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Radiative association of HeH 2
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Rigorous state-to-state quantum calculations of the dynamics of the radiative association reaction
He1H2

1→HeH2
11hn are performed. For this purpose the appropriate methodology is described in

detail and computational aspects facilitating the actual calculations of the resonances and the
free-bound phototransition amplitudes are discussed. Under the assumptions that the reaction is a
single-state process proceeding entirely on the ground electronic state potential energy surface of
HeH2

1 and that higher dissociation channels of the ion complex can be neglected, all resonances
contributing to the association are determined and the rate constant as a function of temperature is
calculated for the low-temperature interval 2<T<100 K. Its maximum value is predicted to be
small, 2.1310220 cm3s21 at a temperature of about 20 K. ©2003 American Institute of Physics.
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I. INTRODUCTION

The dynamical processes in low-energy ion–molec
collisions of various combinations of hydrogen atoms a
molecules~both neutral and ionic! with helium ions or atoms
have been studied intensively in the past because
@HeH2#1 ensemble is one of the most simple many-elect
systems which allows for direct comparisons between
periments and high-level theoretical treatments.1 It has also
been argued that a comprehensive knowledge of these
cesses can provide theoretical rationales for various phen
ena observed in astrophysical environments since hydro
and helium are the most abundant interstellar elements.2

A number of experiments were performed to determ
reaction rates for different exothermic inelastic processes
curring in He11H2 collisions under conditions simulatin
astrophysical environments,3–5 and absolute rate constants
ultralow energies for some of these processes were meas
by Schaueret al.6 In He1H2

1 collisions the endothermic
proton abstraction process leading to the formation of He1

is of some interest in primordial gas models because
reverse exothermic process could be an efficient deple
reaction for HeH1. It has been studied experimentally~see,
e.g., Ref. 7! and has received intensive theoretical attent
over the past few years~see Refs. 8, 9, and referenc
therein!.

Due to the experimental difficulties to produce stab
HeH2

1 ions in their ground electronic state, reliable hig
resolution spectroscopic information for the bound rovib
tional energy levels is still missing. Only for some transitio

a!Electronic mail: felicja@phys.uni.torun.pl
10540021-9606/2003/118(23)/10547/14/$20.00
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between highly excited rovibrational levels close to the d
sociation limit microwave spectral observations were
ported by Carrington and co-workers.10–12Attempts to assign
these transitions with the help of some of the best at that t
existing ab initio potential energy surfaces for the groun
electronic state were essentially unsuccessful due to defic
cies in the theoretical description, especially of the long- a
the anisotropic short-distance interactions between He
H2

1 . These failures have triggered a number of recent th
retical attempts to evaluate more reliable interaction pot
tials for the HeH2

1 system13,14and to improve that part of the
ground-state potential which represents the HeH1 formation-
destruction reaction He1H2

1
HeH11H.9 Most recently,
calculations on an accuracy level similar to that in Refs.
and 14 were completed in which the potential energy s
faces of the ground- and first excited states of HeH2

1 were
determined simultaneously.15 Accurate potentials for both
electronic states are needed to investigate the radia
charge transfer reaction

He11H2→He1H2
11hn, ~1!

which could be of considerable interest in primordial g
models because it has a rather large cooling effect.

Making use of the ground electronic state results of th
recentab initio calculations,15 the present study gives a de
tailed state-to-state description of the dynamics of the lo
temperature radiative association reaction

He1H2
1→HeH2

11hn. ~2!

Due to the low binding energy of the HeH2
1 association com-

plex, the rate constant of this reaction can be expected t
rather small. However, the reaction is used here as a co
7 © 2003 American Institute of Physics
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nient first test case on which the present theory for triato
association processes can be applied. For this purpose a
a reference for later studies of the more complicated ra
tive charge transfer reaction~1!, a complete overview of the
methodology is presented here and some computationa
pects in the calculations of resonances~and their contribu-
tions to the rate constants! and in evaluating transition am
plitudes are discussed.

In the present calculations it can be safely assumed
the association reaction~2! is completely determined by th
ground-state potential of the HeH2

1 complex. The ground
state is well separated from the first excited state having
same symmetry, and there are no nonadiabatic couplings
tween them16 over the entire range of geometries relevant
the association reaction at low temperatures. Such a pro
is therefore called a single-state process. A further assu
tion made in this study is that the existence of the hig
dissociation channel leading to HeH11H can be neglected
because it opens at an energy exceeding by far the colli
energies considered here. Finally, it is assumed that the
pling of the electronic and nuclear spin states with the an
lar momentum states can be ignored because the effects
to this coupling are too small to be relevant for the pres
purpose.14

Apart from a number of rigorous quantal studies of t
dynamics and rate constants of atomic radiative associa
reactions,17 theoretical treatments of these processes in p
atomic systems are so far essentially based on the p
space approach18,19or statistical rate theory.20 These theories
are mostly not able to account in detail for quantu
phenomena and their contributions to the process. T
should therefore be supported by truly quantum-mechan
calculations. The present paper presents the first rigorous
tailed quantum state-to-state study of a triatomic ato
diatom radiative association reaction. It is the first one o
series of forthcoming studies of such processes in the we
interacting He1H2

1 and He11H2 systems and in other mor
strongly bound atom–diatom systems which are now
progress.

II. FORMULA FOR THE ASSOCIATION RATE
CONSTANT

In order to derive the expression for the rate constan
the association reaction~2!, we consider here a gas at the
mal equilibrium with temperatureT containingNHe He at-
oms andNH

2
1 H2

1 ions. The number of He1H2
1 pairs in the

gas that occupy a given stateui& of ro-vibro-translational mo-
tion in the center-of-mass reference frame is given
Ni(T)5pi(T)NHeNH

2
15VPi(T) nHenH

2
1, wherepi(T) gives

the occupation probability of the stateui&, V is the volume of
the gas sample,nHe5NHe/V and nH

2
15NH

2
1 /V are the re-

spective number densities. The number densitynHeH
2
1 of

HeH2
1 ions in the gas which are formed in reaction~2! in-

creases then as

d

dt
nHeH

2
15k~T! nHenH

2
1, ~3!
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where k(T) is the radiative association rate constant. As-
sumingRf← i to be the rate of transition of a He1H2

1 pair
from a continuum stateui& to a bound stateuf& due to sponta-
neous emission in the atom–diatom association, this
constant can be expressed as

k~T!5(
f

(
i

Rf← i Pi~T!. ~4!

The rateRf← i is given by the following golden rule-like
expression21 ~accounting for the matter–radiation interactio
in first order of perturbation theory and assuming the elec
dipole approximation for this interaction!

Rf← i5
2p

\ (
qn

\vq

2«0V u^fueq
n
•du i&u2d~Ef2Ei2\vq!, ~5!

whered is the electric dipole moment of the He1H2
1 system,

q, eq
n for n51,2, andvq5cq denote, respectively, the wav

vector, the polarization vectors, and the frequency in o
mode of the emitted radiation,c is the speed of light,V is the
cavity volume, and«0 is the electric permittivity in free
space~1/4p in electrostatic units!. Ei andEf are the energies
of the initial and final molecular states,ui& and uf&, respec-
tively.

The Hamiltonian of nuclear motion of the He1H2
1 sys-

tem in the center-of-mass reference frame can be expre
as H5H01V̄, whereH0 describes the motion of noninter
acting He and H2

1 subunits andV̄ is the interaction potential
The Hamiltonian is most conveniently represented in
space-fixed~SF! reference frame using Jacobi coordinates,r ,
(u r ,f r)ª r̂, R, (uR ,fR)ªR̂, which denote the lengths, th
spherical, and azimuthal angles between the vectorsr andR
joining, respectively, the nuclei in H2

1 and the nuclear cente
of mass of this ion with the He nucleus. In these coordina
H0 consists of two commuting operators,H0(r,R)
5KHe–HH(R)1HHH1(r) , where KHe–HH(R) is the kinetic
energy operator of the relative He–H2

1 motion

KHe–HH~R!5
2\2

2m
DR5

1

2m
p2~R!1

1

2mR2 l2~R̂!,

with p(R) and l denoting the radial and angular momen
operators, andm being the reduced mass of He1H2

1 , and
HHH1(r) is the Hamiltonian of the rovibrational motion o
H2

1 . This Hamiltonian can be expressed again asHHH1(r)
5KH–H(r)1VHH1(r ), whereKH–H(r) involves now the op-
eratorsp(r ), and( r̂ ), and the reduced mass of H2

1 .
Continuum states ofH, or strictly speaking, the station

ary scattering states of outgoing wave type being of inte
here, are defined by referring to states ofH0 with a definite
momentum of the R motion, ^Rr r̂uEk̂v jmj&
5Ar expk"R^r r̂uv jmj&, wherek̂ denotes the direction of the
wave vector k whose length is kv j (E)
5A(2m/\2) (E2«v j ), «v j denotes the energy of theuv jmj&
state ofHHH1 with v and j being the vibrational and rota
tional quantum numbers, respectively, andmj is the quantum
number associated with the operatorj z ~the projection of the
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1

rotational angular momentum of H2
1 on space-fixedz axis!.

The factorAr5Am\kv j /(2p\)3 assures energy normaliza
tion of the states

E dk̂^v8 j 8mj8u^E8k̂8uEk̂&uv jmj&5d~E2E8!dv jmj ;v8 j 8m
j8
.

~6!

The scattering state ofH which evolves from the state
uEk̂v jmj& ~under the action of the Moeller operatorV1, cf.
Refs. 22, 23! is denoted byuE1,k̂v jmj& where the symbols
behind the comma refer to quantum numbers which are
preserved by the interactionV̄.

Thus,u i&ªuE1,k̂v jmj& and the sum over the initial stat
in Eq. ~4! should be understood as( iª*dE*dk̂(v j (mj

. The
final state ket is specified asuf&ªuEBJBMBpB&, accounting
for the fact that bound states ofH are simultaneous eigen
states of the operatorsJ25( j1 l)2, Jz , and of the spatial
inversion operatorI with eigenvalues\2JB(JB11), \MB,
and (21)JB

pB, respectively. The sum over the final stat
therefore involves summation over different bound state
ergy levels and summation over magnetic substates( f

ª(B(MB. Obviously, the indexB is a composite one. Be
sides the good quantum numbersJB andpB, it includes four
approximate quantum numbers which can possibly be
lized to identify energy levels of HeH2

1 .
Now, use can be made of the expansion of the scatte

stateuE1,k̂v jmj& into partial states22,23 uE1JMp,v j l & hav-
ing well-defined quantum numbersJ, M , and p
5(21) j 1 l 1J related to the operatorsJ2, Jz , andI, respec-
tively

uE1,k̂v jmj&5(
JM

(
p561

(
l (p)

uE1JMp,v j l &

3(
ml

i lC~ j lJ ,mjmlM !Ylml

! ~ k̂!. ~7!

Here, l is the angular momentum quantum number of
relative motion, the sum overl (p) runs in steps of 2 from
uJ2 j u1 (12p)/2 to J1 j , the symbolC(...,...) denotes the
Clebsch–Gordan coefficient, andY represents spherical ha
monics. Applying the Wigner–Eckart theorem,24 one can
show that~see, e.g., Refs. 25, 26!

(
mj

(
MB

E dk̂u^EBJBMBpBueq
n
•duE1,k̂v jmj&u2

5
1

3 (
Jp

~2J11!(
l (p)

uTv j l ~EBJBpB;EJp!u2,

whereTv j l (E
BJBpB;EJp) denotes the reduced free↔bound

phototransition amplitude. When this quantity is nonze
i.e., for J5JB, JB61, andp5pB(21)J1JB11, it is defined
as

Tv j l ~EBJBpB;EJp!

ªA2JB11

2J11

^EBJBMBpBudmuE1JMp,v j l &
C~J1JB,MmMB!

, ~8!
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wheredm for m50,61 denote spherical components of th
vectord, d05dz , andd6157(1/&) (dx6 idy).

After performing the operations(mj
(MB*dk̂ in the ex-

pressions for the rate constant Eqs.~4!–~5!, the summation
over the radiation modes is done in the usual manner,21 i.e.,
by replacing:(qn→ V/(p2c3)*vq2dvq. Finally, the appro-
priate population factorPi(T) which has to be inserted into
Eq. ~4! is given by27

PI~E,T!5l3~T!

expS 2
E

kBTDgI

Zint~T!
,

with

Zint~T!5(
v j

gj~2 j 11!expS 2
«v j

kBTD ,

where l5A2p\2/mkBT is the thermal de Broglie wave
length associated with the relative motion,kB is the Boltz-
mann constant,gI is the statistical weight of the nuclear sp
states of H2

1 , gI51/4,3/4 forI 50,1, gj5g0 andgj5g1 for
j even andj odd, respectively.

The resulting rate constant for the formation of t
HeH2

1 ion can then be written as the sum

k~T!5k0~T!1k1~T!,

where the termskI(T) (I 50,1) describe formation ofpara
andortho HeH2

1 ions, respectively, and the formula for the
reads

kI~T!5(B (
Jp

~2J11!E dEPI~E,T!
]RI~B;EJp!

]E
~9!

with

]RI~B;EJp!

]E
ª

4

3c3\4 ~E2EB!3TB↔F
I† TB↔F

I ~EBJBpB;EJp!.

TB↔F
I denotes a column vector containing the reduced p

totransition amplitudesTv j l with j even~odd! for I 50(1).
Obviously, the rate constantkI(T) can be further resolved
according to

kI~T!5(B (
v j

kB←v j
I ~T!, ~10!

into the terms

kB←v j
I ~T!5E dEPI~E,T!

]RI~B;E,v j !

]E
,

where the quantity@]RI(B;E,v j )#/]E dE has the meaning
of the rate of formation of the HeH2

1(I ) ion in a defined state
B when the total energy~in the center of mass! of the ini-
tially unbound and noninteracting He1H2

1 system is be-
tween E and E1dE and part of this energy,«v j , is the
rovibrational energy of the diatomic subunit.

Equivalently, theB←v j transitions can be described b
the cross sectionssB←v j

I (E), defined through the relation27

]RI~B;E,v j !

]E
54pv~E2«v j !r~E2«v j !sB←v j

I ~E!,
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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wherev(e) denotes velocity of the translational motion
energye5E2«v j andr(e) is the energy density of transla
tional states per unit volume; 4pvr5kv j

2 /(ph). In terms of
the reduced phototransition amplitudes~8!, the formula for
sB←v j

I (E)ª(Jp(2J11)sB←v j
I (EJp) reads

sB←v j
I ~EJp!5

p

kv j
2

64p4

3h3c3 ~E2EB!3(
l (p)

uTv j l
I ~B;EJp!u2.

~11!

Using this cross section, we can rewrite the expression
the rate constantkB←v j (T) as

kB←v j
I ~T!5pv j

I ~T!E
0

`

w~e,T!deA2e

m
sB←v j

I ~e1«v j !,

~12!

wherepv j
I (T)5Zint

21gI exp(2 «vj /kBT) is the occupation prob
ability of the internal v j state and w(e,T)de
5 2p/(pkBT)3/2Ae exp(2 e/kBT)de is the probability distri-
bution of the energy of the relative motion in the canoni
ensemble at temperatureT.

The expressions for the cross sectionsB←v j
I (E) and the

rate constantkB←v j
I (T) derived here for atom–diatom sys

tems are the equivalents of the corresponding quantities
in the description of atom-atom radiative association~cf.
Ref. 28!.

III. RESONANCE CONTRIBUTION TO THE
ASSOCIATION RATE CONSTANT

There are many long-living quasibound states~reso-
nances! of the He1H2

1 pairs in the low collision energy
range, and is it known from theoretical considerations,
Refs. 29–31, and from a number of atomic associat
calculations32–35 that these resonances can enhance the a
ciation rates significantly. Some care therefore has to be u
to take their contributions to the association rate cons
k(T) properly into account.

Resonances manifest themselves in the rapidly chan
energy dependence of the rates@]R(B;EJp)#/]E @or the
photoassociation cross sectionssB←v j (EJp)]. Obviously,
this complicates the evaluation of the integral in Eq.~9!.
Very long-living resonances~extremely sharp structures i
the respective energy functions! require a special treatmen
not only for technical reasons, cf. Refs. 30, 32. When
probabilities for the decay of such resonances due to mol
lar interactions become comparable to the probabilities
their decay due to interaction with a radiation field, these t
decay pathways can no longer be treated completely in
pendent from each other. This fact has been accounted f
the formula for the resonance contributions to the associa
rate constant published by Bain and Bardsley in their ea
1972 paper,31

kres~T!5
1

\ (
n

P~En
res,T!~2Jn11!G rad

n Gn

G rad
n 1Gn

, ~13!

where the indexn counts the contributing resonances. Th
formula has been widely used since then in many calc
tions of atomic radiative association processes.
Downloaded 28 May 2003 to 158.75.5.21. Redistribution subject to AIP
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In order to apply the Bain–Bardsley formula to th
present study, it is helpful to summarize the approximatio
on which it is based. The first approximation made is
neglect initially the radiation field and to apply the standa
isolated resonance model,36–38 i.e., it is assumed that all the
sharp resonances are separated from each other and tha
do not overlap. The partial scattering stateuE1JMp,v j l &
which becomes dominant and rapidly varying with energy
the vicinity of a resonance can then be approximated as

uE1JMp,v j l &'uEBQJMp&Qav j l
Jp ~E!

with

av j l
Jp ~E!5

1

A2p

gv j l
Jp

E2Eres1
i

2
G

, ~14!

where uEBQJMp&Q denotes a bound-type eigenstate of t
HamiltonianH projected onto an appropriate subspaceQ.38

The corresponding eigenenergyEBQ is assumed to be clos
to the energy of the resonance,Eres. The associated reso
nance width is given byG5(v j l ugv j l

Jp u2. As a consequence o
this approximation, a Lorentzian profile is obtained for t
energy-differential association rate

]R~B;EJp!

]E
'

1

\
G rad,B

Jp G/2p

~E2Eres!21S G

2 D 2 , ~15!

where the parameterG rad,B
Jp of the profile is defined as

G rad,B
Jp

ª

4

3c3\3 ~Eres2EB!3uT~B;EBQJp!u2, ~16!

with T(B;EBQJp) denoting the reduced phototransition am
plitude which is obtained when the stateuEBQJMp&Q is in-
serted into Eq.~8! in place of uE1JMp,v j l &. Obviously,
G rad,B

Jp /\ is a measure of the rate of radiative decay of t
resonance into stateB. The quantity

G radª(B G rad,B
Jp , ~17!

is therefore called the radiative width of the resonance. In
gration over the energy of the profile~15! with a very small
width G would give according to Eq.~9! the following esti-
mate of the contribution of the corresponding resonance
the rate constant k(T): kres(T)'P(Eres,T)(2J11)
3(1/\) G rad. In this estimate every resonance can particip
in the radiative association process, no matter how long is
lifetime for nonradiative decay,\/G. But, this would not be
consistent with the assumed kinetics of the process whic
based on the requirement that the concentration of re
nances in the gas has to be in thermal equilibrium with
concentration of the reactants.~cf. Ref. 30 for a discussion o
this point!. In order to correct this inconsistency, the intera
tion with the radiation field is now incorporated into th
approximate resonance state description of Eq.~14! making
use of the implicit optical potential approach of Ref. 29, i.
the real energyEres is replaced with the complex valueEres

2 ( i /2) G rad. This leads finally to the above Bain–Bardsle
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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formula of Eq.~13!. The additional factorGn /(G rad
n 1Gn) in

this expression becomes effective ifGn is comparable to or
much smaller thanG rad

n .

IV. DETERMINATION OF FREE-BOUND
PHOTOTRANSITION AMPLITUDES

For the discussions of this section, the expression of
~8! defining the transition amplitudes is rewritten here in t
more explicit form

TB↔F~EBJBpB;EJp!

5A2JB11

2J11

3
^C (B)JBMBpB~EB;r,R!udm~r,R!C(1)JMp~E;r,R!&

C~J1JB,MmMB!
.

C13No

(1)JMp(E;r,R) denotes here the set of the partial scatter

outgoing waves,̂ r,RuE1JMp,a i& for i 51,...,No , which
correspond to all open scattering channels, i.e.,No

5No(E,J,p) is the number of differenta’s, aª(v, j ,l ),
which for the given energyE, total angular momentumJ,
and parityp, are consistent with the angular momentum a
dition rules and with the requirement thaten j,E. Corre-
spondingly,C (B)JMp(EB;r,R) denotes the bound state fun
tion.

A. Applying the close-coupling „CC… approach

As characteristic of this approach, the dependence of
scattering and bound state functions on the coordinateR is
treated differently than the dependence on the remain
so-called internal coordinates. First, a number of appropr
basis functions is chosen to represent the dependence o
internal coordinates, denoted here collectively withy. Then,
appropriate boundary-value problems for systems of coup
differential equations are formulated whose solutions g
the dependence on theR coordinate. The following two
bases F

13N

JMp(y)ª$F1
JMp(y),...,FN

JMp(y)% are particularly

useful:

~1! SFF
JMp—expressed in the SF Jacobi coordinatesy

5(r , r̂,R̂)

SFF f
JMp~r , ŗ,R̂!5

1

r
x (n j ) f

~r !Y ( j l ) f

JMp~ r̂,R̂!, ~18!

where Y j l
JMp( r̂,R̂) is the eigenfunction of the angula

momenta operatorsJ2, Jz , j2, and l2

#Y j l
JMp~ r̂,R̂!5 (

mj ,ml

C~ j lJ ,mjmlM !Yjmj
~ r̂!Ylml

~R̂!

with ~21! j 1 l5p~21!J, ~19!

andxn j (r ) is the radial rovibrational function of the H2
1

molecule;
~2! BFFJMp—expressed in the coordinatesy5(r , r̂B ,R̂) with

r̂Bª(u,c) and u5cos21 r̂"R̂ which are associated with
the ~two-angle39! body-fixed ~BF! reference frame hav
Downloaded 28 May 2003 to 158.75.5.21. Redistribution subject to AIP
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ing the X, Y, and Z-axes directed along the spheric
basis vectorseuR

, efR
, andeRªR̂, respectively.c is the

azimuthal angle of the vectorr in this frame

BFF f
JMp~r , r̂B ,R̂!5

1

r
x (n j ) f

~r !Q ( j l) f

JMp ~ r̂B ,R̂!, ~20!

where Q j l
JMp( r̂B ,R̂) is the parity adapted BF angula

function, cf. Ref. 25

Qjl
JMp~r̂B ,R̂!5tl@~2J11!/4p#1/2

3@DMl
J* ~fR ,uR,0!Yj l~u,c!

1pDM2l
J* ~fR ,uR,0!Yj 2l~u,c!#,

the indexl, ranging fromlmin(p)5 (12p)/2 for p51,
21 to lmaxªmin(J,j), is the absolute value of the quan
tum number associated with the projection of the to
angular momentum on theZ axis, DMl

J (fR ,uR,0) is an
element of the rotation matrix, defined as in Ref. 24, a
the factortl equals 1/2 forl50 and 1/& for l.0.

Obviously, both bases are orthonormal with resp
to the scalar product@XuY#ª*dyX†(y)Y(y) with *dy

ª*r 2dr*dr̂*dR̂, dR̂ªdfRduR sin(uR), anddr̂ ~or drB̂) be-
ing defined analogously, and are related by an orthogo
matrix UJp

SFF
JMp5BFFJMpUJp, ~21!

whose elements are:@UJp#v j l,v8 j 8 l5dv,v8d j , j 8@UJp( j )#l l and

@UJp~ j !#l lªUl l
Jp~ j !

5A 2

11d0,l
~21!J1l~2l 11!1/2S J j l

l 2l 0D ,

~22!

for l5lmin(p), lmin11,...,lmax and l 5uJ2 j u1lmin , uJ2 j u
1lmin12,...,J1 j 2lmin .

Expansions of the scattering functionsC(1)JMp(E;r,R)
in the two bases yield radial functionsSFFa f

(1)Jp(E,a i ;R) and

BFFb f

(1)Jp(E,b i ;R), bª(v j l), with f 51,...,N and i

51,...,No , which are collected here in the matrice

SF F
N3No

(1)Jp(E;R) and BF F
N3No

(1)Jp(E;R), respectively. The

radial functions satisfy the coupled equations

H I
d2

dR2 1kJp~E!2
1

R2 frC
Jp1 frV

Jp~R!J frF
(1)Jp~E;R!50

for fr5SF, BF; ~23!

I denotesN3N unit matrix. The matriceskJp and frC
Jp are

diagonal in the channel indices

@kJp#v j ,v8 j 85dv,v8d j , j 8kv j
2 I Jp~ j !, ~24!

@SFC
Jp#v j ,v8 j 85dv,v8d j , j 8l

Jp~ j !, ~25!

@BFC
Jp#v j ,v8 j 85dv,v8d j , j 8c

Jp~ j !, ~26!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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I Jp( j ) denotesn3n unit matrix with n(J,p, j )5min(J,j)
1 (11p)/2 , l

n3n

Jp( j ) is the diagonal matrix with the ele

ments l ( l 11) for l ranging as described in Eq.~22!, and
c

n3n

Jp( j ) is the following tridiagonal matrix:

@cJp~ l !#l,l85dl,l8@J~J11!1 j ~ j 11!22l2#

1dl8,l61@~11dl8,0!~11dl,0!#
1/2

3@J~J11!2l~l61!#1/2

3@ j ~ j 11!2l~l61!#1/2.

Obviously, the following relation takes place:

@UJp~ j !#TcJp~ j !UJp~ j !5 lJp. ~27!

The matricesfrV
Jp(R) in both the SF and BF formulation

introduce coupling between different (v j ) channels. Ele-
ments ofBFV

Jp(R) are

@BFV
Jp~R!#b,b8

5
2m

\2 (
L

^xv j uVL~r ,R!xv8 j 8& r^Q j l
JMpuPL~cosu!Q j 8l8

JMp&,

~28!

where PL for L50,2,... denote Legendre polynomials a
VL(r ,R) come from expansion of the interaction potent
V̄(r ,R,u) into these polynomials; cf. Eq.~39!. In the analo-
gous formula for @SFV

Jp(R)#a,a8 , the angular integrals
^Q j l

JMpuPL(cosu)Qj8l8
JMp& are replaced with Percival–Seato

coefficients^Y j l
JpuPL(cosu)Y j 8 l 8

Jp &.
The conditions obeyed by the radial functio

SFF
(1)Jp(E;R) are as follows:

SFF
(1)Jp~E;R! ——→

R→0
0I , ~29!

SFFo
(1)Jp~E;R! ——→

R→`

O2Jp~E;R!2O1Jp~E;R!SJp~E!,

~30!

where the subscript ‘‘o’’ serves to denote the part of t
matrix SFF

(1)Jp(E;R) that includes the functions

SFFa
(1)Jp(E,a i ;R) with a corresponding to an open channe

SJp is the partial scattering matrix, andO
No3No

sJp(E;R) with

s51,2 denote diagonal matrices of the respective soluti
of the SF coupled equations in the asymptotic region~where
the potential coupling vanishes!

@O6Jp~E;R!#a,a i
5dv,v i

d j , j i
d l ,l i

iA m

2p\2 kv j
21/2H l

6~kv jR!,

~31!

with H l
6 being the spherical Ricatti–Hankel functions ofl th

order,H l
6(z) ——→

z→`
exp@6i(z2l p/2#). For a correspond-

ing to a closed channel, the functionSFFa
(1)Jp(E,a i ;R) de-

cays asymptotically likeH l
1( i ukv j uR). The boundary condi-

tions obeyed by the BF radial functions are consistent w
the relation

BFF
(1)Jp~E;R!5UJp

SFF
(1)Jp~E;R!UJpT. ~32!
Downloaded 28 May 2003 to 158.75.5.21. Redistribution subject to AIP
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Expansion of the bound state functionC (B)JMp(EB;r,R)
in the basesfrF

JMp for fr5SF, BF, gives vectors of radia
functions fr F

N31

(B)Jp(EB;R) which satisfy Eq.~23! and the

boundary conditions: frF
(B)Jp(EB;0)50 and

frF
(B)Jp(EB;R) ——→

R→`
0.

Finally, the phototransition amplitudes can be written
terms of the radial integrals

TB↔F~EBJBpB;EJp!

5~BFF
(B)JBpB~EB!uBFd

JBpBJp
BFF

(1)Jp~E!!UJp, ~33!

where (XuY)ª*dRX†(R)Y(R) and the matrixBFd
JBpBJp is

built of the following elements:

@BFd
JBpBJp~R!#b8,b

5
4p

)
(
L,L

^xv8 j 8udLL
BF ~r ,R! xv j& r^ j 8l8JBpBiQLL

1 i j lJp&,

~34!

in which dLL
BF(r ,R) denotes radial component of the dipo

moment vector field in the BF angular basis

dm~r,R!5
4p

)
(
L,L

dLL
BF ~r ,R!QLL

1m1~ r̂B ,R̂!, ~35!

and the reduced matrix element^i i& is defined consistently
with Eq. ~8!, viz. ^ j 8l8J8p8iQLL

1 i j lJp&

ªA2J811^Q j 8l8
J8M8p8uQLL

1m1uQ j l
JMp&/C(J1J8,MmM 8)/A2J11.

Formula for ^Q j 8l8
J8M8p8uQLL

1m1uQ j l
JMp& in terms of

3 j -coefficients can be found, e.g., in Ref. 25.

B. Dimensionality reducing approximation

When applying the CC approach to evaluate the p
totransition amplitudes for the HeH2

1 system, the calcula-
tions can be highly facilitated if part of the Coriolis couplin
terms in the BF coupled equations is neglected. This is d
by setting a limitl̃max on the values of the quantum numb
l. The matricescJp( j ) become reduced to their submatric
of dimensionñªmin(j,J,l̃max)1 (11p)/2, denoted below by
c̃Jp( j ,l̃max). Correspondingly, the potential coupling matr

BFV
Jp(R) is reduced by dropping its blocks numbered w

l.l̃max. Respective columns and rows are deleted a
from the matrix BFd

JBpBJp(R). The reduction affects, o
course, the behavior of the resulting approximate radial fu
tions BFF̃

(1)Jp(E;R) in the asymptotic region and all the re
lations between the corresponding quantities in the BF
SF representations. In particular, the relation~27! is no
longer valid for UJp given by Eq.~22!. Diagonalizing the
matrix c̃Jp( j ,l̃max)

@ŨJp~ j ,l̃max!#
Tc̃Jp~ j ,l̃max!Ũ

Jp~ j ,l̃max!5 l̃ Jp, ~36!

one obtains eigenvalues@ l̃ Jp# i ,i5h i
22 1

4 for i 51,...,ñ, with
h i differing from half-integer numbersl i1(1/2) whenl̃max

is smaller than bothj andJ. The corresponding approximat
functions SFF̃

(1)Jp(E;R) can be introduced as
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ŨJpT(l̃max) BFF̃
(1)Jp(E;R)ŨJp(l̃max) using transformation

ŨJp(l̃max) built of appropriate matricesŨJp( j ,l̃max). From
the relations given above, it is obvious how one could c
struct the corresponding reduced representations of the i
molecular potential and of the dipole moment in the
frame. These quantities are not needed, however. The
duced BF coupled equations can be used for numerical
eration of the radial functions. The transformation to the
frame serves only imposition of appropriate asymptotic fo
on the functions generated; it needs to be done only onc
the region where the potential coupling vanishes. Obtain
the necessary formula for the functionsSFF̃

(1)Jp(E;R) in the
asymptotic region is only a matter of redefining the matric
O6Jp in Eq. ~30!. Namely, the spherical Ricatti–Hanke
functionsH l

s(kv jR) for s51,2 have to be replaced in Eq
~31! with the Hankel functions of appropriate real orderh,
strictly with iAp/2(kv jR)1/2Hh

(k)(kv jR) for k51,2, respec-
tively, wherek denotes the kind of Hankel function.

V. DETERMINATION OF RESONANCE
CHARACTERISTICS

Information on the resonance positions and widths,Eres

and G, is contained in the~excess! continuum density of
statesDrJp(E), which is known40,27 to be directly related to
the collision time-delay matrixQJp(E),41

DrJp~E!5
1

2p\
TrQJp~E!,

where

QJp~E!5 i\
dSJp†~E!

dE
SJp~E!. ~37!

A convenient formula for evaluation of the matrixQJp within
the CC approach~avoiding numerical differentiation of the
SJp matrices!, as well as a procedure of extraction of th
required information on resonances, are described in Ref

As to determination of the radiative widths,G rad, the
description of Sec. III needs to be supplemented with
specification of theQ subspace which supports the res
nances of interest. Since they are in majority shape re
nances, theQ subspace is most appropriately chosen a
confined part of the configuration space available to
atom–diatom system so-called interaction region, boun
by a surface R5R` , where R` is large enough for
VJp(R`)'0. This choice is characteristic of theR-matrix
theory of resonances.36 Following the well-known proce-
dures of this theory, the state^r,RuEBQJMp&Q , strictly the
radial functionsFQ

(B)Jp(R) representing this state in the bas

BFF̃JMp ~the tilde denotes possible reduction of dimensio
ality of the basis! can be found as a solution to the eige
value problem

@EI2HJp~R!2B~R;R`!#FQ
(B)Jp~R!50I , ~38!

where HJp(R)ªR@BFF̃JMpuH(1/R) BFF̃JMp# and B(R;R`)
ª(\2/2m) d(R2R`)I (d/dR) is ~a version of! the Bloch
boundary condition operator. Since the functionsFQ

(B)Jp(R)
are needed only for evaluation of the radiative widths
Downloaded 28 May 2003 to 158.75.5.21. Redistribution subject to AIP
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sharp resonances, and functions pertaining to such r
nances should have very small amplitudes outside the in
action region, there is some freedom to modify the abo
eigenvalue problem without a danger of introducing any m
jor difference~error!. In particular, one can use the bounda
condition operatorB† instead ofB which means practically
that functions with zero values at theR` boundary are to be
generated instead of functions having specified~zero! deriva-
tives at this boundary.

VI. CALCULATIONS

A. Electronic structure input

Both the intermolecular potentialV̄(r ,R,cosu) and the
diatomic potentialVHH1(r ) were extracted from the analyti
cal fit to theab initio potential energy surface~PES! for the
ground electronic state of the HeH2

1 system, published in
Ref. 15

V~r ,R,cosu!5(
L

VL~r ,R!PL~cosu!

5V̄~r ,R,cosu!1VHH1~r !. ~39!

The parameters of the fit are constrained to g
lim

R→`
VL.0(r ,R)50, and

VHH1~r !ª lim
R→`

V0~r ,R!. ~40!

The necessary dipole moment functionsdLL
BF(r ,R), for

L50,1 and forL, assuming even values (L>2L), are di-
rectly related to the functionsDLL(r ,R)

dLL
BF ~r ,R!5

1

A2L11
A~L1L!!

~L2L!!
DLL~r ,R!, ~41!

which arise from the following expansions of the comp
nents dZ(r,R)5d0

BF(r,R) and dX̃(r,R)52 (1/&) d1
BF(r,R)

(dỸ50) of the dipole moment vector in theX̃ỸZ reference
frame, in which the spherical and azimuthal angles of
vectorsR and r are ~0,0! and ~u,0!, respectively, cf. Ref. 43

~21!LA11LdL
BF~r ,R,u!5(

L
DLL~r ,R!PL

L~cosu!; ~42!

PL
L denotes here the associated Legendre function. The f

tions DLL(r ,R) were determined in Ref. 44 by fitting toab
initio calculated data for the dipole moment. Actually, on
the dZ component of the dipole moment vector was a
counted for in the calculations of this work.

B. Some details on CC equations

The coupled equations for the He1H2
1(I ) system were

constructed using functions of 32 rovibrational states of H2
1 :

with v50,1,2,3 andj 50,2,...,14 for I 50 and j 51,3,...,15
for I 51. The radial functions of the states,xv j (r ), were
generated from the potential~40!. The energies«v j obtained
for the lowest (v50 j ) states are, respectively, 58.22, 174.2
347.02 cm21 for j 51,2,3 ~these energies are relative to th
dissociation limit«v50 j 50). The choice of the rovibrationa
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2

y range

10554 J. Chem. Phys., Vol. 118, No. 23, 15 June 2003 Mrugała, Špirko, and Kraemer

Downloaded 28 
TABLE I. Count of the functions@]RI(B;EJp)/]E# contributing to the rate constantkI(T).

Bound statesa Bª(@v#,k,JB,pB) where@v#ª(v r ,vu ,vR)

I 50 ( j even! I 51 ( j odd!

pB51 pB521b pB51 pB521

k50 1 2 k51 2 3 k50c 1c 2 3 k51 2 3

No. of states 103 41 16 67 37 4 106 62 16 2 64 16
No. of @v#d 9 4 2 8 6 1 9 8 2 1 8 2 1

Transitionse R,P,QªJ→JB5J11,21,10

No. of R,P 311 208 363 156
No. of Q 151 108 80197f 82

aThe dissociation limit off -parity states of HeH2
1(para) lies 174.20 cm21 above the limit ofe states~zero of

E). All states of HeH2
1(ortho) are bound up toE558.22 cm21.

bFifty-one of the states counted here lie above the dissociation limit ofj even-e states.
cAssignment ofe-parity states withk50 or k51 is ambiguous in some cases.
dGroups of levels assigned with the same values ofk and pB and different@v# will be enumerated:@v#
51,2,..., according to the position on the energy scale of the lowest (JB5k) levels of the groups,E(@v#
51,k,JB5k,pB),E(@v#52,k,k,pB)... .

eItalic numbers denote that none of the corresponding functions was determined within the entire energ
0 – 300 cm21. Only sharp resonance structures (G,1 cm21) occurring in these functions were determined.

fCounted are here theQ-transitions tok50 states. They are not directly allowed by theZ component of dipole
moment and therefore are weak.
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basis was made in calculations of bound state energies o
HeH2

1 ion for low values ofJ ~i.e., J<2). The convergence
error of the energies with respect to inclusion of functio
with higher v or j was smaller than 0.01 cm21. With the
above (v, j ) channels included, the numberN of the (v, j ,l )
or (v, j ,l) states coupled in the SF or BF radial equatio
would grow quickly withJ, reaching the value of 288 fo
J>15 (j odd andp51). Since many thousands of individu
solutions of the CC equations were estimated to be nee
for the evaluation of the rate constant~cf. Sec. VI E!, the
reduction of the dimensionality of the systems of these eq
tions was desirable. Possibilities of such reduction w
tested in preparation of every major stage of the calculatio
such as the determination of all bound states of the He2

1

ion in the PES used, the determination of parameters of
evant sharp resonances, and the evaluation of free-bo
transition amplitudes~cf. the following subsections!. The
conclusion of the tests was that the parameterl̃max, control-
ling the elimination of the Coriolis coupling terms from th
BF coupled equations, can be set as small as 4. Thus
maximal sets of the CC equations solved fore-parity states
of He1H2

1(ortho) and He1H2
1(para) systems included 144

and 136 equations, respectively. Forf states, the respectiv
maximal dimensions were 112 and 104.

In calculations on bound states of the HeH2
1 ion, the

coupled equations were typically integrated within the ran
of 1–9 Å. A larger range, extending up to 20 Å, was nec
sary in calculation of some energies~very! close to the dis-
sociation limits. The bound-type calculations for sharp re
nances, Eq.~38!, were done withR`59 Å. In calculations
concerning continuum states, the integration range was 1
Å. The continuum energy range covered in the calculati
extended up to 300 cm21 above the dissociation limit. All
the CC calculations were carried out with the help of t
log-derivative method45,46using a step size of 0.02 Å. All the
May 2003 to 158.75.5.21. Redistribution subject to AIP
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necessary versions of the method~for evaluation of bound-
free transition amplitudes, lifetime matrices, bound-state
ergies and functions! are coded in the computer progra
exploited previously in the theoretical simulations of the a
sorption spectrum of the Ar–HD complex.42,47 For the
present task, the program was supplemented with the op
for performing the reduced dimensionality calculations.

C. Bound states

Essential features of the rovibrational energy spectr
of the HeH2

1 ion are well-known from the previous work o
the subject.48–51 The energy levels are usually labeled wi
the two good quantum numbersJ and p and with four ap-
proximate quantum numbers,v r , vu , vR , and k. The v
numbers describe the vibrational motions along the indica
coordinates andk correlates with the vibrational angular mo
mentum quantum number of linear molecules; here, it sho
be identified with the value of the quantum numberl which
is dominant in a given state. Because of the need for a
mensionality reducing approximation, the natural quest
arose how dominant thek number really is in states charac
terized by higher values ofJ. If k were a nearly good quan
tum number, the coupled states~CS! approximation51 could
be applied, i.e., onlyl5k states could be retained in the B
coupled equations. Unfortunately, energies of theJ.10
states calculated in this approximation revealed unaccept
errors, exceeding 100 cm21 for theJ512- and 200 cm21 for
the J519 states. In order to obtain values of these energ
with an accuracy within 0.1– 0.5 cm21, the Coriolis coupling
between thel50 to l54 states had to be included.

Altogether, 536 bound states are supported by the u
PES. Half of them are states of the HeH2

1(para) ion. The
states can be classified into 61 different rovibrational gro
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ls
n
f
i

o

e
of
o

if-

-

tes
ent

of

n in

he
tinu-

y

g

no
al
n

re

10555J. Chem. Phys., Vol. 118, No. 23, 15 June 2003 Radiative association of HeH2
1

(@v r ,vu ,vR#,k,p), cf. Table I. The pattern of energy leve
is presented in Fig. 1. Though the PES used here is
expected~cf. Ref. 15! to provide rovibrational spectrum o
the ion which would be more reliable than that calculated
Refs. 14 and 50, a comparison seems in order. First,
should note that thek5J50 andk5J51 levels ~denoted
with thicker lines in Fig. 1! form the same pattern as th
levels from the Meuwly–Hutson potential shown in Fig. 6
Ref. 14. The pattern of near-dissociation levels
HeH2

1(ortho) yielded by the potential is also similar~for J
<4) to that presented in Fig. 8 of Ref. 14. Obviously, d

FIG. 1. The spectrum of bound rovibrational states of the HeH2
1(para) ion.

The way of presentation of the spectrum in the figure reflects the labelin
the states; cf. Table I. Energies of states characterized with the samep- and
k numbers are drawn as one ladder of levels. Thicker lines in a ladder de
levels with J5k. They are the lowest levels of different ro-vibration
groups (@v#,k,p). J>k levels belonging to different groups within a give
(p,k) ladder are distinguished by lengths of the horizontal lines.
Downloaded 28 May 2003 to 158.75.5.21. Redistribution subject to AIP
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ferences in positions of the individual levels are too big~of
order of 0.5– 2 cm21) for a meaningful comparison of tran
sition frequencies in this region. The energies ofJ→J21
rotational transitions in the three lowest vibrational sta
listed in Table I of Ref. 52 are reproduced by the pres
potential with deviations of 0.1– 0.8 cm21 for J51 – 10 in
the ground state and with deviations of 0.7– 5.2 cm21 in the
lowest bend (k51) state.

D. Resonances

Figure 2 shows the spectrum of energy levels
HeH2

1(para) ion in the region up to 175 cm21 above the
He1H2

1(v50,j 50) threshold. The pattern off -parity
bound-states energies is shown here in more detail tha
Fig. 1 and, which is the main purpose, the positions ofG
,1 cm21 resonances in this region are demonstrated. T
resonance energy levels are drawn and assigned as a con
ation of the progression of thee-parity bound-states energ
levels. A comparison of positions of the correspondinge-

of

te

FIG. 2. Energy levels of HeH2
1(para) above the He1H2

1(v50,j 50)
threshold, in the range up to 175 cm21. Only resonances whose widths a
smaller than 1 cm21 are shown in this figure.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE II. Convergence with the parameterl̃max of energies and widths of selected resonances.

p k J l̃max

Eres

cm21
G

cm21
G rad

a

10211 cm21 G/(G rad1G)

j even
1 0 9 3 14.18 2.13 (203) 4.89 1.00

4 14.12 2.09 (203) 4.91 1.00
11 1 27.63 1.79 (203) 6.59 1.00

3 23.47 2.13 (204) 7.33 1.00
4 23.44 2.27 (204) 7.34 1.00

12 1 34.85 5.66 (206) 8.64 1.00
2 14.59 2.62 (210) 8.11 0.76
3 10.10 1.00 (211) 7.83 0.11
4 10.46 5.00 (212) 7.73 0.06

14 1 39.96 3.20 (207) 12.79 1.00
3 29.24 2.78 (209) 13.98 0.95
4 29.10 2.55 (209) 13.99 0.95

18 1 112.36 1.55 (207) 13.15 1.00
3 84.15 5.25 (210) 12.51 0.81
4 83.71 4.73 (210) 12.46 0.79

1 14 3 99.93 2.91 (203) 4.46 1.00
4 99.25 3.06 (203) 4.54 1.00

17 3 76.42 1.11 (209) 6.76 0.94
4 75.46 9.15 (210) 6.72 0.93

2 5 3 69.19 5.04 (202) 3.58 1.00
4 68.62 3.10 (202) 3.48 1.00
5 68.16 3.09 (202) 3.47 1.00

8 3 30.56 1.15 (202) 2.07 1.00
4 29.59 8.36 (203) 2.13 1.00
5 29.56 8.27 (203) 2.13 1.00

3 5 3 101.36 6.02 (202) 2.02 1.00
4 91.22 2.57 (202) 2.10 1.00
5 91.16 2.54 (202) 2.11 1.00

j odd
1 0 13 3 97.40 7.54 (204) 4.79 1.00

4 97.02 6.48 (204) 4.77 1.00
1 11 3 78.99 3.30 (206) 4.86 1.00

4 78.80 3.36 (206) 4.90 1.00
21 1 11 3 76.11 5.24 (206) 3.79 1.00

4 75.88 4.46 (206) 3.84 1.00

al̃max was varied only in the calculations of the functionsF
Q

(B)Jp
(R); cf. Eq.~38!. The bound-state functions in th

transition amplitudesT(B;EBQJp); cf. Eq. ~16!–~17!, were in all cases determined withl̃max54.
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and f levels from thek51 ladders, in particular those as
signed with largeJ numbers, gives further evidence of
significant Coriolis coupling in the system. The observ
shifts between the levels are due to the fact thatf -parity k
50 states do not exist and therefore thek>1 states are
subject to fewer couplings than theire-parity counterparts.

A more detailed presentation of the effect of the Corio
coupling on resonances, not only on their positions but a
on the widths, is given in Table II. One can see that includ
enough Coriolis coupling terms~i.e., usingl̃max sufficiently
larger than thek numbers characterizing the resonances! is
particularly important for obtaining convergent widthsG, es-
pecially the very small ones. The radiative widths rev
much less sensitivity to the accuracy of the resonance fu
tions; this seems to be associated with the character of
formula describing these widths~i.e., the matter–radiation
interaction is treated in first order!. Fortunately, the radiative
widths are the more crucial characteristics of resonances
the purpose of evaluation of the association rate constan
Eq. ~13!. The explicit involvement of the nonradiative width
May 2003 to 158.75.5.21. Redistribution subject to AIP
d
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l
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or
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is through the sharp resonance cutting factor in Eq.~13!. As
demonstrated in the last column of Table II, sensitivity of th
factor to the Coriolis coupling controlling parameterl̃max is
again definitely smaller than the sensitivity of the widthsG
themselves.

There are 53 ‘‘nonbroad’’ (G,1 cm21) resonances of
the HeH2

1(para) ion in the energy range shown in Fig. 2. F
HeH2

1(ortho), 23 such resonances were found in the sa
range~strictly, in 58.22– 175 cm21). As it follows from Eq.
~13!, contribution of a given resonance to the rate const
k(T) is the larger the larger is (2J11)G rad ~provided the
inequality G rad!G holds! and the smaller isEres. The most
contributive resonances are listed in Table III. Shown a
are all the cases encountered in which the factorG/(G rad

1G) became operative.

E. Free-bound and resonance-bound transitions

There are as many as 1556 functions@]RI(B;EJp)#/]E
which describe all the allowed transitions to the 536 bou
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE III. Energies and widths, nonradiative and radiative~all in cm21), of some important resonances.

p k @v#a J Eres G G rad31011 G/(G rad1G)

j even
1 0 7 8 15.4 3.4 (201) 4.5 1

6 9 14.1 2.1 (203) 4.9 1
5 11 23.4 2.3 (204) 7.3 1
4 12 10.5 5.0 (212) 7.7 0.06
3 14 29.1 2.6 (209) 14.0 0.95
3 15 103.7 1.5 (202) 10.6 1
2 18 83.7 4.7 (210) 12.5 0.79
1 21 31.7 ;0b 5.5 0

1 3 9 27.4 5.5 (201) 4.8 1
2 13 14.3 ;0b 6.2 0
2 14 99.2 3.1 (203) 4.5 1
1 17 75.5 9.1 (210) 6.7 0.93

2 2 8 29.6 8.4 (203) 2.1 1
2 9 79.8 1.6 (201) 1.5 1
1 12 67.9 1.1 (201) 3.2 1

j odd
1 0 7 8 66.4 6.4 (203) 3.2 1

5 12 91.3 1.8 (202) 8.0 1
4 13 97.0 6.5 (204) 4.8 1
3 15 103.8 3.3 (206) 12.3 1
2 18 83.6 ;0b 12.4 0

1 3 11 78.8 3.4 (206) 4.9 1
2 14 102.7 2.4 (205) 6.2 1
1 17 75.5 ;0b 6.7 0

2 2 8 79.5 9.5 (202) 5.1 1
1 12 67.9 9.2 (211) 3.1 0.75

21 1 3 11 75.9 4.5 (206) 3.8 1
2 14 115.3 1.4 (205) 6.9 1
1 17 66.0 ;0b 3.9 0

2 2 8 76.8 4.5 (201) 3.4 1
1 12 67.9 ;0b 3.2 0

aThe enumeration of the rovibrational groups of bound-state energy levels is continued for the quas
levels, so the meaning of@v# numbers is here the same as explained in Table I.

bG much smaller than the correspondingG rad; the resonance does not participate in the association proce
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states of HeH2
1 ; cf. Table I. If the association rate consta

k(T) at low temperatures, below 100 K, say, is of intere
the functions should be~possibly accurately! known at low
energiesE, in the range extending up to ca. 300 cm21 above
the dissociation threshold~at E50). There are many reso
nances in this range whose widths vary by several order
magnitude, fromG'10 cm21 to G!1029 cm21. Although
the sharpest resonances can~and even should! be treated
separately, as described above, the functi
@]RI(B;EJp)#/]E still have to be known on a rather den
and highly nonuniform grid of energy points; see Fig. 3 f
examples of the functions@]RI(B;EJp)#/]E and for a dem-
onstration of their sensitivity to the Coriolis coupling. Thu
determination of all the free-bound transition amplitudes
volved would be a formidable computational task. For
nately, considerable savings become possible if one ma
an estimation of the contributions brought by the vario
amplitudes to the rate constant. In the first place, accoun
for resonances of intermediate and larger widths, i.e.,
amenable to the treatment of Sec. III, should be conside
Some preliminary tests indicated that resonance-bound t
sitions may be important even if the terminal states lie not
from the dissociation limit. Therefore, it was decided to
clude contributions of~possibly! all the resonance structure
May 2003 to 158.75.5.21. Redistribution subject to AIP
,

of

s

r

-
-
es
s
g

ot
d.
n-
r

that appear in all the functions@]RI(B;EJp)#/]E due to
resonances of widths smaller than 1 cm21. Altogether, con-
tributions from about 1200 resonance structures in the fu
tions ]RI(B;EJp) were actually determined~the extremely
sharp ones! are also counted here.

As to contribution of background parts of the functio
@]RI(B;EJp)#/]E, describing direct free-bound transition
~i.e., transitions from continuum regions characterized
smoothly varying density of states!, the discriminating fac-
tors are: ~i! the population factor of initial states
exp(2E/kBT), and~ii ! the energy released in the transition
entering as (E2EB)3 into the formula for the rate constan
The first factor allows one to neglect all the functions for t
R and P transitions tof -parity states of HeH2

1(para) ~the
continuum for these transitions begins atE5174.20 cm21);
cf. Table I. Because of the second factor it is possible
eliminate evaluation of~the background parts of! the func-
tions for transitions to highly excited bound states.

In effect of the above estimations, only one-third of t
1536 functions@]RI(B;EJp)#/]E was actually determined
over the entire energy range specified (0 – 300 cm21). On
average, the range was covered with 300 points. The spa
between the points was adjusted to the positions of re
nances included in the background~all resonances of widths
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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larger than 1 cm21 and most of the resonances of widt
between 0.1– 1 cm21).

VII. RESULTS OF THE RATE CONSTANT
CALCULATION

For the rate constant determination, cubic spline inter
lations were made between calculated points of the funct
@]RI(B;EJp)#/]E in order to perform the required integra
tion over energy. Contributions from sharp resonances
included in the background were evaluated using the exp
sion ~13!.

The results of these calculations obtained for the te
perature interval 2<T<100 K are collected in Table IV and
plotted in Fig. 4. In the upper panel of this figure, the to
rate constant for the formation of HeH2

1 and its decomposi-
tion into the HeH2

1(para) and HeH2
1(ortho) formation rate

constants@according to the aforementioned expressionk(T)

FIG. 3. Exemplary rates@]RI(B;EJp)#/]E of association into two different
bound statesB5(@v#51,kB,JB54,pB51), with kB50 andkB52, as func-
tions of energyE of the initial partial continuum state withJ55 ~the con-
tinuous lines!. Apart from the two sharp resonances~cf. Table II for their
parameters! occurring in both rates, a broad resonance of widthG
'4 cm21 is seen in thekB50 case. Convergence of the rates with respec

the number ofl components (l502l̃max) retained in the continuum stat
is also demonstrated~by proximity of the broken lines to the respectiv
continuous line, representing full CC results!. The observations to be made
~i! For accurate determination of the background part of the func
@]RI(B;EJp)#/]E, it would be sufficient ifl components up tokB11 were
present in the continuum state.~ii ! In order to account simultaneously for th
structures due to thek50 – 3 resonances it is safer to keep always thel

50 – 4 components. Hence, the choice ofl̃max54 was made in all the cal-
culations.
Downloaded 28 May 2003 to 158.75.5.21. Redistribution subject to AIP
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5k0(T)1k1(T) with 0 and 1 representing thepara- andortho
ions, respectively# are plotted. These individual associatio
rate constantskI(T) are also displayed separately in th
lower two panels, together with their contributions from t
most important resonances withJ.7 and the respective
largest constituents leading to the formation of rovibratio
levels characterized by the indices (@v#,k,p) for the two
different forms of the ion where the numbering@v#51,2,3
refers to the ordering of the corresponding levels with
lowest (J5k) values in Fig. 1.

The rate constant curve in the upper panel of the fig
shows the typical temperature dependence for relativ
weakly bound systems. It has a broad maximum of
310220 cm3 s21 aroundT520 K and a moderately fast fall
off at higher temperatures. In the maximum region the do
nating contributions tok(T) arise from j -even levels,
whereas thej -odd contributions are slightly more domina
ing at temperatures above 50 K. Similar temperature fu
tions for the total rate constant have previously been fou
for atom–atom associations.17 Actually for the related
proton–helium association the maximum rate constant
previously been determined32,34,35 to be about one order o
magnitude larger compared to the present result. Since
rate constant is strongly dependent on the photon energy
leased in the radiative process, this can in principle be ra
nalized as a consequence of the large difference betwee
binding energies of HeH1 and the triatomic complex
16 455 cm21 as compared to 2703 cm21 for HeH2

1 . Consid-
ering this large energy difference, it appears somewhat
prising though that the rate constants differ only by one or
of magnitude. According to some earlier theoretical cons
erations~Refs. 29, 30 and also Ref. 31! this can, however, be
related to the fact that resonance contributions can sig
cantly enhance the radiative association rates at low temp
tures. Whereas in HeH1 essentially only two resonances
low energies were found to drive the association reaction,
present calculations show that in HeH2

1 a large number of
resonances exist which are contributing to the radiative p
cess. The much smaller energy gain in the radiative sta
zation of the He1H2

1 association process is thus partly com
pensated by a larger number of resonance contribution
the rate constant.

For a better understanding of the dynamics of react
~2!, it seems therefore to be helpful to discuss here in m

n

TABLE IV. Rate constantk, in 10220 cm3 s21, as function of temperature
T, in K.

T k T k

2 0.5 26 2.0
6 1.0 28 2.0
8 1.3 30 2.0

10 1.5 40 1.8
12 1.7 50 1.6
14 1.9 60 1.4
16 2.0 70 1.3
18 2.0 80 1.2
20 2.1 90 1.1
22 2.1 100 1.0
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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detail the role of resonances in the formation of the He2
1

ion. Obviously, in contrast to the light HeH1 ion the density
of quasibound and continuum levels above the dissocia
threshold is much larger for the triatomic complex. Due
this dense energy level pattern it is very difficult, or rath
impossible, to distinguish between resonance-bound
free-bound contributions tok(T). There is in general no
clear-cut difference between their widths, and even the m
nitudes of the resonance widths themselves change cons
ably ~see Table III!. In this situation an attempt was mad
here to obtain a realistic lower estimate of the total resona
contributions to the total rate constant by summarizing

FIG. 4. Upper panel: The rate constant for formation of the HeH2
1 ion and

its decomposition into parts describing formation of the HeH2
1(para) and

HeH2
1(ortho) ions. Middle panel: The association rate constantk0(T), the

contribution of the most important resonances~with J.7), and the largest
constituents ofk0(T) which describe formation of the HeH2

1(para) ion in
states belonging to different rovibrational groups (@v#,k,p). The numbers
@v#51,2,3..., give the ordering on the energy scale of the lowest (J5k)
levels from the groups assigned with the same values ofk and p ~forming
the same ladder in Fig. 1.! Bottom panel: Same for the HeH2

1(ortho) ion.
Downloaded 28 May 2003 to 158.75.5.21. Redistribution subject to AIP
n
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e

contributions from sharp resonances withJ.7 which are
more easy to account for separately. In the three panel
Fig. 4 the thick solid curves for the total rate constant a
compared with small dotted curves representing these r
nance contributions. In the case of the total rate constan
the upper panel, the high-J contributions already account fo
about 40 percent in the maximum region of the temperat
function. It was previously discussed in this paper that sh
resonances are treated by applying the formula~13! of Bain
and Bardsley,31 rederived here in the context of atom–diato
associations. This formula contains the factorG/(G rad1G)
~cutting factor! which is needed to cut out resonances w
G!G rad that are not in thermal equilibrium and therefo
have to be excluded from the summation for the rate cons
k(T). If this factor had not been taken into account the ma
mum of the function k(T) would rise to 3.2
310220 cm3 s21 and shift slightly to a lower temperatur
('18 K). Viewing this change with regard to the gener
accuracy limitations of experimentally determined rate co
stants, it appears to be rather insignificant. In the contex
the present study, however, which intends to present an
curate implementation of the most rigorous theory availa
by now, a change in the absolute rate constant value of
proximately 50 percent should certainly be taken into
count, even if it turns out to be unimportant for the HeH2

1

association. It can actually be expected that for other m
strongly bound systems the role of the cutting factor b
comes more decisive. In this discussion of the importance
different sources from which the total rate constant is co
posed, it should also be mentioned that the contributi
from broad resonances are not negligible. They are evalu
together with the contributions from free states, which
creases the computational effort necessary in the rate
stant calculations because a much larger number of eva
tions of these free-bound transition amplitudes becom
unavoidable.

The big differences between the temperature curves
the rates of formation of thepara- and ortho species of
HeH2

1 and their different contributing constituents as th
are displayed in the lower two panels of Fig. 4 are mos
due to the shift of their dissociation limits. Looking in thes
panels at the comparison of the total rates with the contri
tions from sharp highJ level (J.7) resonances, it can b
noticed that for the HeH2

1(para) these contributions amoun
to even more than 50 percent in the maximum region. Si
the effect of resonances is generally rapidly decreasing w
increasing temperature, the resonance contributions to
rate constant of theortho species are much smaller. There
in this case instead a larger effect from the higherJ levels of
the first series (@v#51) of states with (p51,k50).

VIII. CONCLUSIONS

The present study presents the first rigorous deta
state-to-state quantum calculation of a triatomic radiative
sociation reaction for the relatively weakly interacting atom
diatom system He1H2

1 . It is assumed in the calculation
that the reaction~2! is a so-called single-state process, i.
that it is completely determined by the ground electro
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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state potential of HeH2
1 and that adiabatic couplings to ex

cited states are negligible over the entire range of the po
tial surface relevant for the association process. It is furt
assumed that the higher dissociation channel leading
HeH11H can be neglected because it opens only at ener
exceeding by far the collision energies considered here.
der these assumptions reliable predictions for the radia
association rate constant as a function of temperature
made for the low temperature interval 2<T<100 K.

Due to the rather small binding energy of the grou
electronic state of the HeH2

1 ion, the rate constant for th
He1H2

1 radiative association was expected to be too sm
for any astrophysical implication. It is, however, an impo
tant result of this study that the small energy gain in
radiative stabilization of the association process is pa
compensated by the larger number of resonance contr
tions enhancing the rate constant value. This supports pr
ous statements in earlier theoretical studies29–31 about the
importance of resonances and it will have a strong impac
forthcoming theoretical studies of radiative association p
cesses in other weakly interacting atom–diatom systems
the He11H2 association, for instance, taking place on t
potential energy surface of the electronically first excit
state of the HeH2

1 ion, calculations show that an even larg
number of sharp resonances exist. It will therefore be in
esting to study their influence on the two-state radiative
sociation formation of the ground electronic state accord
to He11H2→HeH2

1(X 2A8)1hn, and even more interest
ing to see their role in the astrophysically relevant radiat
charge transfer reaction~1!. Another useful aspect of thes
studies of weakly interacting systems is that the detailed
sight in the processes obtained here will be useful in sim
studies of more strongly bound systems where, due to
rapidly increasing density of states, approximations have
be applied in order to make the calculations feasible. T
present calculations on HeH2

1 provide benchmark result
which can be used to test these approximations.

In this context it appears that the detailed overview
the methodology applied in the present work to study
dynamics of the radiative association process~2! at low en-
ergies can serve as a useful reference in future calculati
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