Publikacje

Typ publikacji:Wszystko Książka Artykuł Rozdział
Lista filadelfijska:Wszystko Tak Nie  



2017
  • S. Mandra, K. Gałkowski, Harald Aschemann,
    Robust guaranteed cost ILC with dynamic feedforward and disturbance compensation for accurate PMSM position control
    Control Eng. Practice *65* (2017); 36 - 47

    DOI: 10.1016/j.conengprac.2017.05.004





2016
  • P. Dąbkowski, K. Gałkowski, Eric Rogers, Michael Sebek,
    Robustness of uncertain discrete linear repetitive processes with H infinity disturbance attenuation
    ECC *1* (2016); 2288 - 2293

    DOI: ISBN: 978-1-5090-2590-9





2015
  • Eryk Rogers, K. Gałkowski, Wojciech Paszke, K. L. Moore, P. H. Bauer, Łukasz Hładowski, P. Dąbkowski,
    Multidimensional control systems: case studies in design and evaluation
    Multidimension. Syst. Signal P *26 (4)* (2015); 895 - 939

    DOI: 10.1007/s11045-015-0341-8

  • dr hab. inż. Wojciech Paszke, P. Dąbkowski, Prof. Eric Rogers, K. Gałkowski,
    New results on strong practical stability and stabilization of discrete linear repetitive processes
    Syst. Control Lett. *77* (2015); 22 - 29

    DOI: 10.1016/j.sysconle.2014.12.009





2014
  • K. Gałkowski, P. Dąbkowski, Prof. Eric Rogers,
    H infinity based Disturbance Attenuation for Iterative Learning Control
    Proceedings of the American Control Conference (ACC) IEEE *1* (2014); 4231 - 4236





2013
  • Błażej Cichy, K. Gałkowski, P. Dąbkowski, Harald Aschemann, Andreas Rauh,
    A New Procedure for the Design of Iterative Learning Controllers Using a $2$D Systems Formulation of Processes with Uncertain Spatio-Temporal Dynamics
    Control and Cybernetics *42* (2013); 9 - 26

    DOI: ISSN 0324-8569

  • P. Dąbkowski, K. Gałkowski, Eric Rogers,
    Applications Oriented Stability Theory for Discrete Linear Repetitive Processes
    Proceedings of the International Workshop on Multidimensional (nD) Systems IEEE *1* (2013); 111 - 116

  • P. Dąbkowski, K. Gałkowski, Eric Rogers, Z. Cai, C. T. Freeman, P. L. Lewin,
    Iterative Learning Control Based on Relaxed 2D Systems Stability Criteria
    IEEE Trans. on Contr. Sys. Tech. *21(3)* (2013); 1016 - 1023

    DOI: 10.1109/TCST.2012.2198477

  • P. Dąbkowski, K. Gałkowski, Olivier Bachelier, Eric Rogers, Michael Sebek, Anton Kummert,
    Control of differential linear repetitive processes using strong practical stability and H infinity disturbance attenuation
    Int. J. Control *86(4)* (2013); 636 - 649

    DOI: http://dx.doi.org/10.1080/00207179.2012.756148

  • P. Dąbkowski, K. Gałkowski, Olivier Bachelier, Eric Rogers, Anton Kummert, James Lam,
    Strong practical stability and stabilization of uncertain discrete linear repetitive processes
    Numer. Linear Algebra *20(2)* (2013); 220 - 233

    DOI: 10.1002/nla.812

  • dr hab. inż. Wojciech Paszke, P. Dąbkowski, Prof. Eric Rogers, K. Gałkowski,
    Stability and robustness of discrete linear repetitive processes in the finite frequency domain using the KYP lemma
    Proceedings of the Conference on Decision and Control (CDC) IEEE *1* (2013); 3421 - 3426

    DOI: 10.1109/CDC.2013.6760407

  • A. Rauh, L. Senkel, C. Dittrich, H. Aschemann, K. Gałkowski, P. Dąbkowski,
    A sensitivity-based approach for the control of repetitive processes
    Proceedings of the International Conference on Mechatronics (ICM) IEEE *7* (2013); 52 - 57

    DOI: 10.1109/ICMECH.2013.6518510





2012
  • P. Dąbkowski, K. Gałkowski, E. Rogers, Z. Cai, C.T. Freeman, P.L. Lewin, Z. Hurak, A. Kummert,
    Experimentally verified Iterative Learning Control based on repetitive process stability theory
    Proceedings of the American Control Conference (ACC) IEEE *1* (2012); 604 - 609

  • B. Pałucki, K. Gałkowski, Antoni Kummert, Błażej Cichy,
    Wave Repetitive Process Approach to a Class of Ladder Circuits (2012); 950 - 953

  • P. Dąbkowski, K. Gałkowski, Olivier Bachelier, Eric Rogers,
    Control of discrete linear repetitive processes using strong practical stability and H infinity disturbance attenuation
    Syst. Control Lett. *62 (12)* (2012); 1138 - 1144

    DOI: 10.1016/j.sysconle.2012.10.002

  • Olivier Bachelier, P. Dąbkowski, K. Gałkowski, Anton Kummert,
    Fractional and nD systems: a continuous case
    Multidimension. Syst. Signal P *23* (2012); 329 - 347

    DOI: 10.1007/s11045-011-0149-0





2010
  • P. Dąbkowski, K. Gałkowski, prof. Biswa Datta, prof. Eric Rogers,
    LMI based stability and stabilization of second-order linear repetitive processes.
    Asian J. Control *Vol. 12* (2010); 136 - 145

    DOI: 10.1002/asjc.171

  • P. Dąbkowski, K. Gałkowski, B. Datta,
    An Output Control of a Class of Discrete Second-order Repetitive Processes
    Proceedings of the Mathematical Theory of Networks and Systems (MTNS) *19* (2010); 781 - 787

  • P. Dąbkowski, K. Gałkowski, O. Bachelier, E. Rogers, J. Lam,
    A New Approach to Strong Practical Stability and Stabilization of Discrete Linear Repetitive Processes
    Proceedings of the Mathematical Theory of Networks and Systems (MTNS) *19* (2010); 311 - 317

  • P. Dąbkowski, K. Gałkowski, O. Bachelier, E. Rogers,
    Strong practical stability and H infinity disturbance attenuation for discrete linear repetitive processes
    Proceedings of the International Conference Methods and Models in Automation and Robotics (MMAR) IEEE 2016 *15* (2010); 319 - 324

    DOI: 10.1109/MMAR.2010.5587213

  • P. Dąbkowski, K. Gałkowski, prof. Eric Rogers, prof. Olivier Bachelier,
    Strong practical stability and stabilization of differential linear repetitive processes
    Syst. Control Lett. *Vol 59, Issue 10* (2010); 639 - 644

    DOI: 10.1016/j.sysconle.2010.08.001





2009
  • P. Dąbkowski, K. Gałkowski, E. Rogers, Z. Cai, C.T. Freeman, P.L. Lewin,
    Iterative Learning Control Based on Strong Practical Stability of Repetitive Processes
    Proceedings of the Conference on Decision and Control (CDC) IEEE *48* (2009); 4864 - 4869

    DOI: 10.1109/CDC.2009.5400776

  • P. Dąbkowski, K. Gałkowski, E. Rogers,
    Stability and stabilization of a class of ill-conditioned second order differential linear repetitive processes
    Proceedings of the Conference on Decision and Control (CDC) IEEE *48* (2009); 3232 - 3237

    DOI: 10.1109/CDC.2009.5400093

  • P. Dąbkowski, K. Gałkowski, E. Rogers,
    A Simplified Approach to Iterative Learning Control Based on Strong Practical Stability of Repetitive Processes
    Proceedings of the International Workshop on Multidimensional (nD) Systems IEEE *6* (2009); 95 - 100

    DOI: 10.1109 /NDS.2009.5196178

  • P. Dąbkowski, K. Gałkowski, prof. Eric Rogers, prof. Anton Kummert,
    Strong Practical Stability and Stabilization of Discrete Linear Repetitive Processes
    Multidimension. Syst. Signal P *20(4)/2009* (2009); 311 - 331

    DOI: 10.1007/s11045-009-0080-9





2008
  • P. Dąbkowski, K. Gałkowski, E. Rogers, A. Kummert,
    Strong practical stability and control of uncertain discrete linear repetitive processes
    Proceedings of the International Federation of Automatic Control (IFAC) IEEE *17* (2008); 1496 - 1501

    DOI: 10.3182/20080706-5-KR-1001.00256

  • P. Dąbkowski, K. Gałkowski, E. Rogers,
    Strong Practical Stability and Stabilization of 2D Differential-discrete Linear Systems
    Proceedings of the Conference on Decision and Control (CDC) IEEE *47* (2008); 2385 - 2390

    DOI: 10.1109/CDC.2008.4738852





2007
  • P. Dąbkowski, K. Gałkowski, E. Rogers, A. Kummert,
    Strong practical stability and control of discrete linear repetitive processes
    Proceedings of the International Workshop on Multidimensional (nD) Systems IEEE *5* (2007); 149 - 154

    DOI: 10.1109/NDS.2007.4509566