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Claude Itzykson’s Letter

Indeed you seem to have discovered a striking phenomenon which

deserves an explanation ...

The subject seems to me to be still widely open = For instance,
is there a rule for the signs of the coefficients?

What is the meaning of the vanishing terms you have found?

What is their general feature?
Is it significant that you found them starting at N = 87 etc..
Claude Itzykson March 1 1994
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Expansion of the Laughlin wavefunction

e Laughlin (1983) described the fractional quantum Hall effect in

terms of a wavefunction

N N
m m 1
Laughlin(’zl? s 7ZN) — H(Z’I» o Zj)z i exXp <_§ Z |ZZ|2> (1)

i<j i=1

The Vandermonde alternating function in N variables is defined
as

Vi(zi,...,2N) H(zz — 2j)

\I]Laughlin _ V2m _ 2 :C)\S)\
|4
AFn

where n = mN (N — 1) and the sy are Schur functions.
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Coeflicients of the expansion

e The coefficients cy are signed integers. Henceforth we consider
the case where m = 1. The partitions, (A), indexing the Schur
functions are of weight V(N — 1). Algorithms exist for
computing the expansions and complete results have been
obtained for NV < 10. For a given NN the partitions are bounded
by a highest partition (2N — 2,2N —4,...,0) and a lowest
partition ((N — 1)V ~1) with the partitions being of length N and
N — 1. Let

k
ne =Y An—i—k(k+1)k
1=0
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Admissible Partitions

e Di Francesco et al define admissible partitions as satisfying Eq(4)
with all np > 0. They computed the number of admissible
partitions Ay for N < 29 and conjectured that Ay was the
number of distinct partitions arising in the expansion, Eq(3),

provided none of the coefficients vanished.

e The conjecture fails for N > 8. We find the number of admissible
partitions associated with vanishing coefficients as

66, (N = 10) 389
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Admissible partitions whose coeflicients vanish

e Reversed partition symmetry

e The coefficients of sy and s, are equal if
(A) = (N —1) = Ax,.. 2N — 1) — Ay) (5)

e We list the 8 partitions for NV = 8 as reverse pairs

{13 11 985241} {13 10 926531}

(Q1)
{13 11 985422} {13 10 987531}  (Q2)
{13 11 976541} {12 10296531} (Q3)
{12 11 972421} {12 10?7%532} (Q4)
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The g—discriminant

o Let gx = (qx1,qxs,...,qryN) and the g—discriminant of x be
Dy(gx) = ]] (2 —qx))
1<i£j<N

and

Ry(gx)= ]| (@i—az)gmi—z;) =) AM)sa(x)
A

1<izj<N

So that
Vi (x) = — T Ry (1;x)
1<i<j<N

Introduce g—polynomials such that

Ry(g:x) = Y M@)sa(x)

A
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The g—polynomials

_1\N(N—-1)/2 2
Ry(g:x) = S — Xocv_nn (0D + (=N =)

XS(N—1)N /p(X)8,7 (%)

Such expansions have been evaluated as polynomials in ¢ for all
admissible partitions for N = 2...6 with many examples for

N =18,09.
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Some g—polynomials

q
—(¢*+q+1)
q3

—¢*(¢* +q+1)

+q(¢* +q+1)(¢* + 1)

—(@+q+1)(¢*+¢+qg+1)

q6

—¢°(¢* +q+1)

+¢*(¢* +q+1)(¢* +1)

{417} + {3%}
(321}

{642}
{641} + {63?} + {522}
{6321} + {543}
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N = 8 g—polynomials where c)(1) =0

The g—polynomials for the four pairs of partitions designated earlier

as Q(1)...Q(4) are

) —¢'"(? =g+ DA+ )%+ g+ 1)°(1 —g)*

3
4

+¢'%(¢® —q+ D*(¢ + 1D)°(¢* + ¢+ 1)°(L — ¢)*
+¢* (@ — g+ 1)* (¢ +q+1)°(1—¢g)?
x (g% 4+ ¢° + 3¢ +4¢° + ¢° + 4q* + 3¢* +q+ 1)

(1)
(2)  +¢"%(® —qg+1)*(* +1)(¢* + g+ 1)°(1 —¢)*
(3)
(4)

Note the factor (g — 1)%.
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Some Conjectures

o If a g—polynomial is of the form (—1)?¢?Q(q) then under
N —=N+1

¢— ¢, p—=p+N, Qg — Qq), {A\} = {2N — 2,7}

e Define

QS(N) =) cxlq)

A

[N/2] [(N-1)/2]

[[(-3z+1) ][] @6z+1)
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Sum of Squares Problem

e Di Francesco etal establish the remarkable result that the sum of
the squares of the coefficients of the second power of the

Vandermonde with ¢ =1 is

(3N)!
N1(3)N

What is the corresponding result for the g—polynomials?

11
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e For N = 4 one finds

q24 + 6q23 + 22q22 + 58q21 + 128q20 +242q19
+418¢® 4 646¢'7 + 929¢'6 + 1210¢"° + 149044
+1670¢" + 1760¢'2 + 1670¢'" + 149040 + 1210¢°

+646¢% + 418¢°% + 242¢° + 128¢* + 58¢> + 22¢> + 6q + 1

Note the polynomial is symmetrical and unimodal!

12
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e Admissible partitions and the square of the

Vandermonde determinant

e Brian G Wybourne, Instytut Fizyki, Uniwersytet Mikotaja
Kopernika Poland

e The Vandermonde alternating function in N variables is defined

as
N

V(zi,...,2N) = H(Z,,, — 2j)

1<J

\IjLaughlin _ V2m by

— C S\

v
AFEn

where n = mN (N — 1) and the sy are Schur functions.

14



xroup24, Paris, France, July 2002

Principal Topics Considered

Determination of the signed integers ¢y N =2, ...

Admissible partitions and zero coefficients

The g—discriminant and g—polynomials ¢y (q)

A conjecture

[N/2] [(N-1)/2]

QS(N)=> el =[] (-3z+1) ][] 6z+1)

Sum of squares - the g—polynomial is symmetrical and unimodal
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