Admissible partitions and the square of the Vandermonde determinant

Brian G Wybourne

Instytut Fizyki,

Uniwersytet Mikołaja Kopernika - Poland

July 2002

Dedicated to the memory of Claude Itzykson (1938-1995)

Dear Pr. Wybourne

We have just received today your very interesting contribution to the expansion of (powers of) the 3 discriminant.

Judeed your seem to have discovered quite a striking phenomenon which deserves an explanation — Our preprint was thought—too mathematical for Nucl. Phys. B. so it is resolvaited to Journ. Mod. Phys. A published in finfopore. I hope it will be found suitable there—

The subject seems to me to be still widely ofen = For instance is there a rate for the signs of the coefficients? What is the meaning of the variability terms you have

found. What is their general feature: Is it significant that you found them starting at N=8? etc...

Rest wishes

Claude Hoch

Claude Itzykson's Letter

- Indeed you seem to have discovered a striking phenomenon which deserves an explanation ...
- The subject seems to me to be still widely open = For instance, is there a rule for the signs of the coefficients?
- What is the meaning of the vanishing terms you have found?
- What is their general feature?
- Is it significant that you found them starting at N=8? etc..
- Claude Itzykson March 1 1994

Expansion of the Laughlin wavefunction

• Laughlin (1983) described the fractional quantum Hall effect in terms of a wavefunction

$$\Psi_{Laughlin}^{m}(z_1, \dots, z_N) = \prod_{i < j}^{N} (z_i - z_j)^{2m+1} \exp\left(-\frac{1}{2} \sum_{i=1}^{N} |z_i|^2\right)$$
(1)

The Vandermonde alternating function in N variables is defined as

$$V(z_1, \dots, z_N) = \prod_{i < j}^{N} (z_i - z_j)$$
 (2)

$$\frac{\Psi_{Laughlin}}{V} = V^{2m} = \sum_{\lambda \vdash n} c^{\lambda} s_{\lambda} \tag{3}$$

where n = mN(N-1) and the s_{λ} are Schur functions.

Coefficients of the expansion

• The coefficients c_{λ} are signed integers. Henceforth we consider the case where m=1. The partitions, (λ) , indexing the Schur functions are of weight N(N-1). Algorithms exist for computing the expansions and complete results have been obtained for $N \leq 10$. For a given N the partitions are bounded by a highest partition $(2N-2,2N-4,\ldots,0)$ and a lowest partition $((N-1)^{N-1})$ with the partitions being of length N and N-1. Let

$$n_k = \sum_{i=0}^k \lambda_{N-i} - k(k+1)k = 0, 1, \dots, N-1$$
 (4)

Admissible Partitions

- Di Francesco et al define admissible partitions as satisfying Eq(4) with all $n_k \geq 0$. They computed the number of admissible partitions A_N for $N \leq 29$ and conjectured that A_N was the number of distinct partitions arising in the expansion, Eq(3), provided none of the coefficients vanished.
- The conjecture fails for $N \geq 8$. We find the number of admissible partitions associated with vanishing coefficients as

$$(N=8)$$
 8, $(N=9)$ 66, $(N=10)$ 389

Admissible partitions whose coefficients vanish

- Reversed partition symmetry
- The coefficients of s_{λ} and s_{λ_r} are equal if

$$(\lambda_r) = (2(N-1) - \lambda_N, \dots, 2(N-1) - \lambda_1)$$
 (5)

• We list the 8 partitions for N = 8 as reverse pairs

$$\{13\ 11\ 985^241\}$$
 $\{13\ 10\ 9^26531\}$ $(Q1)$
 $\{13\ 11\ 9854^22\}$ $\{13\ 10\ 987531\}$ $(Q2)$
 $\{13\ 11\ 976541\}$ $\{12\ 10^296531\}$ $(Q3)$
 $\{12\ 11\ 97^24^21\}$ $\{12\ 10^27^2532\}$ $(Q4)$

The q-discriminant

• Let $q\mathbf{x} = (qx_1, qx_2, \dots, qx_N)$ and the q-discriminant of \mathbf{x} be

$$D_N(q; \mathbf{x}) = \prod_{1 \le i \ne j \le N} (x_i - qx_j) \tag{6}$$

and

$$R_N(q; \mathbf{x}) = \prod_{1 \le i \ne j \le N} (x_i - qx_j)(qx_i - x_j) = \sum_{\lambda} c^{\lambda}(q) s_{\lambda}(\mathbf{x})$$
 (7)

So that

$$V_N^2(\mathbf{x}) = \prod_{1 \le i < j \le N} (x_i - x_j)^2 = R_N(1; \mathbf{x})$$
 (8)

Introduce q-polynomials such that

$$R_N(q; \mathbf{x}) = \sum_{\lambda} c^{\lambda}(q) s_{\lambda}(\mathbf{x}) \tag{9}$$

The q-polynomials

$$R_N(q; \mathbf{x}) = \frac{(-1)^{N(N-1)/2}}{(1-q)^N} \sum_{\nu \subseteq (N-1)^N} ((-q)^{|\nu|}) + (-q)^{N^2 - |\nu|} \times s_{(N-1)^N/\nu}(\mathbf{x}) s_{\nu'}(\mathbf{x})$$

Such expansions have been evaluated as polynomials in q for all admissible partitions for N=2...6 with many examples for N=7,8,9.

Some q-polynomials

$$N=8$$
 q-polynomials where $c_{\lambda}(1)=0$

The q-polynomials for the four pairs of partitions designated earlier as Q(1)...Q(4) are

$$Q(1) -q^{17}(q^2-q+1)^2(q^2+1)^2(q^2+q+1)^5(1-q)^4$$

$$Q(2)$$
 + $q^{16}(q^2-q+1)^2(q^2+1)(q^2+q+1)^6(1-q)^4$

$$Q(3) +q^{16}(q^2-q+1)^2(q^2+1)^3(q^2+q+1)^5(1-q)^4$$

$$Q(4) +q^{14}(q^2 - q + 1)^2(q^2 + q + 1)^5(1 - q)^4$$

$$\times (q^{10} + q^9 + 3q^8 + 4q^6 + q^5 + 4q^4 + 3q^2 + q + 1)$$

Note the factor $(q-1)^4$.

Some Conjectures

• If a q-polynomial is of the form $(-1)^{\phi}q^{p}Q(q)$ then under $N \to N+1$

$$\phi \to \phi, \ p \to p + N, \ Q(q) \to Q(q), \ \{\lambda\} \to \{2N - 2, \lambda\}$$

• Define

$$QS(N) = \sum_{\lambda} c_{\lambda}(q)$$

then

$$QS(N) = \prod_{x=0}^{[N/2]} (-3x+1) \prod_{x=0}^{[(N-1)/2]} (6x+1)$$

Sum of Squares Problem

• Di Francesco etal establish the remarkable result that the sum of the squares of the coefficients of the second power of the Vandermonde with q=1 is

$$\frac{(3N)!}{N!(3!)^N}$$

What is the corresponding result for the q-polynomials?

• For N = 4 one finds

$$q^{24} + 6q^{23} + 22q^{22} + 58q^{21} + 128q^{20} + 242q^{19}$$

$$+418q^{18} + 646q^{17} + 929q^{16} + 1210q^{15} + 1490q^{14}$$

$$+1670q^{13} + 1760q^{12} + 1670q^{11} + 1490q^{10} + 1210q^{9}$$

$$+646q^{8} + 418q^{6} + 242q^{5} + 128q^{4} + 58q^{3} + 22q^{2} + 6q + 1$$

Note the polynomial is symmetrical and unimodal!

References

- G V Dunne, Slater Decomposition of Laughlin States, Int. J. Mod. Phys. **B7**,4783 (1993)
- P Di Francesco, M Gaudin, C Itzykson and F Lesage, Laughlin's wave functions, Coulomb gases and expansions of the discriminant

Int. J. Mod. Phys. A9,4257 (1994)

- T Scharf, J-Y Thibon and B G Wybourne, Powers of the Vandermonde determinant and the quantum Hall effect J Phys A:Math. Gen. 27, 4211 (1994)
- This work has benefited from interaction with R C King and J-Y Thibon
- Support from the Polish KBN is acknowledged

- Admissible partitions and the square of the Vandermonde determinant
- Brian G Wybourne, Instytut Fizyki, Uniwersytet Mikołaja Kopernika Poland
- The Vandermonde alternating function in N variables is defined as

$$V(z_1, \dots, z_N) = \prod_{i < j}^{N} (z_i - z_j)$$

$$\frac{\Psi_{Laughlin}}{V} = V^{2m} = \sum_{\lambda \vdash n} c^{\lambda} s_{\lambda}$$

where n = mN(N-1) and the s_{λ} are Schur functions.

Principal Topics Considered

- Determination of the signed integers c_{λ} $N=2,\ldots,10$
- Admissible partitions and zero coefficients
- The q-discriminant and q-polynomials $c_{\lambda}(q)$
- A conjecture

$$QS(N) = \sum_{\lambda} c_{\lambda}(q) = \prod_{x=0}^{[N/2]} (-3x+1) \prod_{x=0}^{[(N-1)/2]} (6x+1)$$

• Sum of squares - the q-polynomial is symmetrical and unimodal