
BI-RADIAL TRANSFER FUNCTIONS
Włodzisław Duch & Norbert Jankowski
Department of Computer Methods
Nicholas Copernicus University
ul. Grudziądzka 5, 87–100 Toruń, Poland
phone: +48 56 21065 fax: +48 56 21543
e-mail: duch,norbert@phys.uni.torun.pl
www: http://www.phys.uni.torun.pl/˜duch

http://www.phys.uni.torun.pl/~norbert

The most common transfer functions in neural networks are of the sigmoidal type.
In this article other transfer functions are considered. Advantages of simple
gaussians, giving hyperelliptical densities, and gaussian bar functions (sums of
one-dimensional gaussians) are discussed. Bi-radial functions are formed from
products of two sigmoids. Product of M bi-radial functions in N -dimensional
parameter space give arbitrarily shaped densities offering great flexibility.
Extensions of bi-radial functions are proposed. Bi-radial functions can be used as
transfer functions in many neural networks, such as RBF, RAN or FSM systems.

1 Introduction

Adaptive systems of Artificial Neural Network (ANN) type were motivated by the parallel
processing capabilities of the real brains, but the processing elements and the architectures
used in artificial neural networks have little in common with biological structures. Artificial
neural networks are networks of simple processing elements (usually called neurons) with
internal adjustable parameters W . Modification of these adjustable parameters allows the
network to learn an arbitrary vector mapping from the space of inputs X to the space of
outputs Y = AW (X).

ANNs are adaptive systems with the power of a universal computer, i.e. they can realize
an arbitrary mapping (association) of one vector space (inputs) to the other vector space (out-
puts). They differ in many respects, one of the most important characteristics being the trans-
fer functions performed by each neuron. The first attempts at modeling of neural networks
was via logical networks [12], i.e. using threshold devices performing step functions. These
step functions were generalized in a natural way to functions of sigmoidal shape. Single-layer
neural networks with sigmoidal functions are universal approximators [2, 10], i.e. they can
approximate an arbitrary continuous function on a compact domain with arbitrary precision
given sufficient number of neurons. The same result holds for the networks with neurons that
give gaussian outputs instead of sigmoidal outputs [9, 14]. A new type of transfer functions,
called gaussian bars, has been proposed by Hartman and Keeler [8]. None of these functions
is flexible enough to describe an arbitrarily shaped density distributions of the multidimen-
sional input space. The purpose of the activation and the transfer functions of neural elements
is to enable the tessalation of the parameter space in the most flexible ways using the lowest
number of parameters. The adaptive system is a collection of communicating elements and

the processing function of a single element is the most important characteristic of the whole
system.

In this paper we investigate various other simple functions suitable as the transfer func-
tions of neurons. In the next section the non-local transfer functions used in literature are
reviewed and some new possibilities discussed. In the third section description of local and
semi-local processing units functions is presented and bi-radial functions and their extensions
are introduced. The fourth section presents results obtained using different transfer functions
in the RBF-type of networks.

2 Non-local Transfer Functions

Two functions determine the way signals are processed by neurons. The activation function
determines the total signal neuron receives. In most cases a fan-in function, i.e. a linear
combination of the incoming signals, is used. For neuron i connected to neurons j (for
j = 1; : : : ; N) sending signals xj with the strength of the connectionswij the total activation
signal Ii is

Ii(x) =

NX

j=1

wijxj (1)

The second function determining neuron’s signal processing is the output function o(I).
These two functions together determine the values of the neuron outgoing signals. The total
function acts in the N -dimensional input space, called also the parameter space. The com-
position of these two functions is called the transfer function o(I(x)). The activation and
the output functions of the input and the output layers may be of different type than those of
the hidden layer, in particular frequently linear functions are used for inputs and outputs and
non-linear output functions for hidden layers.

The first neural network models proposed in the 40-ties by McCulloch and Pitts [12]
were based on the logical processing elements of the threshold type. The output function of
the logical elements is of the step function type, and is known also as the Heaviside �(x)

function: it is 0 below the threshold value and 1 above it. The use of such functions was
motivated by the logical analysis of the computing circuits and the methaphore (very popular
in the early days of computers) of brains seen as computers. In principle one can perform
arbitrary computations using logical neurons. Real values may be quantized and the logical
neurons used to learn the bits. The greatest advantage of the logical elements is the speed
of computations and the possibility to realize relatively easy some functions in hardware.
Classification regions of the logical networks are of the hyperplane type rotated by the wij

coefficients.
An intermediate multi-step type of functions between continuous sigmoidal functions and

step functions are sometimes used, with a number of thresholds. Instead of the step function
semi-linear functions were used and later generalized to the sigmoidal functions, leading to
the graded response neurons:

�(x; s) =
1

1 + e�x=s
(2)

The constant s determines the slope of the sigmoidal function around the linear part. This
function may also be replaced by the arcus tangent or the hyperbolic tangent function:

tanh(x; s) =
1� e�x=s

1 + e�x=s
(3)

Other sigmoidal functions may be useful to speed up computations:

s1(x; s) = �(x)
x

x+ s
��(�x)

x

x � s
= x

sgn(x)x� s

x2 � s2
(4)

s2(x; s) =

p
1 + s2x2 � 1

sx
(5)

where �(x) is a step function.

s1
s2
tanh
sigmoidal
atan

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Comparison of non-local transfer func-

tions.

Figure 2: Decision regions formed using sig-

moidal processing functions.

Shapes of these functions1 are compared in Fig. 1. The sigmoidal function and the
hyperbolic tangent functions are hard to distinguish in this figure while the arcus tangent and
the s1, s2 functions change asymptotically reaching saturation for larger activation values
more slowly. All these functions are very similar and all what we recommend the use of s1
or s2 functions since their computational costs are lower.

Sigmoidal functions have non-local behavior, i.e. they are non-zero in infinite domain.
The decision regions for classification are formed by cutting the parameter space with the
hyperplanes (Fig. 2). The system pretends that it knows everything, which is quite false
especially far from the sample data regions where hyperplanes, extending to infinity, enforce
arbitrary classifications. Sigmoidal output functions smooth out many shallow local minima
in the total output functions of the network. For classification problems this is very desirable,
but for general mappings it limits the precision of the adaptive system.

For sigmoidal functions powerful mathematical results exist showing that a universal ap-
proximator may be built from only single layer of processing elements [2, 10]. Another

1All these functions are linearly transformed to obtain output between�1 and 1 and different slope parameters
s are used to show that all functions are quite similar.

class of powerful functions used in approximation theory [16, 5, 6] is called the radial basis
functions (RBFs). Some of these functions are non-local while most are localized. RBF net-
works are also universal approximators [9, 14]. Admitting processing units of the sigma-pi
type higher-order products of inputs are taken into account and the approximating function
becomes a product of various powers of input signals [4].

3 Local and Semi-local Transfer Functions

Gauss

BiRadial

G. Bars

G. ellipsoidal

G_S

G_2

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Figure 3: Comparison of several localized func-

tions fitted to a gaussian.

Bi−RBF(x,0,0,1)

Bi−RBF(x,0,4,16)

Bi−RBF(x,0,4,1)

1.27.*Bi−RBF(x,0,0.7,3)

Bi−RBF(x,0,0.7,16)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0

0.5

1

1.5

Figure 4: A few shapes of the bi-radial functions

in one dimension.

From the point of view of an adaptive system used as a classification device one can either
divide the total parameter space into regions of classification using non-local functions or
set up local regions around the data points. Each of these approaches has some advantages
and disadvantages. A few attempts were made to use localized functions in the adaptive
systems, some of them may be traced back to the older work on pattern recognition [7].
Moody and Darken [13] used locally-tuned processing units to learn real-valued mappings
and classifications in a learning method combining self-organization and supervised learning.
They have selected locally-tuned units to speed up the learning process of backpropagation
networks. Botttou and Vappnik [1] showed the power of local training algorithms in a more
general way.

Although the processing power of neural networks based on non-local processing units
does not depend strongly on the type of neuron processing functions such is not the case for
localized units. Gaussian functions are perhaps the simplest but not the least expensive to
compute. Simple quadratic and quartic functions approximate roughly the shape of gaussian
function:

g2(x; t; s) =
1

1 + jjx� tjj2=s2
; g4(x; t; s) =

1

1 + jjx� tjj4=s2
(6)

3.1 Radial Basis Functions (RBFs)

Radial Basis Functions are used as transfer functions in many neural network simulators.
These types of functions have been in use in approximation theory [16, 5, 6] and in pattern
recognition under different names for many years (cf. potential function approach, [7]). A
very good introduction to RBF and more general regularization networks was given by Pog-
gio and Girosi [15]. A few types of localized radial basis functions exist, among them the
gaussian functions (Eq. 10). Examples of the Radial Basis Functions include the nonlocal
radial coordinates, multiquadratics, gaussians and thin-plate spline functions:

h1(x; t) = jjx� tjj (7)

h2(x; t; b) = (b2 + jjx� tjj2)��; � > 0 (8)

h3(x; t; b) = (b2 + jjx� tjj2)�; 0 < � < 1 (9)

h4(x; t; b) = e�jjx�tjj
2=b2 (10)

h5(x; t; b) = (bjjx� tjj)2 ln(bjjx� tjj) (11)

The simplest approach, used in the RBF networks, is to set a number of radial functions
Gi(x) with predetermined dispersions and positions (for example, positions are set by k-
means clustering and dispersions to twice the nearest neighbor distance) and determine the
linear coefficients wi in the approximation function

f(x;w;p) =

MX

i=1

wiGi(x;pi): (12)

In the regularization networks also the centers of each of the radial units are optimized
[15], allowing for reduction of the number of centers in the presence of noisy data (corre-
sponding to the regularization of approximating function). Thus in N -dimensional case a
center is described by N coordinates and one dispersion. A straightforward generalization of
the radial units of the gaussian type is to allow output functions with different dispersions for
different dimensions, giving 2N adaptive parameters, centers and dispersions, per one unit.

3.2 Ellipsoidal activation functions

Changing the activation function I(xi) to the quadratic activation:

I(x; t;w) =

X

i

wi(xi � ti)
2 (13)

allows to use the multivariate gaussian function to obtain ellipsoidal output densities:

Gg(x; t;b) = e�I(x;t;w)
=

NY

i=1

e�(xi�ti)
2=b2

i (14)

with wi = 1=b2i . Similar result is obtained by combining the sigmoidal output function with
quadratic activation:

GS(x; t;b) = 2 (1� �(I(x; t;w))) = 2�
2

1 + e
�

P
N

i=1
(xi�ti)2=b

2

i

(15)

Simpler units giving ellipsoidal densities are also possible, for example:

G2(x; t;b) =

NY

i=1

1

1 + (xi � ti)2=b
2

i

(16)

A number of local training algorithms may be devised for such transfer functions com-
bining the k-means clustering for initial placements of ellipsoids in a self-organizing fashion,
followed by growing and pruning of the new ellipsoidal units in supervised algorithm. In par-
ticular if the training algorithm localizes neuron processing function in the region far from
the given data points the unit may be removed without loss. For N -dimensional input space
each ellipsoidal unit uses 2N adaptive parameters.

3.3 Bar functions

The problem of noisy dimensions in RBF networks, i.e. irrelevant inputs that do not con-
tribute to the determination of the output values, has been addressed by Hartman and Keeler
[9] and by Park and Sandberg [14]. Instead of multidimensional gaussian functions these
authors advocate a combination of one-dimensional gaussians:

Gb(x; t;b;w) =

NX

i=1

wie
�(xi�ti)

2=b2
i (17)

The activation and the output functions are inseparable in this case. 3N adjustable pa-
rameters are needed per processing unit. These functions are called gaussian bar functions
because except for a single maximum around center t in N -dimensions they include gaus-
sians in N � 1 dimensional subspace. For large number of dimensions N these bars have
values wi that may be much lower than the sum of all weights wi. The network output may
be processed via sigmoidal function removing these bars.

Gaussian bars make elimination of irrelevant input variables, i.e. dimensionality reduc-
tion, easier than in the multidimensional gaussian case, although variable dispersions should
allow to reduce some of the dimensions to zero (cf. the example of quadratic logistic mapping
given by Moody and Darken [13]). Another advantage of using the bar functions follows from
the very existence of these bars. A single maximum or a few separated maxima are described
by a small number of gaussian functions with only N + 1 parameters each and require the
same number of gaussian bar functions with almost three times as many parameters. How-
ever, if there are k regularly spaced input clusters in each dimension in the N -dimensional
hypercube kN clusters are formed, and each should be represented by a separate multivariate
gaussian. On the other hand kN gaussian bar functions are sufficient to describe such a case.

Similar combination of sigmoidal functions will create a sigmoidal bar function. Such
functions should not be used to represent data clustered around a few points only because
each cluster requires 2N sigmoidal functions while one gaussian function may be sufficient
to model a cluster. However, if the data clusters are regularly spaced in a quadratic mesh,

with k2 clusters each will need a separate gaussian while 2 � 2k = 4k sigmoidal bars in the
input space are sufficient to represent such data.

3.4 Bi-radial functions

Rather than a single sigmoidal function one may use products of pairs of sigmoidal functions
for each variable. This type of output functions is the most flexible, producing decision
regions of arbitrary shapes for classification. Product of 2N sigmoids has the following
general form:

Bi(x; t;b; s) =

NY

i=1

�(esi � (xi � ti + ebi))(1 � �(esi � (xi � ti � ebi))) (18)

where �(x) = 1=(1 + e�x). The first sigmoidal factor in the product is growing for
increasing input xi while the second is decreasing, localizing the function around ti. Shape
adaptation of the density Bi(x; t;b; s) is possible by shifting centers t, rescaling b and s.
The number of adjustable parameters per processing unit is in this case (not counting the
weights wi) 3N . Dimensionality reduction is possible as in the gaussian bar case, but we
can obtain more flexible density shapes, thus reducing the number of adaptive units in the
network. Exponentials esi and ebi are used instead of si and bi to prevent oscillations during
learning procedure (learning becomes more stable).

It is possible to extend the localized bi-radial functions to the semi-localized functions:

S �Bi((x; t;b; s) =

NY

i=1

(�+�(esi � (xi� ti+ ebi)))(1� ��(esi � (xi� ti� ebi))): (19)

This function does not vanish for large jxj, for � = 0, � = 1 is identical to the bi-radial
localized functions while for � = � = 0 it turns into sigmoidal function. At the beginning
of learning procedure � and � are equal to zero). Semi-local function S � Bi have 5N

parameters for each units.

4 RBF network with bi-radial functions

In figures 5 and 6 convergence of errors during learning obtained with gaussian(Eq. 10,
one common dispersion per function), sigmoidal (Eq. 15) (separate dispersion per function)
and bi-radial functions (Eq. 18) are presented. The same RBF-type of network was used,
with each case trained for 2000 epochs on the two-spiral classifcation benchmark. This is a
difficult test for backpropagation networks. the number of classifcation points is 196, points
are divided in two classes and the number of network nodes is set two 100. The network
based on bi-radial transfer functions not only learns faster (Fig 5) but also generalizes better
(Fig 6).

bi-radial

sigmoidal

gaussian

Figure 5: Comparison of the summed squared errors for different transfer functions: gaussian (Eq. 10),

sigmoidal (Eq. 15) and bi-radial function (Eq. 18) used in the same RBF net during 2000 epochs.

Figure 6: Results for the two spiral classification problem solved with gaussian (on the left) and bi-radial

(on the right) transfer functions.

5 Summary

We have presented several transfer functions suitable for neural units. Localized neuron
output functions seem to be quite efficient in describing arbitrary decision regions of neural
nets used for mapping or classification purposes. New type of transfer functions proposed
here – the bi-radial functions – contain 3N parameters per one unit and are quite flexible,
representing various densities of the input data. Semi-bi-radial functions provide local and
non-local units in one network. Next step towards greater flexibility requires rotation of each

unit separately or even a general form of the quadratic activation function:

I(x; t;w) =

X

ij

wij(xi � ti)(xj � tj) (20)

For rotation this adds at least N � 1 parameters for a total of 3N � 1 parameters, while
for general rotation and arbitrary rescaling N 2 parameters are added. So far we have not seen
any adaptive systems using such generalized output functions. There is a tradeoff between
the flexibility of the processing units connected with the number of adjustable parameters and
the complexity of the learning process of the whole network.

In the near future we shall use bi-radial and semi-bi-radial transfer functions in the FSM
[3] and IncNet architecture (RBF net with statistically controlled growth of units number)
[11] and extend IncNet by including pruning of some nodes.

References

[1] BOTTOU, L., AND VAPNIK, V. Local learning algorithms. Neural Computation 4, 6
(1992), 888–900.

[2] CYBENKO, G. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals, and Systems 2, 4 (1989), 303–314.

[3] DUCH, W., AND DIERCKSEN, G. H. F. Feature space mapping as a universal adaptive
system. Computer Physics Communications 87 (5 1994), 341–371.

[4] DURBIN, R., AND RUMELHART, D. E. Product units: A computationally powerful
and biologically plausible extension to backpropagation networks. Neural Computation
1 (1989), 133–142.

[5] DYN, N. Interpolation and approximation by radial and related functions. In Approxi-
mation Theory VI, C. K. Chiu, L. L. Schumaker, and J. D. Watts, Eds. Academic Press,
1989.

[6] FRANKE, R. Scattered data interpolation: test of some methods. Math Computation 38
(1982), 181–200.

[7] FUKUNAGA, K. Introduction to Statistical Pattern Recognition. Academic Press, 1972.

[8] HARTMAN, E., AND KEELER, J. D. Predicting the future: Advantages of semilocal
units. Neural Computation 3, 4 (1991), 566–578.

[9] HARTMAN, E. J., KEELER, J. D., AND KOWALSKI, J. M. Layered neural networks
with Gaussian hidden units as universal approximations. Neural Computation 2, 2
(1990), 210–215.

[10] HORNIK, K., STINCHCOMBE, M., AND WHITE, H. Multilayer feedforward networks
are universal approximators. Neural Networks 2, 5 (1989), 359–366.

[11] KADIRKAMANATHAN, V. A statistical inference based growth criterion for the RBF
network. In Proc. IEEE. Workshop on Neural Networks for Signal Processing (1994).

[12] MCCULLOCH, W. S., AND PITTS, W. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics 5 (1943), 115–133.

[13] MOODY, J., AND DARKEN, C. J. Fast learning in networks of locally-tuned processing
units. Neural Computation (1989), 281–294.

[14] PARK, J., AND SANDBERG, I. W. Universal approximation using radial-basis-function
networks. Neural Computation 3, 2 (1991), 246–257.

[15] POGGIO, T., AND GIROSI, F. Network for approximation and learning. Proc. IEEE
78, 9 (Sept. 1990), 1481–1497.

[16] POWELL, M. J. D. Radial basis functions for multivariable interpolation: A review.
In Algorithms for Approximation of Functions and Data (1987), M. J. C and C. M. G.,
Eds., Oxford University Press, pp. 143–167.

