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Introdu
tion� Groups in Chemistry and Physi
s� Types of Groups in Appli
ations� Compa
t and Non-Compa
t Groups� Dynami
al Groups� Groups and Harmoni
 Os
illators� Groups and Thermodynami
 Partition Fun
tions� Groups and Quantum Dots� Con
luding Remarks
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Groups in Chemistry and Physi
s� Groups are a natural tool for exploiting symmetry in physi
alproblems� There are both stati
 geometri
al symmetries and dynami
alsymmetries� Symmetries may be �nite or 
ontinuous e.g. Compare a squarewith a 
ir
le� Symmetries lead to sele
tion rules whi
h tell us what is notpossible - not what is possible� Via the Wigner-E
kart Theorem they lead to the 
al
ulation ofmatrix elements



University of Girona, Girona, SPAIN 12 - 20 July 2001 3

Types of Groups in Appli
ations� Finite Groups 32 Point Groups, 230 Crystallographi
 Spa
eGroups, Magneti
 Spa
e Groups, Bla
k and White Groups,Permutation Groups Sn� Finite Groups:- Finite number of group elements, representationsand all representations of �nite dimension� Lie groups In�nite number of group elements and of unitaryrepresentations. Examples SO(2), SO(3), SO(4), SO(5), SU(2),SU(3),SO(3; 1), SO(4; 1), SO(4; 2) et
.� H-atom, Harmoni
 os
illators, Jahn-Teller e�e
t,Thermodynami
 Partition Fun
tions, Maxwell's Equations et
.
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Compa
t and Non-Compa
t Lie Groups� Compa
t Lie groups have an in�nite number of �nite dimensionalunitary irredu
ible representations. 
f. Rotation group SO(3).Used to des
ribe systems with a �nite number of states. e.g.States of the 3d5 ele
tron 
on�guration.� Non-
ompa
t Lie groups have an in�nite number of unitaryirredu
ible representations with the important di�eren
e - all thenon-trivial unitary irredu
ible representations are of in�nitedimension. Useful in des
ribing systems having an in�nitenumber of states. e.g. The 
omplete set of dis
rete states of aH-atom. Representations may be dis
rete or 
ontinuous - may beunbounded from above, below or both.
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Compa
t and Non-Compa
t Lie Groups� In making appli
ations we need to be able to:-� Label representations� Compute Group Subgroup Bran
hing Rules� Resolve Krone
ker Produ
ts and symmetrized powers ofrepresentations� Constru
t invariants and Integrity bases
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Dynami
al Groups� Bohr's �rst paper energy levels of H-atom (in appropriate units)En = � 1n2 with n = 1; 2; : : :2(n)2 degenera
y hidden� Pauli notes that in a Coulombi
 
entral �eld for a single ele
tronthe Runge-Lenz ve
tor leads to the higher degenera
y and thedegenera
y group for the H-atom is SU(2)� SO(4)� Mu
h later Barut and Kleinert show that all of the in�nite set ofdis
rete states of a H-atom span a single representationH0 = f1(�0; 0)g of a non-
ompa
t group SO(4; 2) � SU(2; 2) that
ontains the orbital degenera
y group SO(4) as a subgroup
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Dynami
al Groups� The SO(4) symmetry is broken for more than one ele
tron� Nevertheless, it 
an be useful to 
onsider n�ele
tron states
onstru
ted from symmetrized powers of H0 = f1(�0; 0)g� Using the theory of symmetri
 fun
tions it has been possible todevelop algorithms for resolving symmetrized powers andbran
hing rules for both 
ompa
t and non-
ompa
t Lie groups� H0 
 f2g = 1Xk�0f2(2k; 2k)g (S = 0)

H0 
 f12g = 1Xk�0f2(2k + 1; 2k + 1)g (S = 1)� Knowing the relevant U(2; 2) irreps is a signi�
ant �rst step
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Groups and Harmoni
 Os
illators� The energy levels of a d�dimensional isotropi
 harmoni
os
illator are given byEn = (n+ d2 ) with n = 0; 1; 2; : : :� Ea
h level has an orbital degenera
y,Dd(n), depending on d,D1(n) = 1; D2(n) = n+ 1; D3(n) = (n+)(n+ 2)2 ; : : :� The orbital degenera
y group of an isotropi
 d�dimensionalharmoni
 os
illator is U(d) with the degenerate states spanningthe symmetri
 representations fng� The even parity states have n even and the odd parity n odd
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Groups and Harmoni
 Os
illators� For N�nonintera
ting parti
les in d dimensions the dynami
algroup is the metaple
ti
 group Mp(2Nd). The in�nite set ofstates span the fundamental representation ~�. UnderMp(2Nd)! Sp(2Nd;<) ~�! �+ +��where �� are the two basi
 irreps of Sp(2Nd;<) with D+
ontains all the states of even parity and �� those of odd parity� Sp(2Nd;<) has a ri
h subgroup stru
ture. e.g.Sp(2Nd;<) � Sp(2d;<)�O(N) � U(d)� S(N) � O(d)� S(N)� With spin the 
omplete dynami
al group is SU(2)�Mp(2Nd)and the degenera
y group is SU(2)� U(d)
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Groups and Harmoni
 Os
illators� Before one 
an attempt pra
ti
al appli
ations one must developappropriate algorithms for handling both 
ompa
t andnon-
ompa
t Lie groups� Methods for 
omputing all the relevant bran
hing rules,Krone
ker produ
ts, symmetrized powers have been developed� Basi
 to the whole programme has been the development ofalgorithms for 
al
ulating group properties in terms of the
ombinatorial properties of symmetri
 fun
tions� Detailed examples of the enumeration of states for 12 parti
leshave been given elsewhere
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Appli
ations for harmoni
 os
illator many-bodysystems� The symple
ti
 model of nu
lei has been extensively studied andprovides a natural link between shell models and 
olle
tivemodels� The symple
ti
 models used for nu
lei are largely transferable toproblems involving many-ele
trons in quantum dots� Symple
ti
 models lead to a natural way of 
ounting states andas su
h are a useful tool for 
omputing thermodynami
 partitionfun
tions for �nite numbers of bosons and fermions and shedlight on relationships between boson and fermion many parti
lesystems
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Thermodynami
 Partition Fun
tions for Bosonsand Fermions� The development of traps that 
on�ne a �nite number ofultra
old atoms in a harmoni
 potential requires the developmentof thermodynami
 partition fun
tions for a �nite number N ofnon-intera
ting bosons and fermions� ZN (�) = T r �e��H� � = (kBT )�1with H = NXi=1Hithe Hamiltonian, the sum of N identi
al single parti
leHamiltonians, with a spe
trum of energy eigenvalues E1; E2; : : :(with possible degenera
ies)
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Thermodynami
 Partition Fun
tions for Bosonsand Fermions� For a single boson or fermionZ1(�) =Xi=1 e(��Ei)� Introdu
e a set of variables (x) = (x1; x2; : : : ), not ne
essarily�nite in number with xi = e(��Ei).� Using the properties of symmetri
 fun
tions we obtainZN (�)� = Xj�j=N "�� z�1� Z1(��)

where "+ = 1; "� = (�1)j�j�`(�) and z� =Qi�1 imimi!
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Thermodynami
 Partition Fun
tions for Bosonsand Fermions� Thus the 
anoni
al partition fun
tion for N -nonintera
tingbosons or fermions is 
ompletely determined by the singleparti
le partition fun
tion. The 
oe�
ients sum to unity forbosons (+) and to zero for fermions (�). For example:-Z5(�)� = 1120 (24Z1(5�)� 30Z1(4�)Z1(�)� 20Z1(3�)Z1(2�)+20Z1(3�)Z1(�)2 + 15Z1(2�)2Z1(�)� 10Z1(2�)Z1(�)3 + Z1(�)5�

However, this assumes a single spin state. For fermions of spins = 12 the partition fun
tion is appropriate to �ve su
h fermionswith maximal spin proje
tion MS = 52 . The 
omplete partitionfun
tion ZT5 
overing the 
omplete set of spin states 
an be
onstru
ted to give
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Thermodynami
 Partition Fun
tions for Bosonsand Fermions� ZT5 = Z"5 (�) + Z"4 (�)Z#1 (�) + Z"3 (�)Z#2 (�)+Z"2 (�)Z#3 (�) + Z"1 (�)Z#4 (�) + Z#5 (�)

where the Z"n(�) indi
ates that the spin proje
tion is MS = n2and Z#n(�) a spin proje
tion MS = �n2 . Analogous results 
an be
onstru
ted for other spin states of both fermions and bosons.We note the 
lose 
orresponden
e with the LL�
oupling ofatomi
 physi
s.
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Groups and Quantum Dots� The ele
trons of a quantum dot are 
on�ned in an approximatelyparaboli
 potential. Close relationship with a many-ele
tronsystem subje
t to a harmoni
 os
illator potential.� V (ri; rj) = 2V0 � 12m�
2jri � rj j2m� ele
tron e�e
tive mass and V0 and 
 are positive parameters� For an N�ele
tron quantum dot ea
h with a 
harge �e, ag�fa
tor g�, spatial 
oordinates ri and spin 
omponents sz;ialong the z�axis with a magneti
 �eld B along the z�axis thespatial part of the Hamiltonian 
an be written asHspa
e = 12m� Xi �pi + eAi
 �2 + 12m�!20Pi jrij2 +Pi<j V (ri; rj)
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Groups and Quantum Dots� and the spin part asHspin = �g��BBXi sz;i

� The momentum and ve
tor potential asso
iated with the i� thele
tron pi = (px;i; pi;y) Ai = (Ax;i; Ay;i)For a 
ir
ular gauge Ai = B(�yi=2; xi=2; 0) we haveHspa
e = 12m� Pi p2i + 12m�!20(B)Pi jrij2+Pi<j �2V0 � 12m�
2jri; rj j2� !
2 Pi Lz;i

where !0(B) = !20 + !2
=4 and !
 = eB=m�
.
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Groups and Quantum Dots� The dynami
al algebra for a mesos
opi
 N�ele
tron system in ddimensions (usually d = 1; 2) is the non-
ompa
t Lie groupSp(2Nd;<)� Subalgebras of Sp(2Nd;<) formed by subsets of the de�ninggenerators that 
lose under 
ommutation. For exampleSp(2Nd;<) � Sp(2;<)�O(Nd) � Sp(2;<)�O(N)�O(d)� U(1)�O(N)�O(d)

Note the separation of the spatial O(d) and parti
le O(N)dependen
ies
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Groups and Quantum Dots� The Hamiltonian may be written in terms of the generators ofSp(2;<), O(d) and Sp(2N;<). Pra
ti
al 
al
ulation theninvolves the evaluation of matrix elements of the groupgenerators in a harmoni
 os
illator basis, a well-known problemin symple
ti
 models of nu
lei.� For further details see:� Grudzi«ski K and Wybourne B G, Symple
ti
 models ofn�parti
le systems Rept. Math. Phys. 38 251 (1996)� Rowe D J, Rept. Prog. Phys. 48 1419 (1985)� King R C and Wybourne B G, J. Phys.A: Math. Gen. 18 3113(1985)


