Staircase Partitions and S-functions

- Let (α) = (a, a − 1,..., 1) define a staircase partition. Such a partition is of weight
 ω_α = a(a + 1)/2.
- Let $s_{a...}$ designate an *S*-function indexed by a staircase partition whose largest part is *a*.
- Let $(\mu) = (\mu_1, \mu_2, ...)$ be a partition of weight $\omega_{\mu} \leq a + 1$ and be the index of a S-function s_{μ} .
- Let $c_{\alpha,\mu}^{\gamma}$ be Littlewood-Richardson coefficients such that

$$s_{a...} \cdot s_{\mu} = \sum_{\gamma} c_{a...,\mu}^{\gamma} s_{\gamma} \tag{1}$$

1. Prove that the maximal Littlewood-Richardson coefficients are given by

$$c_{a\dots,\mu}^{\gamma_{max}} = \dim(\mu) \tag{2}$$

where $dim(\mu)$ is evaluated for the symmetric group $S_{\omega_{\mu}}$.

2. Prove that the number $n(\gamma_{max})$ of distinct $s_{\gamma_{max}}$ is

3. Show that

$$s_{a\ldots} \cdot s_{a(a+1)/2-1\ldots} \supset dim(a\ldots) s_{a(a+1)/2\ldots} \tag{4}$$

Example

Use \mathbf{SCHUR}^{TM} to show that

$$s_{7...} \cdot s_{27...} \supset 48,608,795,688,960s_{28...}$$

NB. Use **SCHUR**TM to compute dim(7...) in the REP-mode for the group S(28). Do not try to explicitly evaluate the S-function product!

Generalisation to Non-Staircase Partitions

The above results can be readily generalised as follows:-

- Let $(\lambda) = (\lambda_1, \lambda_2, ...)$ be a partition with k distinct parts and $(\mu) = (\mu_1, \mu_2, ...)$ be a partition of weight $\omega_{\mu} \leq k + 1$ then
- 4. The maximal Littlewood-Richardson coefficients $c_{\lambda,\mu}^{\gamma_{max}}$ are given by

$$c_{\lambda,\mu}^{\gamma_{max}} = \dim(\mu) \tag{5}$$

where $dim(\mu)$ is evaluated for the symmetric group $S_{\omega_{\mu}}$.

5. The number $n(\gamma_{max})$ of distinct $s_{\gamma_{max}}$ is

$$n(\gamma_{max}) = \binom{k+1}{\omega_{\mu}} \tag{6}$$

Example

Using \mathbf{SCHUR}^{TM} one readily finds

 $s_{32} \cdot s_{8643^221} \supset$

$5s_{97543^{2}1}$	$+ 5s_{975432^2}$	$+ 5s_{9754321^2}$	$+ 5s_{9753^{3}2}$
$+ 5s_{9753^{3}1^{2}}$	$+ 5s_{9753^{2}2^{2}1}$	$+ 5s_{974^23^22}$	$+ 5s_{974^23^{2}1^2}$
$+ 5s_{974^232^{21}}$	$+ 5s_{9743^{3}21}$	$+ 5s_{96543^22}$	$+ 5s_{96543^21^2}$
$+ 5s_{965432^{2}1}$	$+ 5s_{9653^{3}21}$	$+ 5s_{964^23^221}$	$+ 5s_{87543^{2}2}$
$+ 5s_{87543^{2}1^{2}}$	$+ 5s_{875432^{21}}$	$+ 5s_{8753^{3}21}$	$+ 5s_{874^23^221}$
$+ 5s_{86543221}$			

Note that there are precisely 21 distinct partitions as predicted by Eq. (6).