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I. INTRODUCTION

Facts motivating the study:

• Two articles appeared in 2018, in JCP1 and PRL2, presenting experiments on three-
body fragmentation of the OCS3+ ion and a novel method of their analysis which allows
for a complete separation of three pathways of the fragmentation process. In one of
the pathways, the process goes via formation of the CO2+ ions at the first step and
auto-dissociation of these intermediate ions at the second step. The papers provide
information on this sequential pathway in the form of kinetic-energy-release (KER)
spectra, i.e. distributions of kinetic energy of relative motion among the C++O+ frag-
ments arising at the second step. The spectra may have contributions of a multitude
of different rovibronic states in which the CO2+ ions may be formed at the first step.
Reliable explanation of the KER spectra seems hardly possible without prior knowl-
edge of basic characteristics of the rovibronic states, such as energies and dissociative
lifetimes.

• Calculations on the CO2+ ion reported thus far were concentrated on purely vibronic
states. In two calculations only, rotation was also taken into account when charac-
terizing predissociation of the ion. However, energies and predissociation lifetimes of
as few as 45 rovibronic states were only determined in Ref. 3, and not much more,
about 400 states of two isotopomers, 12C16O and 13C16O, in total, were characterized
in Ref. 4.

Goals:

• Performing calculations necessary to determine all rovibronic states of the CO2+ ion
supported by the available electronic energy potentials5,6 in the lifetime range limited
only from below (to 0.5 ps), accounting for spin-orbit predissociation and tunneling,
and branching in the predissociation between different available C++O+ channels.

• Performing simulations of the kinetic-energy-release spectra from different sub-sets
of the determined rovibronic states; comparing them with the experimental spectra
mentioned above; possibly, identifying (group of) states which have a role in forming
the most discernible features of these spectra.



II. MODEL

The model of dynamics of the CO++ ion exploited in the present calculations is, apart
from some necessary extensions, the same as the JP04r-v model constructed in Ref. 4 for
an introductory characterization of rovibronic states of this ion. The dynamics is described
with the use of Hamiltonian matrices HJp=

{
HJp

sΩ, s̃Ω′

}
for J=0, 1, . . . and p=+1,−1⇔e, f

in the form of differential operators with respect to the internuclear distance r,

HJp(r)=
1

2µ
p2
r+VJp(r) with pr:=−ıI

d

dr
.

Of the indices enumerating the matrices, J is the quantum number of the total angular
momentum operator squared J2 and p is the total parity label. J is the sum of the total
electronic angular momentum, the total electronic spin, and the nuclear rotation operators,
L, S, and R, respectively. The index sΩ enumerating the elements of the Hamiltonian
matrices is composed of the quantum numbers S, Λ, and Ω which are associated with S2

and with projections on the internuclear axis of L and J, respectively; s:=2S+1Λǫ identifies
the electronic state (spin multiplet), and Ω — the multiplet component. ǫ= +/− indicates
the definite parity of the electronic part of the state when Λ=0. Seven lowest states of the
ion, s=X 3Π,3 Σ−, a 1Σ+, b 1Π, A 3Σ+, c 1∆, and d 1Σ+, are accounted for. The first term of
the matrices HJp(r), with µ being the reduced mass of the ion, represents the vibrational
part of the nuclear kinetic energy operator. For the 12C16O2+ isotopomer considered here,
µ=12497.592me. The matrices VJp(r) are formed of: the electronic energy potentials Vs(r)
of the included states which have been determined in Ref. 5, the spin-orbit couplings Vs, s̃(r)
between them determined in Ref. 6, the spin-orbit ‘constant’ for the state 3Π determined
in Ref. 7, and some terms originating from the rotational part 1

2µr2
R2 of the nuclear kinetic

energy operator. The latter are the rotational energies EJ(sΩ; r) and the intra-multiplet

interactions CJp
Ω,Ω±1(s; r) known8 as the S uncoupling perturbations. Full details can be

found in Ref. 4 and in Supplementary Material.
The rovibronic states of the ion are treated as Siegert states9 of the Hamiltonians HJp

which correspond to resonances, i.e. to energies EJp
n =EJp

n − ı
2
ΓJp
n with EJp

n >0 ,ΓJp
n >0, and

ΓJp
n ≪EJp

n . Thus, the states are determined as solutions of the following eigenvalue problem

[EI−HJp(r)]ΨJp(r; E) = 0 , (1)

ΨJp(0; E) = 0 , (2)

(
φ|B

+Jp(r∞, E)ΨJp(E)
)

= 0 . (3)

The latter condition enforces on ΨJp(r; E) a purely outgoing-wave behavior in the asymptotic
region by means of the Bloch operator10,

B
+Jp(r; r∞, E) = δ(r−r∞) [pr + ıLJp

O+(r∞; E)] , (4)

in which L
Jp
O+(r∞; E) is the log-derivative matrix on the out-going waves at r=r∞, where r∞

is a value large enough for VJp(r)≈diagVJp(r) at r≥r∞. φ is a vector of arbitrary functions

and
(
φ|ψ

)
denotes the integral

∫∞

0
φ†(r)ψ(r) dr. The matrix L

Jp
O+(r∞; E) is taken here in a

WKB form,

L
Jp
O+(r∞; E) = ıkJp(r∞; E)−

1

2

d

dr
lnkJp(r∞; E) , (5)

where kJp(r∞; E) is a diagonal matrix built of the wave-number functions
kJpsΩ (r; E)=[2µE−2µV Jp

sΩ,sΩ
(r)]1/2 with Im kJpsΩ<0 (>0) for Re [. . .]>0 (<0).



Obviously, EJp
n , ΓJp

n , and ΨJp(r; EJp
n ):=ΨnJp(r) are, respectively, the energy, the energy

width, and the vector of radial functions of 2J+1 degenerate rovibronic states nJMp, with
M=−J, . . . , J being the magnetic quantum number associated with J. The formal index n
can be replaced with approximate quantum numbers sΩ and v, the former being the label of
dominating component of ΨnJp(r) and the latter characterizing the oscillatory r dependence
of this component. Alternatively, the symbol Fi with i=1, . . . , 2S+1 and the quantum
number N of the total angular momentum exclusive of spin are used to label the rotational
levels of multiplet states. In cases of the triplet states of interest here the conversion to this
labeling is: 3ΠΩ J → 3ΠF3−ΩN=J−Ω+1 and 3Σ+

ΩJp→
3Σ+F3+(p−3)Ω/2N=J+1+p−3

2
Ω.

Of interest are all levels nJp (states nJMp ) obtainable from the model whose widths
ΓJp
n are below 10.6 cm−1, i.e. lifetimes longer than 0.5 ps. In dissociation of the ion from

these levels (states), three different fragmentation channels, more precisely, combinations of
states of the C+ and O+ fragments, are possible. The thresholds of the channels, denoted
here by εc with c=0, 1, and 2, are the common asymptotes of the potentials Vs of the states
s=X,3Σ−, s=a, b, A, and s=d, respectively. The lowest threshold lies11 5.229 eV below the
bottom of the well in the potential VX , where zero of energy is placed, and the two higher
thresholds are12,13: ε1=ε0+3.325 eV, and ε2=ε1+1.7 eV. The kinetic energy released (in the
centre-of-mass frame) upon dissociation of the ion being in state nJMp,

KER(nJMp) =
∑

c

pnJpc (EJp
n − εc) :=

∑

c

pnJpc enJpc , (6)

depends on branching into the accessible fragmentation channels c,
∑

c p
nJp
c =1. The deter-

mination of the channel population probabilities pnJpc or, equivalently, of the partial widths
ΓJp
n,c=p

nJp
c ΓJp

n within the Siegert-quantization formalism14 consists in exploitation of the con-
tinuity equation for the spatial probability density and probability flux associated with the
function exp(−ıEJp

n t)ΨnJp(r). The formula for pnJpc is

pnJpc =

(
IcΨ

nJp |C(r∞) IcΨ
nJp

)
(
ΨnJp |C(r∞)ΨnJp

) , (7)

where C(r; r∞) represents the flux operator15 through the surface r=r∞ (of sphere in the
space of relative configurations of the nuclei),

C(r; r∞) =
1

2µ
[δ(r−r∞)pr + prδ(r−r∞)] , (8)

the average of this operator standing in the denominator of Eq. (7) is the total flux through
the surface, and the average in the nominator — the flux going into the channel c, as Ic
sets to zero all components ΨnJp

sΩ
(r) with s/∈c. Evaluation of these averages requires only

the values of the functions on the surface since their derivatives are specified there by the
boundary condition (3), viz.,

(
ΨnJp |C(r∞)ΨnJp

)
=

1

2µı
ΨnJp †(r∞)LJp

O+(r∞; EJp
n )ΨnJp(r∞) + h.c. (9)

The problem (1)–(3) was solved numerically for energies and total widths of the rovibronic
states with the procedure described in Ref. 4. The extension of the procedure needed for
evaluation of the partial widths, consisting mainly in adaptation of some algorithms of the
generalized log-derivative method16,17, is described in Supplementary Material.



III. SOME GLOBAL CHARACTERISTICS

OF THE ROVIBRONIC STATES

The model supports about 22 thousands of resonance levels nJp (above 2 millions of nJMp
states) which live longer than the assumed lower limit of 0.5 ps. The range of energy
covered by these levels extents from 5.3 to about 13.5 eV above the lowest atomic limit.
The maximum value of the number J is 189. The composite index n=(sΩ v) runs over 93
different vibronic states with the maximal value of v being 11, 22, 22, 15, 7, and (7, 2) is the
states s=X 3Π, a 1Σ+, b 1Π, A 3Σ+, c 1∆, and the double-well d 1Σ+, respectively. Several
histograms are defined here to characterize globally this resonance set

• The energy density of states having lifetimes in a range ∆τ=[tlow, thigh]

ρ(E; ∆τ) =
1

∆E

∑

i

Ni(∆τ) Θ(Ei−E) Θ(E−Ei−∆E) , (10)

where Θ(x) is the Heaviside step function and Ni(∆τ) is the number of states with
lifetimes in the ∆τ and energy in the interval [Ei−∆E,Ei],

Ni(∆τ) =
∑

Jp

∑

M

∑

n

P(nJMp) Θ(Ei−E
Jp
n ) Θ(EJp

n −Ei−∆E)

× Θ(τJpn −tlow) Θ(thigh−τ
Jp
n ) ; (11)

P(nJMp) denotes a weight with which the indicated state is included. Two basic
choices of P(nJMp) of are:

PDOS(nJMp)=1 and PDOL(nJMp)=P(M ; J) with
∑

M

P(M ; J)=1 . (12)

With the first choice, ρ(E; ∆τ) is the ‘true’ density of states and is therefore denoted
as DOS(E; ∆τ). The second choice gives ρ(E; ∆τ) the meaning of density of nJp
levels; so, the acronym DOL is used.

• The spectra of kinetic energy released from decay of states in sets characterized by
different choices of ∆τ and P,

κ(e; ∆τ) =
1

∆e

∑

i

ni(∆τ) Θ(ei−e) Θ(e−ei−∆e) ; (13)

ni(∆τ) denotes the number of states with lifetimes in the ∆τ whose decay gives the
kinetic energy e ∈ [ei−∆e, ei],

ni(∆τ) =
∑

Jp

∑

M

∑

n

P(nJMp)
∑

c

pnJpc Θ(ei−e
nJp
c ) Θ(enJpc −ei−∆e)

× Θ(τJpn −tlow) Θ(thigh−τ
Jp
n ) ; (14)

pnJpc and enJpc denote, as in Eq. (6), the probability of decay of state nJMp into
channel c and the kinetic energy released in this decay, respectively. Insertion of
PDOS or PDOL for the P(nJMp) in Eq. (14) gives the two main examples of the KER
spectra, hereafter denoted by symbols KERS and KERL, respectively, which will be
presented in this study. Analysis of these examples will provide information on how
much particular groups of the rovibronic states can possibly contribute to intensity of
the κ(e; ∆) spectrum in different regions of e. This information will be next exploited in
attempts to reproduce the shapes of the spectra recorded in the referred experiments.



IV. RESULTS
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(a) N(τ∈[tmin, t]) — the number of rotation-vibration levels of the 12C16O++ ion in the X 3Π, a 1Σ+,

b 1Π, and A 3Σ+ electronic states with lifetimes in the [tmin, t] range, shown as function of t increasing up

to t0=91627 s which is the lifetime of the lowest level of the ion, X v=0F1 N=1f , at E0=0.08127 eV. The

values of N(τ∈[tmin, t0]) for tmin=0.5 ps, 5 ns, 1 µs, and 1 ms are 20121, 2129, 726, and 279, respectively.

Not counted in the plot are the levels X v=0−6F3 N=1f for which τ≫t0, see Table BI in Supplementary

Material. Thus, N(τ≥0.5ps) — the number of all levels in the four states of the ion with lifetimes longer

than 0.5 ps is 20128. The highest level in this set, Av=0F1 N=163, lies at Emax=8.282 eV. [Zero of

E is at the bottom of the X state potential well, the lowest dissociation limit is ε0= − 5.229 eV.] The

colored histogram represents the related log-lifetime spectrum, i.e. N(τ∈[tmin, t]) =
∫ log t

log tmin

dN/dλ dλ.

From position and shape of its peak one infers that about one half of the number N(τ≥0.5ps) are levels

from the narrow lifetime range of 20 − 200 ps.

(b) The log-lifetime spectrum resolved into contributions of each of the four states included in the spec-

trum of panel (a) and supplemented with contributions of states c 1∆ and d 1Σ+. The integrated value

N(τ∈[0.5 ps, 50 ns]) is enlarged by about 4.4% by these contributions.

(c) The number of levels as function of the rotational quantum number J ,
189∑
J=0

N(J ; τ≥0.5ps)=20128.

The strips show contributions of the particular electronic states assigned with colors as in panel (b).
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Widths of rotational levels as functions of their energy in

selected vibronic states:

(a) the X 3Π v=0, 3, 10 states. For each v, six curves are

drawn by joining the energy-width values of FiNp levels

with fixed number Fi (i=1, 2, or 3) and parity p (=e or f).

The symbols on the curves represent selected individual

levels; the colored numbers are their N values.

(b) the b 1Π v=0, 6, 11, 21 states. For each v, joined into one

curve are the energy-width values of J levels of given par-

ity p. The colored numbers near the symbols are J values of

selected individual levels. In both panels, the straight line

parts of the curves, on their high N or J ends, represent

rapidly increasing participation of tunneling in the decay

of the ion from these levels. Information on partial widths

for this decay pathway is given in Supplementary Material

(Fig. A3c, Table BIII).
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(a) Widths of rotational levels as functions of

their energy in selected vibrational states of the

electronic state a 1Σ+. (b) The width func-

tion Γ(EJ ) for the state a 1Σ+ v=0 plotted to-

gether with three functions each of which ac-

counts for only one decay pathway: (i) the tun-

neling through the barriers of the effective po-

tentials V J
a (r), see Fig. A1b, or (ii)-(iii) the pre-

dissociation due to crossing and SO coupling of

the V J
a curves with the curves V J

s of one state,

s=3Σ− or s=X3Π. The sum of the three func-

tions nearly equals the Γ(EJ ) function in its high

J part. The large deviations occurring in the

part for J∈[0,∼100] are a manifestation of the

fact that the a v=0 J levels in this range decay

indirectly, via the a→X→3Σ− transitions. Of all

other levels of the ion determined in this work,

only the levels a v=1 J<95 and a v=2 J<80 ap-

pear to decay similarly, i.e. their widths cannot

be approximated by sums of single-path contri-

butions, see Figs. A3b and A3e.

Widths of A 3Σ+ vFiN levels for i=1, 2, 3 in

three selected v states as functions of their en-

ergy: (a) total widths and (b) partial widths

giving the probabilities Γ1/Γ for decay into the

first excited fragmentation channel. In the A

state case, this channel is reached not only by

tunneling from high N levels through barriers of

the effective potentials V J
A with J=N,N±1, see

Fig. A1, but also by predissociation to the state

b 1Π from all v≥5N levels and from majority of

v<5N levels which lie close or well above the

barrier-top of the respective potential V J
b .
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(a) DOS(E) — the density of 2S+1ΛΩvJMp states having lifetimes in the range specified in the legend,

represented by the shaded histogram, and KERS(e) — the kinetic energy release spectrum resulting from

the DOS as defined in Eqs. (13)-(14) and (12), represented by the histogram drawn with the red line.

The area encompassed by each histogram gives the total number of contributing states,
∑

iNi=
∑

i ni,

multiplied by ∆E=∆e. Above two millions of states 2S+1ΛΩvJMp contribute to the quantities. Basic

information on them is given in the upper part of the panel: the labels of the electronic states and the

lines with ticks showing energies (E or E−ε0 if read on the bottom x axis) of the levels v=0, . . . , J=Ω

within these states.

(b) A partitioning of the KERS(e) according to magnitude of the number J of the contributing states.

In the inset: distribution of J numbers among the states, NS(J) where NS:=
∑
i

ni
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Resolutions of the distributions DOS(E) and KERS(e) shown in Fig. 5(a) into parts contributed by each

of the included electronic states. In the inset: contributions of the particular vibronic states on the

interval of e indicated by the arrows around the maximum at ∼7.2 eV.
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Same as Fig. 5 for the density of 2S+1ΛΩvJp levels, DOL(E), and for the KER spectrum resulting from

it, KERL(e). In this spectrum, the position of maximum is shifted down, to ∼6.8 eV, and the feature

around e=8.5 eV is more pronounced than in the KER spectrum resulting from the DOS. The histogram
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inset: the distribution of J numbers among the levels, N(J), here
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the NS(J) shown in Fig. 5b as N(J)=NS(J)/(2J+1).
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Same as Fig. 6 for the distribution DOL(E) and the related KERL(e).
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Examples of distributions κ(e; ∆τ) to compare with the experimental spectra: KERS̃(e)

(blue) — with the spectrum of Ref. 1, KERL̂(e) (red) and KERS(e) (pink) — with

the spectrum of Ref. 2, obtained by using state-populations P
D̃OS

(nJMp)=P̃(n)P̃(J),

P
D̂OL

(nJMp)=P̂(n) 1
2J+1

P̂(J), and PDOS(nJMp)=P̂(n)P̌(J), respectively, in which the
factors P(n) eliminate some vibronic states n=(s v) with high vibrational excitation and
the factors P(J) modify (generally reduce) the participation of (high J) rotational states.

Specifically, P̃(n)=0 for X v>6, a v>18, b v>16, Av>11, otherwise P̃(n)=1, and P̂(n)
eliminates only two X v states less, i.e. with v>8. In effect of these eliminations, the total

number of states NS listed in Fig. 5 decreases to values ÑS=2111538 and N̂S=2183613, re-
spectively. The corresponding populations of J states, ÑS(J) and N̂S(J), are shown by the
gray, almost indistinguishable, curves in the inset. The blue, red, and pink N(J) curves

in the inset show the modified populations ÑS(J)P̃(J), N̂S(J) 1
2J+1

P̂(J), and N̂S(J)P̌(J),
respectively. All the modifying factors have the form

P(J) = C

{
exp[−a(J−Jc)

2] with a=α1 for J<Jc and a=α2 for J≥Jc ,

exp[−α2(J−Jc)
2 − α3(J−Ja)] for J≥Ja>Jc ,

but differ in the parameter values: (α̃1, α̃2, α̃3)=(2×104, 10−4, 0), J̃c=70, and C̃

assures the normalization
189∑
J=1

P̃(J)=1; (α̂1, α̂2, α̂3)=(0, 7.5×10−2, 0), Ĵc=82, Ĉ=1;

(α̌1=α̌2, α̌3)=(2.75×10−4, 0.1), (J̌c, J̌a)=(20, 88) and Č assures equal areas under the
red and pink curves. The areas are listed in the colored labels.



V. DISCUSSION

All the distributions DOS, DOL, KERS, and KERL presented in Fig. 5-8 were constructed
to account for states of the ion which have lifetimes in the range ∆τ=[100 ps/J , 5 ns].
This range was chosen to adjust to the limitations mentioned in the experimental papers1,2.
Still, the two KER distributions remain idealizations because of the used state-populations.
However, even with the unrealistic Ps, the distributions KERL(e) and KERS(e) capture
some likeness to the two experimental spectra presented in Ref. 2 and in Refs. 1, hereafter
referred to as PRL18 and JCP18 spectrum, respectively. Namely, the maximum position in
the KERL(e), at e=6.8 eV, is not far from the position in the PRL18 spectrum, at 6.5 eV,
the shoulders in the right and left wings appear at e≈8 eV and e≈4.5 eV, respectively, i.e.
at the same positions as in the experimental spectrum. Inconsistent with the experiment
are mainly the relative heights of the three features in the KERL. In turn, the distribution
KERS(e) resembles rather the JCP18 spectrum, mostly in that its maximum position is
shifted to a larger e value (to 7.2 eV versus observed 7.5 eV) and also in that it is much
broader than the PRL08 spectrum.

The analysis of contributions to the KERL(e) and KERS(e) of the particular electronic,
vibronic and rotational states of the ion in Figs. 5-8 and A5-A8 reveals several facts relevant
to the explanation of the spectra obtained in the referred experiments. The most interesting
finding concerns the origin of the feature occurring in the low e wing of the PRL18 spectrum.
In contrast to what seemed likely in the preliminary explanations2, the states X(v=0−2)
and a(v=0−1) do not participate in forming this feature. The low J levels of the states,
though close in energy, live much longer than the allowed upper limit of a few nanoseconds.
Tunneling from some levels of the states c 1∆ and d 1Σ+ appears a more likely origin of the
feature.
Rather unexpected was also the present finding that levels of the state A 3Σ+ contribute so
significantly to the peaks in the PRL18 and the JCP18 spectra, especially to their lower
e sides. Significant predissociation to the first excited fragmentation channel, C+(2P) +
O+(2D), is responsible for this fact. As expected, in turn, the feature in the PRL18 spec-
trum with a clear edge at e≈8 eV and the part of the broad peak between 8 and 9 eV in
the JCP18 spectrum have indeed significant contributions from the states Av=1−4, but
not from the state Av=0. Rotational levels of the latter state with J values up to ∼80
are outside the allowed lifetime range, cf. Fig. A3d. The edge occurring also clearly in the
theoretical KERL(e) coincides with the energy E of J=0, 1 levels in the Av=1 state, cf.
Fig. A6.
These observations suggests some modifications of the populations factors PDOL and PDOS

(though not any sound justification for them) which can make the distributions KERL(e)
and KERS(e) more similar to the experimental spectra. Three such ways are demonstrated

in Fig. 9. Positive effects are achieved, particularly in the case of the distribution KERL̂(e).
Considering the modification made in this case, one may conjecture that highly excited rovi-
brational levels of the four lowest electronic states of the CO2 ion are unlikely to contribute
to the PRL18 spectrum.
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