Staircase Partitions and S-functions

- Let $(\alpha)=(a, a-1, \ldots, 1)$ define a staircase partition. Such a partition is of weight $\omega_{\alpha}=a(a+1) / 2$.
- Let $s_{a \ldots . .}$ designate an S-function indexed by a staircase partition whose largest part is a.
- Let $(\mu)=\left(\mu_{1}, \mu_{2}, \ldots\right)$ be a partition of weight $\omega_{\mu} \leq a+1$ and be the index of a S-function s_{μ}.
- Let $c_{\alpha, \mu}^{\gamma}$ be Littlewood-Richardson coefficients such that

$$
\begin{equation*}
s_{a \ldots \ldots} \cdot s_{\mu}=\sum_{\gamma} c_{a \ldots, \mu}^{\gamma} s_{\gamma} \tag{1}
\end{equation*}
$$

1. Prove that the maximal Littlewood-Richardson coefficients are given by

$$
\begin{equation*}
c_{a \ldots, \mu}^{\gamma_{\max }}=\operatorname{dim}(\mu) \tag{2}
\end{equation*}
$$

where $\operatorname{dim}(\mu)$ is evaluated for the symmetric group $\mathcal{S}_{\omega_{\mu}}$.
2. Prove that the number $n\left(\gamma_{\max }\right)$ of distinct $s_{\gamma_{\max }}$ is

$$
\begin{equation*}
n\left(\gamma_{\max }\right)=\binom{a+1}{\omega_{\mu}} \tag{3}
\end{equation*}
$$

3. Show that

$$
\begin{equation*}
s_{a \ldots} \cdot s_{a(a+1) / 2-1 \ldots} \supset \operatorname{dim}(a \ldots) s_{a(a+1) / 2 \ldots} \tag{4}
\end{equation*}
$$

Example

Use $\mathbf{S C H U R}{ }^{T M}$ to show that

$$
s_{7 \ldots} \cdot s_{27 \ldots} \supset 48,608,795,688,960 s_{28 \ldots}
$$

NB. Use SCHUR ${ }^{T M}$ to compute $\operatorname{dim}(7 \ldots)$ in the REP-mode for the group $S(28)$. Do not try to explicitly evaluate the S-function product!

Generalisation to Non-Staircase Partitions

The above results can be readily generalised as follows:-

- Let $(\lambda)=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ be a partition with k distinct parts and $(\mu)=\left(\mu_{1}, \mu_{2}, \ldots\right)$ be a partition of weight $\omega_{\mu} \leq k+1$ then

4. The maximal Littlewood-Richardson coeeficients $c_{\lambda, \mu}^{\gamma_{\max }}$ are given by

$$
\begin{equation*}
c_{\lambda, \mu}^{\gamma_{\max }}=\operatorname{dim}(\mu) \tag{5}
\end{equation*}
$$

where $\operatorname{dim}(\mu)$ is evaluated for the symmetric group $\mathcal{S}_{\omega_{\mu}}$.
5. The number $n\left(\gamma_{\text {max }}\right)$ of distinct $s_{\gamma_{\text {max }}}$ is

$$
\begin{equation*}
n\left(\gamma_{\max }\right)=\binom{k+1}{\omega_{\mu}} \tag{6}
\end{equation*}
$$

Example

Using $\mathbf{S C H U R} \mathbf{R}^{T M}$ one readily finds

```
s32}\cdot\mp@subsup{s}{8643221 }{2
```

$5 s_{97543^{21}}$	$+5 s_{975432}{ }^{2}$	$+5 s_{9754321^{2}}$	$+5 s_{9753{ }^{3} 2}$
$+5 s_{97533^{3}}$	$+5 s_{975322^{21}}$	$+5 s_{974{ }^{232}}$	$+5 s_{974{ }^{232}{ }^{2}}$
$+5 s_{974{ }^{2} 32^{21}}$	$+5 s_{9743^{3} 21}$	$+5 s_{96543^{22}}$	$+5 s_{96543{ }^{2} 1^{2}}$
$+5 s_{965432^{2} 1}$	$+5 s_{96533^{321}}$	$+5 s_{964^{23} 3^{21}}$	$+5 s_{8754322}$
$+5 s_{87543^{2} 1^{2}}$	$+5 s_{875432{ }^{21}}$	$+5 s_{8753{ }^{3} 21}$	$+5 s_{874{ }^{23221}}$
$+5 s_{86543^{2} 21}$			

Note that there are precisely 21 distinct partitions as predicted by Eq. (6).

