhybrid log-derivative and the Numerov errors are ap-
proximately proportional to third power of respective
(€2 — V'3™™) energies (with 1" = — 0.65 a.u., cf. Table
I); the dependence of the hybrid log-derivative errors on
these energies is close to linear. A theoretical justification of
these findings is given in Appendix B.

To conclude the comparison of the algorithms, an esti-
mation of their relative efficiency should be given. To facili-
tate this task, the list of matrix operations required at each
step (or half-sector) is enclosed in Table VI. Restricting the
count of operations to matrix inversions only one gets the
factor of 4/3 for the ratio of the number of scalar operations
per step required in the Numerov algorithm to the number of
operations per half-sector in the nonhybrid log-derivative

TABLE VI. Summary of matrix operations® per step (or half-sector) in
evaluation of an N, X N, matrix of second-order transition amplitudes (or
JO-type integrals) involving an N-channel Green’s function [Eq. (10)].

Log-derivative

nH hH H Numerov
Inversions of
symmetric N X N matrices 372 372 372 2
Multiplications of
N X Nby N X N, matrices 372 372 1 3
Multiplications of
N X N by diagonal matrices 372 7/2 7/2 1

@ Listed are only the matrix operations which scale like N2 and N ? in scalar
operations.
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algorithm. Obviously, this factor considerably underesti-
mates the real requirements of the Numerov algorithm in
cases involving small matrices (the effort connected with the
other matrix operations listed in Table VI cannot be neglect-
ed in such cases). Still, it is larger than the factor (2.67) 1/4
being the ratio of the total number of half-sectors to the total
number of steps required by the log-derivative and by the
Numerov algorithms, respectively, to achieve the same accu-
racy in evaluation of a T',,, integral. In effect, the nonhybrid
log-derivative algorithm appears to be even slightly more
efficient than the Numerov algorithm. Validity of this con-
clusion does not seem to be restricted to the present problem
only. The same factor of 2.67 relating errors of J ®-type inte-
grals generated by the two algorithms compared here was
found, e.g., on the test problem of Ref. 22 (see Appendix A).
The half-hybrid algorithm requires the same number of
matrix inversions in one half-sector as the nonhybrid version
but two more multiplications of N X N matrices by diagonal
matrices and, additionally, N evaluations of trigonometric
or hyperbolic functions. This does not seem to involve much
more scalar operations than all the matrix operations to be
performed at each step in the Numerov algorithm. Thus,
relative efficiency of these algorithms is adequately mea-
sured by the ratio of numbers of steps required by them to
achieve the same accuracy of results, i.e., by the factor

(error of “LD” result/error of “N” result) /4.

Applying this measure to the errors listed in Table V one
can state that the half-hybrid log-derivative algorithm was
about two times more efficient than the two other, nonhy-
brid log-derivative and Numerov algorithms in determina-
tion of the high energy level €)_ ,, and all three algorithms
were almost equally efficient in determination of the low
energy level €2_,.

V. APPLICATION TO CALCULATION OF
NONADIABATIC SHIFTS OF ROVIBRATIONAL ENERGY
LEVELSINTHEB'X},8 '}, CII,, AND D11,
STATES OF H,

The methods of finding nonadiabatic (corrections to)
energies of bound rovibrational states, tested in the previous
section on the model Hamiltonian, will be applied here to the

885

Hamiltonian describing exactly the nuclear motion of H, on
the manifold of the electronic states: B, B’, C, and D, affected
by homogeneous (X*t-3*, II-II) and heterogeneous
(S*-I1") nonadiabatic interactions. This Hamiltonian
takes the form of the matrix operator,

HEZ HEﬂ
H= (an HHII)’
with the following elements:
H} =6, H — 1/(2,;)[2A,.AJ(R) ngJr B;},.(R)]
X(1—36;), (58a)
where
i d2 2 A
+ V/(R) (58b)
for ij=BB'ifA=3,andij=CDifA=1I,
and

H' = 1/(2u) [ + D]V?Ly; (R) (38¢)

fori=B,B’',j= C,D (Il" symmetry only).

Obviously, H' fori = B,B',C,D, are the corresponding Ham-
iltonians in the adiabatic approximation with ¥* denoting
the Born-Oppenheimer potentials and with — 1(2x)B})
standing for the adiabatic corrections to them. A7}, B, and
L;; are matrix elements between the respective BO elec-
tronic functions of the nonadiabatic coupling operators.'®
The energy levels of the adiabatic Hamiltonians H' and the
corresponding eigenfunctions will be denoted by €., and y.,,
respectively, and the shifted energy levels, i.e., the eigenval-
ues of H, will be denoted by E " with p( = +, — ) being
the parity index. Since the coupling H*" is inactive between
the £+ and the I1~ states the E ] energies, for i = C,D, are
eigenvalues of the H™" block only.

The nonadiabatic shifts, EA" — €, were calculated
with the new methods for a number of (v,J) levels in the
i = B,B’states and in the i = C,Dstatesof [1* and I1™ sym-
metry using on input the ab initio results of Ref. 19 for the
BO potentials, the adiabatic corrections, and for the nona-

TABLE VII. Nonadiabatic shifts (in cm™') of selected rovibrational energy levels in the B, B, C, and D states
of H,. Comparison with results of Ref. 13 obtained by the renormalized Numerov method.

E}_o— €m0 Ey —€y

i v Ref. 13 i J v Ref. 13

B 0 —0.14 —0.13 C 1 0 —0.03 —0.03
10 —1.26 — 1.26 2 —0.13 —0.13

20 —1.38 — 1.37 6 —-0.19 —0.19

28 —1.16 — 115 7 —0.195 - 0.19

B’ 0 0.29 0.29 9 —0.185 —0.18
2 0.91 0.91 4 6 —0.19 —-0.19

4 0.98 0.99 D 1 0 0.04 0.04

5 0.65 0.66 1 0.09 0.10

6 0.075 0.08 2 0.13 0.13

7 0.10 0.10 5 1 0.09 0.09
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TABLE VIII. Results of calculations of nonadiabatic shifts* EJ'" — € in

the D state of H, for (vJ) levels in energy range below dissociation limit of

the B, B’', and C states.

Pertubative® Nonperturbative

Ref. 13

J v (B,B') + D (B3,B'.D) (BB'CD) (BB',CD)
1 0 3.84 382 (2) 3.81 3.85 3.85
1 1.68 1.67 (2) 1.67 1.77 1.78
2 4.10 405 (2) 4.05 4.18 4.17
2 0 11.11 1096 (2) 10.92 10.95 10.95
1 4.60 4.54 (3) 4.53 4.63 4.66
2 1095 1064 (3) 10.62 10.74 10.75
3 0 2110 2059 (3) 20.48 20.50 20.50
1 784 7.61 (3) 7.55 7.65 7.72
2 1845 17.64 (3) 17.71 17.73 17.75
4 0 3290 31.75 (3) 31.51 31.54 31.54
1 9.65 9.10 (4) 8.83 897 9.08
2 2400 2243 (4) 22.44 22.58 22.63
5 0 4520 4348 (3) 43.09 43.13 43.13
1 6.50 5.78 (4) 4.70 491 5.10
2 21.85 19.26 (4) 19.15 19.34 19.47

®The shifts are given in cm ™.

®Results by formulas (60)—(60b); for each vJ level are listed: the second-
order perturbation result (obtained for k = 1) and the result converged
with respect to iterations over energy; the number of iterations is given in
parentheses.

“The states included in calculations.

(o), =HyD, j=BB', (60a)
E® =E%*=D 4 (Eyn)®, (60b)

were evaluated using the step size 4 = 0.005 a.u.; the maxi-
mal integration range was [0.001, 20.0] a.u. The results ob-
tained for the energy shifts are compared in Tables VII and
VIII with the results of the recent calculations by Senn, Qua-
drelli, and Dressler'® in which the same Hamiltonian was
dealt with, except perhaps for small differences in the shape
of the ¥*(R) and of the A}, (R) functions (as they might
follow from the use of the different procedure for interpola-
tion of the ab initio data), and the eigenvalues were deter-
mined by the well-established renormalized Numerov tech-
nique.? The comparison shows quite good agreement of the
results for the shifts caused by the homogeneous interactions
only; Ef} —¢€., for i=CD, and EZ_, —¢€,_, for
i=B,B’'. The discrepancies do not exceed the value of

—0.01 cm™". Larger discrepancies are seen between the
present nonperturbative four-state results and the results of
Ref. 13 for the E 2" — €2, shifts (Table VIII), especially in
the/J=5v=1andv=2cases (—0.19and — 0.13cm™,
respectively ). These discrepancies are believed to be caused
by some differences in the couplings used rather than by any
deficiencies of our procedure of localization of the eigenval-

E(0)=€I?, ,

2

ues of H.

The perturbative treatment applied here to the D-state
levels below the dissociation limit of the B, B’, and Cstates—
£ Ea. (54 analogous to the treatment applied previously'? to levels
[cf. Eq. (54)] above this threshold—is shown in Table VIII to give quite
Tony (BE) =@, ,JE—H)gp,;) with (@i,), =81 accurate results in all cases [the errors relative to the non-

(59) perturbative (B,B’,C) results are of order of 1% ] except for

and E (227 integrals [cf. Eq. (52) ], in the perturbative treat-  thev =1J=5andJ = 4 cases (the errors are 20% and 3%,
ment of the D state levels; respectively). It is shown also that the iteration over energy,
as indicated in the formulas (60)—(60b) improves consider-

(ER O =Ap B l/(E“"D —H®)p ), (60) ably the second-order perturbation theory results obtained
where at the first step.

diabatic couplings. Cubic splines were employed to interpo-
late between the ab initio points. The respective 7 integrals

TABLE IX. Resonances in Woods~Saxon potential.> Absolute errors® E,; — E,,. of the results by the log-
derivative and by the Numerov algorithms.

Log-derivative Numerov*
E. ¢ h nonhybrid hybrid So Sy S, S,

53.588 872 1/16 206 —230727 5350 — 1205 58
/32 37 860 12 — 14110 342 —-175 3
1/64 2342 0 — 879 21 —45 0
341.495 874 1/16 2032 566 566 — 35267 28
1/32 65 — 7536068 34380 —1979 14
1/64 1185614 4 —436825 2147 - 121 1

1/128 72937 —-27127 135 -7
989.701 916 i/16 3580 — 394 003 — 5147
1/32 253 717405 — 16064 17
1/64 11 43730 - 927 3

17128 4417705 — 1637376 2739 —-53

“Test problem of Ref 20: [d%/dx*+E—V(x)1¥(x) =0, V(x)=uy/(1+8) +ut/(1+1),
t=exp[(x — x3)/a,], uy= — 50;a,=0.6; x, = 7; u, = — uy/ay; [x',x"] = [0,15].

®Given in 10~* units.

¢ Results of Refs. 20 and 21. S, with k = 1, 2, 3 are the versions of the Numerov algorithm discussed in these
papers. S, corresponds to the original scheme.
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APPENDIX A: AN INVARIANT IMBEDDING NUMEROV-
RELATED ALGORITHM FOR EVALUATION OF THE J; -
INTEGRALS [CF. EQ. (3)]

In order to derive such an algorithm, the text-book for-
mulations of the invariant imbedding theory, e.g., that of
Ref. 5, can be directly exploited.

The derivation starts with considering the following
boundary value problems for three-point difference equa-
tions resulting from applying the Numerov or a Numerov-
like (cf. Ref. 20) discretization scheme to the differential
equations for the functions < ,. (x), witha = —,0,1i.e,to
Egs. (2) and (2a):

Uve(k,M) — Q. U*(k,M) + U%(k — 1LLM)

=6a,()(Gk+l + b,/bsG; + Gi_ 1), (A1)
U-(0M)=0, UT(MM)=1,

UM =U(MM) =0, (A2)
where

Ue(k,M): = [I + boB(x) [#2 e (x0)

X [I— 8, - beB(xy)]7", (A3)

Oui= —[a; + b Bx ) [1+bB(x)] ', (A4)

G,:=byp(x,), (AS)

X =Xo+ kb, Xg:=x', Xp:=x". (A6)

In the original Numerov scheme, employed here, the coeffi-
cients a,, b,, and b, assume the values

a=—2, by=h%*12, b, =5/6h%. (A7)
Next, the sequence of analogous problems for U *(k,/) with

0<I<M is introduced and the superposition relations con-
necting solutions of these problems:

Us(k,D
=U"(kl-1DHU*(- 1) +68,,U%kI—-1)
fora= —,0 (A8)

are exploited to establish the corresponding recurrence rela-
tions for the following quantities:

Ry:=U—(Il+1),
Sp= U°LI+ 1),

!

It:= 3 o {[T4boB(x) 7' U (kDY $(x,)

k=0

(A9)
(A10)

fora= —,0, (All)

wherew, = 4 fork #0,Mand w, = wy, = h /2 . Theserela-
tions are the basic constituents of the algorithm for the re-
quired integrals:

Ry=0, Iy =0, I3=0, S_,=0, (A12)
Sl—l =R1—1 [Sl_z —‘bo(¢1 +b1/bo¢l—1 +¢1—2)]
[¢r:=¢(x)], (A13)

=,_)DT_,+1%_,, (A14)
g =[c+cbB}] [B:=B(x)], (A15)
I =R,_\I_,+Wgqé, (A16)
R,=(q;—R,_,—10)"" for1=123.,M,(A17)
Jonr = (cqa) " 5 (A18)
Jow =15, (A19)
where
c:=by/(b,—aby), W;=cw,. (A20)

This algorithm bears strong similarity to the algorithm pre-
sented in Ref. 22. (Indeed, applied to the test problem of that
paper, it gave results of the same accuracy, although only
one-way integrations were carried out.) However, definitely
less matrix operations are required. Therefore testing the
new log-derivative algorithms vs the above Numerov-relat-
ed algorithm was believed to give a more stringent proof of
their quality.

It would be highly interesting to learn how the log-de-
rivative algorithms would compare with algorithms based
on the Numerov-like schemes adapted to Schrédinger equa-
tion, as described in Ref. 20. Some information concerning
this question is provided in Table IX where both the hybrid
and the original log-derivative algorithms, the original Nu-
merov, and the three Numerov-like schemes of Ref. 20 are
compared with respect to accuracy yielded in one channel
calculations of several resonances in the Woods—Saxon po-
tential. It is demonstrated that of all the Numerov-related
algorithms only the S; scheme, maximally adapted to the
Schrédinger equation, compares favorably with the hybrid
log-derivative algorithm. Obviously, more accuracy tests,
also tests on many channel problems, and an estimation of
the number of operations needed at a single step (including
the operations connected with evaluation of the b, b,, and a,
coefficients of Ref. 20) are necessary in order to state
whether the algorithm (A12)-(A20) based on the S;-Nu-
merov scheme would be more efficient than the hybrid log-
derivative algorithm in application to problems of physical
interest.

APPENDIX B: ENERGY DEPENDENCE OF
DISCRETIZATION ERRORS INTHE HYBRID AND IN THE
NONHYBRID LOG-DERIVATIVE ALGORITHMS

Expressions will be derived for errors of the half-sector
L matrices arising from the discretization of the sector inte-
gral equations [cf. Egs. (16) and (16a)]:

sz

Vi (0 =@ — |

X2p—2

G Y, (x0)B* (W)Y, (»dy
fora= +,—, (B1)

where

Gl (xp) =W 9 (x Do b(x,) (B2)

by means of the modified Simpson formula:
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F+ h
L Frdy = h T — h) + 4 ) +fG+ )]
y—h

+h/6[fL0) VO] +R.
(B3)

R is the error of this formula

R= —h*/12[fO ) — O] —h*/9% 9,
(B4)

where £ denotes a point from the interval [y — 4,7 + h] and

k
FE®:= lim LA, (BS)
e-0+ dy

The form of the leading term, i.c., of the 2% term, in this
discretization error (cf. Ref. 11 for its derivation) is crucial
for analyzing energy dependence of the corresponding errors
of the half-sector L matrices. Before proceeding to this anal-
ysis, however, let us point out an important difference in the
form of the integral equations (B1) and (B2) to be discre-
tized, using also the 44 term, in order to obtain expressions
appropriate for the hybrid and for the nonhybrid L matrices.
The difference stems, of course, from the use of the reference
potentials B %, in the hybrid case. They encompass the entire
energy dependence of the coupling matrix B because energy
occurs usually as an additive constant in this matrix. Thus,
the “rest” coupling B” occuring in Eq. (B1) is energy inde-
pendent in the hybrid case; the energy constant is entirely
included into the functions ¢ 5, [cf. Eqs. (16) and (16a)]
from which the (diagonal) matrix G, is built.

Introducing an abbreviated notation for the integrand in
the integral equations (B1) at x = x,, ,: = X and suppres-
sing, for the sake of clarity, all the indices;

GENUWMYY):=GEy)t(y):=f),
U:=B—B,, (B6)
one can simply write down the expressions necessary for in-
clusion of the 4  term when applying the quadrature formula
(B3) to these equations:
R —fOF) = GP@)1x) + 3GV (F) 2 (%).
(B7)
G (%) denotes the discontinuity of d*/dy*G(x,y) at
y=Xxie,
GP(X):=GP(ET) — GPEI) . (B8)
Obviously, no discontinuities occur in the zeroth and in the
second derivatives which has been already exploited in the

above expression. The discontinuities in the first and in the
third derivatives are

G(x)=1, G®X)= — B,y [B.:=diagB(X)].

(B9)

Taking into acount the last two equalities and saving from ¢ ¥
only the most strongly energy-dependent part, Uy®:

Up? = — UBYp= — UB.s + )Y, (B10)
one obtains
PR —fPE) = — WEHE)
~ W@ ), (B11)

where
W(Xx): =B, UX) + 3U(X)[B.« + U(X)], (B12)
W.=12(W+WT). (B13)

The second approximation, the symmetrization of the ma-
trix W, not influencing essentially the energy dependence of
the (f)> — f’) term, is introduced for convenience only.
Eventually, the discretization of the integral equations (B1)
by means of the formula (B3) with the 424 term (approxi-
mately) included leads to the algebraic equations:

2p o
Y @Gl (xx,)

k=2p—2

Fo () =90 (x) —

X BP(x)FE (%), (B14)

Ffy )= @) ™95 (x)
for a=+,—andi=2p—2,2p—1,2p,
(B15)

which differ from the equations considered in the derivation
of the log-derivative algorithms [cf. Egs. (19) and (19a)]
only because an extra term appears in the formula defining
the matrix ¢4 as compared with the formula for the matrix

¢, [cf. Eq. (19b)]:
#o= I+ (@) "+ W],

where

(B16)

Wh:=2[B(x,)B"% + B2B(x,)] + 3[B*(x)]?,
(B17)

M = h?*/72 (0) for k odd (even). (B18)

Thus, further steps of the procedure presented in Ref. 8 can
be applied to these equations without any modification giv-
ing the required expressions for the half-sector L matrices,
Ly, for I=2p—2,2p — 1, which again differ from the
expressions for the corresponding matrices L, , ,, i.e., from
Egs. (22a)—-(22d), only in that the matrix ¢7 is replaced by
the matrix ¢§. Having established this fact one can finally
estimate the errors of the matrices L;, _ ,; L s+t — L
which are fully determined by the following differences [cf.
Eq. (22a)]:

St — St =5,(8 —¢2)B: fork=11+1. (B19)
The result is

St — St ~&,.mWEBE . (B20)
It remains to point out that these differences depend linearly
on the reference potentials B, which, when used, carry the
energy constant. When the reference potentials are not used
the energy constant remains in the matrices B”(x, ) (since
B? = B inthis case) and these matrices appear in third pow-
er in the above formula [cf. Eq. (B17)].

Since the half-sector L matrices are the basic quantities
of all the log-derivative algorithms and are accumulated in
the same way in the hybrid and in the nonhybrid versions the
above analysis is considered sufficient to explain the findings
of the tests described in Sec. IV.
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