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Groups in Chemistry and Physics

Groups are a natural tool for exploiting symmetry in physical

problems

There are both static geometrical symmetries and dynamical

symmetries

Symmetries may be finite or continuous e.g. Compare a square

with a circle

Symmetries lead to selection rules which tell us what is not

possible - not what is possible

Via the Wigner-Eckart Theorem they lead to the calculation of

matrix elements
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Types of Groups in Applications

Finite Groups 32 Point Groups, 230 Crystallographic Space
Groups, Magnetic Space Groups, Black and White Groups,
Permutation Groups 5,

Finite Groups:- Finite number of group elements, representations
and all representations of finite dimension

Lie groups Infinite number of group elements and of unitary
representations. Examples SO(2), SO(3), SO(4), SO(5), SU(2),
SU(3),50(3,1), SO(4,1), SO(4,2) etc.

H-atom, Harmonic oscillators, Jahn-Teller effect,

Thermodynamic Partition Functions, Maxwell’s Equations etc.
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Compact and Non-Compact Lie Groups

e Compact Lie groups have an infinite number of finite dimensional
unitary irreducible representations. cf. Rotation group SO(3).
Used to describe systems with a finite number of states. e.g.

States of the 3d° electron configuration.

Non-compact Lie groups have an infinite number of unitary
irreducible representations with the important difference - all the
non-trivial unitary irreducible representations are of infinite
dimension. Useful in describing systems having an infinite
number of states. e.g. The complete set of discrete states of a
H-atom. Representations may be discrete or continuous - may be

unbounded from above, below or both.
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Compact and Non-Compact Lie Groups

In making applications we need to be able to:-
Label representations
Compute Group Subgroup Branching Rules

Resolve Kronecker Products and symmetrized powers of

representations

Construct invariants and Integrity bases
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Dynamical Groups

e Bohr’s first paper energy levels of H-atom (in appropriate units)
1 :
E,=—-— with n=12 ..
n
2(n)? degeneracy hidden
e Pauli notes that in a Coulombic central field for a single electron

the Runge-Lenz vector leads to the higher degeneracy and the
degeneracy group for the H-atom is SU(2) x SO(4)

e Much later Barut and Kleinert show that all of the infinite set of
discrete states of a H-atom span a single representation
Hy = {1(0;0)} of a non-compact group SO(4,2) ~ SU(2,2) that
contains the orbital degeneracy group SO(4) as a subgroup
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Dynamical Groups
The SO(4) symmetry is broken for more than one electron

Nevertheless, it can be useful to consider n—electron states
constructed from symmetrized powers of Hy = {1(0;0)}

Using the theory of symmetric functions it has been possible to
develop algorithms for resolving symmetrized powers and
branching rules for both compact and non-compact Lie groups

Hoo (2} = Y (20R20)) (5 —0)

k>0

Hy® {1?} = i{z(% F1;2k+1)) (S=1)

k>0

Knowing the relevant U(2,2) irreps is a significant first step
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Groups and Harmonic Oscillators

The energy levels of a d—dimensional isotropic harmonic
oscillator are given by

d
E,=n+ 5) with n=20,1,2,...

Each level has an orbital degeneracy,D4(n), depending on d,

(n+)(n + 2)

Dl(n)zl, Dg(n):n—l—l, D3( ): 9 N

The orbital degeneracy group of an isotropic d—dimensional
harmonic oscillator is U(d) with the degenerate states spanning

the symmetric representations {n}

The even parity states have n even and the odd parity n odd




Jniversity of Girona, Girona, SPAIN 12 - 20 July 2001

Groups and Harmonic Oscillators

e For N —noninteracting particles in d dimensions the dynamical
group is the metaplectic group Mp(2Nd). The infinite set of

states span the fundamental representation A. Under

Mp(2Nd) — Sp(2Nd,R) A — A, +A_

where A4 are the two basic irreps of Sp(2Nd,R) with D,
contains all the states of even parity and A_ those of odd parity

e Sp(2Nd,R) has a rich subgroup structure. e.g.
Sp(2Nd,R) D Sp(2d,R) x O(N) D U(d) x S(N) D O(d) x S(N)

e With spin the complete dynamical group is SU(2) x Mp(2Nd)
and the degeneracy group is SU(2) x U(d)
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Groups and Harmonic Oscillators

Before one can attempt practical applications one must develop
appropriate algorithms for handling both compact and
non-compact Lie groups

Methods for computing all the relevant branching rules,

Kronecker products, symmetrized powers have been developed

Basic to the whole programme has been the development of
algorithms for calculating group properties in terms of the

combinatorial properties of symmetric functions

Detailed examples of the enumeration of states for 12 particles

have been given elsewhere

10
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Applications for harmonic oscillator many-body

systems

e The symplectic model of nuclei has been extensively studied and
provides a natural link between shell models and collective
models

The symplectic models used for nuclei are largely transferable to

problems involving many-electrons in quantum dots

Symplectic models lead to a natural way of counting states and
as such are a useful tool for computing thermodynamic partition
functions for finite numbers of bosons and fermions and shed
light on relationships between boson and fermion many particle
systems

11
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Thermodynamic Partition Functions for Bosons
and Fermions
e The development of traps that confine a finite number of
ultracold atoms in a harmonic potential requires the development

of thermodynamic partition functions for a finite number N of

non-interacting bosons and fermions

ZNn(B)=Tr (e_BH) B=(kgT)™ !

N
H=>) H,
1=1

the Hamiltonian, the sum of IV identical single particle

Hamiltonians, with a spectrum of energy eigenvalues &£, &5, . ..
(with possible degeneracies)
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Thermodynamic Partition Functions for Bosons
and Fermions

e For a single boson or fermion
5) _ Z e(—B&:)
i=1

e Introduce a set of variables (z) = (x1,x2,...), not necessarily

finite in number with z; = e(=8%)

e Using the properties of symmetric functions we obtain

Z eXz- 121 (o)

jo|=N

where et = 1,67 = (=1)191749) and 2, = [[.s, i™m;!
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Thermodynamic Partition Functions for Bosons
and Fermions
e Thus the canonical partition function for N-noninteracting
bosons or fermions is completely determined by the single

particle partition function. The coeflicients sum to unity for
bosons (+) and to zero for fermions (—). For example:-

Z5(B)F = 135 (2421(58) £ 3021 (48) 21(B) £ 2021 (38) 21 (28)

+2021(38)21(8)% + 1521(28)221(8) £ 1021(28) Z1(8)® + Z1(8)°)

However, this assumes a single spin state. For fermions of spin
s = % the partition function is appropriate to five such fermions
with maximal spin projection Mg = % The complete partition
function ZZ covering the complete set of spin states can be
constructed to give
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Thermodynamic Partition Functions for Bosons
and Fermions

2T =2z](B)+ 2](8)21(B) + 23(B) 25 (B)
+23(8)235(8) + Z{(8)21(B) + Z5(B)

where the Z () indicates that the spin projection is Mg = 2
and Z*(B) a spin projection Mg = — 5. Analogous results can be
constructed for other spin states of both fermions and bosons.
We note the close correspondence with the LL—coupling of

atomic physics.
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Groups and Quantum Dots

e The electrons of a quantum dot are confined in an approximately
parabolic potential. Close relationship with a many-electron

system subject to a harmonic oscillator potential.

o) — _ 10xQ2. _ |2
V(ri,rj) =2V — 5m*Q%|r; — rj
m* electron effective mass and V; and €2 are positive parameters

For an N —electron quantum dot each with a charge —e, a
g—factor g*, spatial coordinates r; and spin components s, ;
along the z—axis with a magnetic field B along the z—axis the
spatial part of the Hamiltonian can be written as

1 6147; . "
Hspa,ce — 2 * Z [pz + c ] + %m w(% Zz |’I°7;|2 + Zi<j V(’I“,,;,’I“j)

(
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Groups and Quantum Dots

e and the spin part as

Hspin — _g*,LLBB Z Sz,

e The momentum and vector potential associated with the ¢« — th

electron
Pi = (pa:,iypi,y) Az — (Ax,iaAy,i)
For a circular gauge A; = B(—vy;/2,x;/2,0) we have

Hspace = 5 i P T 3m Wi (B) X, il
+ iy [2V0 = 5 @i, ] 5 3 L

where wq(B) = w3 + w?>/4 and w. = eB/m*c.

17
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Groups and Quantum Dots

e The dynamical algebra for a mesoscopic N —electron system in d

dimensions (usually d = 1,2) is the non-compact Lie group

Sp(2Nd,R)
e Subalgebras of Sp(2Nd, R) formed by subsets of the defining
generators that close under commutation. For example
Sp(2Nd,R) D Sp(2,R) x O(Nd) D Sp(2,R) x O(N) x O(d)
D U(1) x O(N) x O(d)

Note the separation of the spatial O(d) and particle O(N)

dependencies

18
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Groups and Quantum Dots

The Hamiltonian may be written in terms of the generators of
Sp(2,R), O(d) and Sp(2N,R). Practical calculation then
involves the evaluation of matrix elements of the group
generators in a harmonic oscillator basis, a well-known problem

in symplectic models of nuclei.
For further details see:

Grudzinski K and Wybourne B G, Symplectic models of
n—particle systems Rept. Math. Phys. 38 251 (1996)

Rowe D J, Rept. Prog. Phys. 48 1419 (1985)

King R C and Wybourne B G, J. Phys.A: Math. Gen. 18 3113
(1985)
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