

Fast Normalized Neural Networks For Object/Face Detection

 ABSTRACT- Finding an object or a face in the input
image is a search problem in the spatial domain. Neural
networks have shown good results for detection of
object/face in a given image. However, they consume long
time in the dection process. Our idea is to move the test
process from the spatial domain to the frequency one. A
fast algorithm for object/face detection is presented. Such
algorithm is designed based on cross correlation in the
frequency domain between the input image and the input
weights of neural networks. Moreover, the problem of
local sub-image normalization in the frequency domain is
solved. Furthermore, the effect of image normalization on
the speed up ratio of object/face detection is also
presented. Simulation results show that local sub-image
normalization by normalizing the input weights is faster
than sub-image normalization in the spatial domain.
Moreover, the overall speed up ratio of the detection
process is increased as the normalization of weights is
done off line.

Keywords: Fast Object/Face Detection, Neural Networks,
Cross Correlation, Image Normalization

I. Introduction

Object detection is a fundamental step before object
recognition. Its reliability and performance have a major
influence in a whole object recognition system. Nowadays,
neural networks have shown very good results for detecting
an object or a face in a given image [3,6,10]. But the
problem with neural networks is that the computational
complexity is very high and expensive. This is because the
test is done in the spatial domain and neural networks have
to process many small local windows in the images under
test [5,7]. Some authors tried to speed up the detection
process of neural networks [9,11,12]. They proposed a
multilayer perceptron (MLP) algorithm for fast object/face
detection. They claimed that applying cross correlation in
the frequency domain between the input image and the
neural weights is much faster than using conventional

neural networks. They stated this without any constrains
and introduced formulas for the number of computation
steps needed by conventional neural networks and their
proposed fast neural networks. Then, they deduced an
equation for the speed up ratio. It was proved in [2] that
their equations contain many errors which lead to an invalid
speed up ratio. Moreover, a symmetry condition is
necessary and must be found either in the input image or in
the neural weights so that those fast neural networks can
give the same correct results as conventional neural
networks for detecting an object or a face in a given image.
Recently, we succeeded accelerating the behavior of neural
networks during the search process [1]. The speed up of the
detection process is achieved by converting the input image
into a symmetric one and applying cross correlation in the
frequency domain between the new symmetric image and
the input weights of neural networks. Mathematical proof
and simulation results for fast testing of the new proposed
symmetric image using Matlab are given.

There is no problem to normalize the training examples
used for learning neural networks. Also, there is no problem
to normalize each sub-image if the test is done in the spatial
domain. Here, the proposed new idea is to move the test
from the spatial domain to the frequency one for fast
detection process. Thus, the question arises, how to
normalize each sub-image in the frequency domain?. The
problem of sub-image (local) normalization in the Fourier
space was presented in [8]. This problem was solved in [4].
We proved that the number of computation steps required
for normalizing the input weights is less than that needed
for image normalization. But, we did not discuss the effect
of normalization on the speed up ratio. Here, the effect of
weight normalization on the speed up ratio is theoretically
and practically discussed. Mathematical calculations prove
that the new idea of weight normalization, instead of image
normalization, provides good results and increases the speed
up ratio. This is because normalization of the input weights
requires fewer of computation steps than sub-image
normalization. Moreover, for neural networks,
normalization of input weights can be easily done off line

before starting the search process. In section II, fast neural
networks for object/face detection are described. The effect
of normalizing the input weights on the speed up ratio is
presented in section III.

II. Fast Neural Networks Based on Cross
Correlation in the Frequency Domain For Sub-

Image (Object/Face) Detection

Here, we are interested only in increasing the speed of
neural networks during the test phase. By the words “Fast
Neural Networks” we mean reducing the number of
computation steps required by neural networks in the
detection phase. First neural networks are learnt to classify
face from non face examples and this is done in the spatial
domain. In the test phase, each sub-image in the input image
(under test) is tested for the presence or absence of the
required object/face. At each pixel position in the input
image each sub-image is multiplied by a window of
weights, which has the same size as the sub-image. This
multiplication is done in the spatial domain. The outputs of
neurons in the hidden layer are multiplied by the weights of
the output layer. When the final output is high this means
that the sub-image under test contains the required
object/face and viceversa. Thus, we may conclude that this
searching problem is cross correlation in the spatial domain
between the image under test and the input weights of
neural networks.

The convolution theorem in mathematical analysis says that
a convolution of f with h is identical to the result of the
following steps: let F and H be the results of the Fourier
Transformation of f and h in the frequency domain.
Multiply F and H in the frequency domain point by point
and then transform this product into the spatial domain via
the inverse Fourier Transform. As a result, these cross
correlations can be represented by a product in the
frequency domain. Thus, by using cross correlation in the
frequency domain a speed up in an order of magnitude can
be achieved during the detection process [1,2,3,4,6].

In the detection phase, a sub image I of size mxn (sliding
window) is extracted from the tested image which has a size
PxT and fed to the neural network. Let Xi be the vector of
weights between the input sub image and the hidden layer.
This vector has a size of mxn and can be represented as mxn
matrix. The output of hidden neurons hi can be calculated as
follows:

���
�

���
���

=
+

�

=
=

m

1j ibk)k)I(j,(j,
n

1k iXgih (1)

where g is the activation function and bi is the bias of each
hidden neuron (i). Eq. 1 represents the output of each

hidden neuron for a particular sub-image I. It can be
obtained to the whole image Z as follows:

 ∑

−=
∑
−=

+++

=

m/2

m/2j

n/2

n/2k i bk)vj, Z(uk)(j,iXg

v)(u,ih

 (2)

Eq. 2 represents a cross correlation operation. Given any
two functions f and d, their cross correlation can be
obtained by:

 ∑∞
∞−=

∑∞
∞−=

++

=⊗

m n
n)ym,n)d(xf(m,

y)d(x,y)f(x,

 (3)

Therefore, eq. 2 may be written as follows:

()ibZiXgih +⊗= (4)

where hi is the output of the hidden neuron (i) and hi (u,v) is
the activity of the hidden unit (i) when the sliding window
is located at position (u,v) and (u,v) ∈[P-m+1,T-n+1].

Now, the above cross correlation can be expressed in terms
of the Fourier Transform:

() ()()iX*FZF1FiXZ •−=⊗ (5)

Hence, by evaluating this cross correlation, a speed up ratio
can be obtained comparable to conventional neural
networks. Also, the final output of the neural network can
be evaluated as follows:

 ∑

=
+=

q

1i
ob)vu,(ih (i)owgv)O(u, (6)

where q is the number of neurons in the hidden layer.
O(u,v) is the output of the neural network when the sliding
window is located at the position (u,v) in the input image Z.

We can analayze the complexity of cross correlation in the
frequency domain as follows [2]:

1- For a tested image of NxN pixels, the 2D-FFT requires a
number equal to N2log2N

2 of complex computation steps.
Also, the same number of complex computation steps is
required for computing the 2D FFT of the weight matrix for
each neuron in the hidden layer.

2- At each neuron in the hidden layer, the inverse 2D FFT is
computed. So, q backward and (1+q) forward transforms
have to be computed. Therefore, for an image under test, the
total number of the 2DFFT to compute is (2q+1)N2log2N

2.

3- The input image and the weights should be multiplied in
the frequency domain. Therefore, a number of complex
computation steps equal to qN2 should be added.
4- The number of computation steps required by fast neural
networks is complex and must be converted into a real
version. It is known that the two dimensions Fast Fourier
Transform requires (N2/2)log2N

2 complex multiplications
and N2log2N

2 complex additions. Every complex
multiplication is realized by six real floating point
operations and every complex addition is implemented by
two real floating point operations. So, the total number of
computation steps required to obtain the 2D-FFT of an NxN
image is [2]:

ρ=6((N2/2)log2N
2) + 2(N2log2N

2) (7)

which may be simplified to:

ρ=5(N2log2N
2) (8)

Performing complex dot product in the frequency domain
also requires 6qN2 real operations.

5- In order to perform cross correlation in the frequency
domain, the weight matrix must have the same size as the
input image. So, a number of zeros = (N2-n2) must be added
to the weight matrix. This requires a total real number of
computation steps = q(N2-n2) for all neurons. Moreover,
after computing the FFT2 for the weight matrix, the
conjugate of this matrix must be obtained. So, a real number
of computation steps =qN2 should be added in order to
obtain the conjugate of the weight matrix for all neurons.
Also, a number of real computation steps equal to N is
required to create butterflies complex numbers (e-jk(2Πn/N)),
where 0<K<L. These (N/2) complex numbers are multiplied
by the elements of the input image or by previous complex
numbers during the computation of FFT2. To create a
complex number requires two real floating point operations.
So, the total number of computation steps required for fast
neural networks becomes [2]:

σ=((2q+1)(5N2log2N2) +6qN2+q(N2-n2)+qN2 +N) (9)

which can be reformulated as:

σ=((2q+1)(5N2log2N2) +q(8N2-n2) +N) (10)

6- Using a sliding window of size nxn for the same image of
NxN pixels, (q(2n2-1)(N-n+1)2) computation steps are
required when using traditional neural networks for
object/face detection process. The theoretical speed up
factor η can be evaluated as follows [2]:

 N)n-q(8N)Nlog1)(5N(2q
 1)n-1)(N-q(2n

222
2

2

2 2

+++
+=η (11)

7- But as proved in [1,2], this cross correlation in the
frequency domain (Fast Neural Networks) gives the same
results as conventional cross correlation (Conventional
Neural Networks) only in two cases. Either the weights are
symmetric or the input image is symmetric. It is very
complex to allow the weights to be symmetric in the
required form which needs to be as follows [2]:

=

dw

w
W

0
0

 (12)

Adding this constraint to the learning rules will cause many
well known problems during the training process of the
neural network. The probability that the network will not be
trained is very high. Another solution is to convert the input
non symmetric (original) image as shown in Fig. 1 into one
of the required symmetric forms as shown in Fig. 2. As the
input image has a dimension of (N), the new symmetric
image will have a length of (2N). In this case, the number of
computation steps required for fast neural networks can be
calculated as follows [2]:

σ2N=((2q+1)(5(2N)2log2(2N)2)+q(8(2N)2-n2) +2N) (13)

But, converting the non-symmetric input image into a
symmetric one will slow down the proposed fast neural
networks more and more compared to conventional neural
networks. In this case, for any size of the input image,
dividing the number of operations required for conventional
neural networks by those needed by fast neural networks
(eq. 11) gives a speed up ratio lower than one listed in Table
(1) [2].

8- In order to reduce the number of computation steps
required by neural networks for object/face detection,
another new symmetric form for the input image is

presented. As shown in Fig. 3, the input image is converted
into symmetric form by rotating it down. Then, both the up
and down images are tested as a single (symmetric) image
consists of two images. In this case, the new symmetric
image has (2NxN) dimensions. By substituting in eq. 9 for
the new dimensions, the number of computation steps
required for cross correlating this new image with the
weights in the frequency domain can be calculated as
follows [1]:-

σ=((2q+1)(5(2N2log2N+2N2log22N))+q6(2N2)+ q(2N2-
n2)+q(2N2)+2N) (14)

which can be simplified to:

σ=((2q+1)(10N2(log22N+ log2N)) +q(16N2-n2)

+2N) (15)

So, the speed up ratio in this case can be calculated as:

 2N)n- q(16N N)) log 2N (log 1)(10N(2q
 1)n-1)(N-q(2n

22
22

2

2 2

++++
+=η (16)

The theoretical speed up ratio in this case with different
sizes of the input image and different in size weight
matrices is shown in Fig. 4. The algorithm of the
conventional neural networks is compared with that of fast
neural networks. Practical speed up ratio for manipulating
images of different sizes and different in size weight
matrices is shown in Fig. 5 using 2.80 GHz processor and
Matlab ver 5.3. In our pervious work [1], the algorithm of
fast neural networks was compared with the cross
correlation (xcorr2) function in Matlab. This function uses
the sum- Table scheme to fast the operation of cross
correlation [13]. In our previous paper, we proved that our
proposed fast neural networks algorithm is faster than this
function. In this paper the comparison is accomplished
between our proposed fast neural and conventional neural
networks (conventional cross correlation in the spatial
domain).

Moreover, this new symmetric configuration is useful for
reducing the number of patterns that the neural network will
learn. This is because the image is rotated down as shown in
Fig. 3. Then, the up image and its rotated down version are
tested together as one (symmetric) image. If a face is
detected in the rotated down image, then, this means that
this face is found at the relative position in the up image.
So, if conventional neural networks are trained for up and

rotated down examples of the face, fast neural networks will
be trained only to up examples when using the presented
configuration for the input image. As the number of trained
examples is reduced, the number of neurons in the hidden
layer will be reduced and the neural network will be faster
in the test phase compared with conventional neural
networks.

III. Effect of Normalizing the Input Weights on
the Speed up Ratio

In the learning phase, all of the training examples are
normalized before starting the learning process. There is no
problem in normalizing training examples before learning.
The problem is how to normalize the input image in the test
phase. In [6], the authors stated that image normalization (in
the test phase) to avoid weak or strong illumination could
not be done in frequency space. This is because the image
normalization is local and not easily computed in the
Fourier space of the whole image. In a previous paper [4], a
simple method for image normalization has been presented.
Centering and normalizing the image can be obtained by
centering and normalizing the input weights according to
the following equation [4]:

iWrcXiWrcX ⊗=⊗ (17)

which means that cross-correlating a normalized sub-image

(X rc

_
) located at (r,c) in the input image ψ with the weight

matrix is equal to the cross-correlation of the non –
normalized image with the normalized input weight matrix

(i

_

W).

Normalization of sub-images in the spatial domain (in case
of using traditional neural networks) requires 2n2(N-n+1)2
computation steps. On the other hand, normalization of sub-
images in the frequency domain through normalizing the
weights of the neural networks requires 2qn2 operations.
This proves that local image normalization in the frequency
domain is faster than that in the spatial one. By normalizing
the input weights, the speed up ratio for image
normalization Γ can be calculated as:

q
1)n(N� 2+−

= (18)

The speed up ratio of the normalization process for images
of different sizes is listed in Table 2. As a result, we may
conclude that:

1- Using this technique, normalization in the frequency
domain can be done by normalizing the input weights
in the spatial domain.

2- Normalization of an image by normalizing the input
weights is faster than normalization of each sub-image.

3- Normalization of input weights can be done off line.
So, the speed up ratio in the case of weight
normalization can be calculated as follows:

a) For Conventional Neural Networks:

The speed up ratio equals to the number of computation
steps required by conventional neural networks with image
normalization divided by the number of computation steps
needed by conventional neural networks with weight
normalization, which is done off line. The speed up ratio 	 c
in this case can be given by:

22

2222

c 1)n1)(Nq(2n
1)n(N2n1)n1)(Nq(2n

+−−
+−++−−

=η (19)

which can be simplified to:

1)q(2n
2n

1
2

2

c −
+=η (20)

b) For Fast Neural Networks:

The over all speed up ratio equals to the number of
computation steps required by conventional neural networks
with image normalization divided by the number of
computation steps needed by fast neural networks with
weight normalization, which is done off line. The overall
speed up ratio 	 o can be given by:

 2N))n-q(16N N))log 2N(log1)(10N((2q
1)n-(N2n1)n1)(Nq(2n

22
22

2

2222

++++
+++−−=oη (21)

which can be simplified to:

 2N))n-q(16N N))log 2N(log1)(10N((2q
)2n1)q(2n (1)n(N

22
22

2

222

++++
+−+−=oη (22)

The relation between the speed up ratio before () and after
(o) the normalization process can be conculded as:

 2N))n-q(16N N))log 2N(log1)(10N((2q
1)n(Nn2

22
22

2

22

++++
+−+= ηηo

 (23)

The practical over all speed up ratio with images of
different sizes and different sizes of windows is shown in
Fig. 6 using 2.80 GHz processor and Matlab ver 5.3. It is
clear that the speed up ration is inreased with the size of the
sliding window (n). Moreover, the speed up ratio in case of

image normalization through normalization of the input
weights is larger than the speed up ratio without
normalization (which is shown in Fig. 5). This means that
the search process with nomalized fast neural networks is
done faster than conventional neural networks with or
wihout normalization of the input image.

V. Conclusion
Normalized neural networks for fast sub-image (object/face)
detection in a given image have been presented. It has been
proved mathematically and practically that the speed of the
detection process becomes faster than conventional neural
networks. This has been accomplished by converting the
input image into the presented symmetric form and
normalizing the weights of the neural networks. Simulation
results have confirmed this by using Matlab. Moreover, by
using this new symmetric configuration for the input image,
the number of neurons in the hidden layer has been reduced.
As a result, fast neural networks, based on cross correlation
in the frequency domain, have become faster than
conventional neural networks. Furthermore, we have
generally proved that, the speed up ratio in the case of
image normalization through normalization of weights is
faster than without normalization.

References
[1] Hazem M. El-Bakry, and Qiangfu Zhao ”A New

Symmetric Form for Fast Sub-Matrix (Object/Face)
Detection Using Neural Networks and FFT,” accepted
for publication in the International Journal of Signal
Processing.

[2] Hazem M. El-Bakry, "Comments on Using MLP and
FFT for Fast Object/Face Detection," Proc. of IEEE
IJCNN'03, Portland, Oregon, pp. 1284-1288, July, 20-
24, 2003.

[3] Hazem M. El-Bakry, "Human Iris Detection Using Fast
Cooperative Modular Neural Networks and Image
Decomposition," Machine Graphics & Vision Journal
(MG&V), vol. 11, no. 4, 2002, pp. 498-512.

[4] Hazem M. El-Bakry, "Face detection using fast neural
networks and image decomposition," Neurocomputing
Journal, vol. 48, 2002, pp. 1039-1046.

[5] S. Srisuk and W. Kurutach, "A New Robust Face
Detection in Color Images", Proc. of IEEE Computer
Society International Conference on Automatic Face
and Gesture Recognition (AFGR'02), Washington D.C.,
USA, May 20-21, 2002, pp. 306-311.

[6] Hazem M. El-Bakry, "Automatic Human Face
Recognition Using Modular Neural Networks," Machine
Graphics & Vision Journal (MG&V), vol. 10, no. 1,
2001, pp. 47-73.

[7] Ying Zhu, Stuart Schwartz, and Michael Orchard, "Fast
Face Detection Using Subspace Discriminate Wavelet
Features," Proc. of IEEE Computer Society International
Conference on Computer Vision and Pattern
Recognition (CVPR'00), South Carolina, June 13 - 15,
2000, vol.1, pp. 1636-1643.

[8] R. Feraud, O. Bernier, J. E. Viallet, and M. Collobert,
"A Fast and Accurate Face Detector for Indexation of
Face Images," Proceedings of Fourth IEEE International
Conference on Automatic Face and Gesture
Recognition, Grenoble, France, 28-30 March, 2000.

[9] S. Ben-Yacoub, B. Fasel, and J. Luettin, "Fast Face
Detection using MLP and FFT," in Proc. Second
International Conference on Audio and Video-based
Biometric Person Authentication (AVBPA'99)", 1999.

[10] S. Baluja, H. A. Rowley, and T. Kanade, "Neural
Network - Based Face Detection," IEEE Trans. on
Pattern Analysis and Machine Intelligence, Vol. 20, No.
1, pp. 23-38, 1998.

[11] Beat Fasel, "Fast Multi-Scale Face Detection," IDIAP-
Com 98-04, 1998.

[12] S. Ben-Yacoub, "Fast Object Detection using MLP and
FFT," IDIAP-RR 11, IDIAP, 1997.

[13] J.P. Lewis, “Fast Normalized Neural Networks”,
Available from: <http://www.idiom.com/~zilla/
Papers/nvisionInterface/nip.html >

Table 1: A comparison between the number of computation steps (in millions) required for conventional and fast
neural networks to manipulate images shown in Fig. 2 with different sizes (n=20).

Image size Conventional Neural
Networks

 Fast Neural Networks (2N) Speed up ratio

100x100 1.5727e+008 1.9609e+008 0.8020
200x200 7.8528e+008 8.8202e+008 0.8903
300x300 1.8927e+009 2.1130e+009 0.8957
400x400 3.4795e+009 3.9185e+009 0.8880
500x500 5.5457e+009 6.3191e+009 0.8776
600x600 8.0913e+009 9.3306e+009 0.8672
700x700 1.1116e+010 1.2966e+010 0.8574
800x800 1.4621e+010 1.7236e+010 0.8483
900x900 1.8605e+010 2.2150e+010 0.8399

1000x1000 2.3068e+010 2.7716e+010 0.8323
1100x1100 2.8010e+010 3.3943e+010 0.8252
1200x1200 3.3432e+010 4.0836e+010 0.8187
1300x1300 3.9334e+010 4.8402e+010 0.8127
1400x1400 4.5715e+010 5.6646e+010 0.8070
1500x1500 5.2575e+010 6.5574e+010 0.8018
1600x1600 5.9914e+010 7.5190e+010 0.7968
1700x1700 6.7733e+010 8.5499e+010 0.7922
1800x1800 7.6032e+010 9.6505e+010 0.7879
1900x1900 8.4810e+010 1.0821e+011 0.7837
2000x2000 9.4067e+010 1.2063e+011 0.7798

Table 2: The speed up ratio of the normalization process for images of different sizes (n=20,q=30).

Image Size Speed up ratio
100x100 219
200x200 1092
300x300 2632
400x400 4839
500x500 7712
600x600 11252
700x700 15459
800x800 20332
900x900 25872

1000x1000 32079
1100x1100 38952
1200x1200 46492
1300x1300 54699
1400x1400 63572
1500x1500 73112
1600x1600 83319
1700x1700 94192
1800x1800 105730
1900x1900 117940
2000x2000 130810

Fig. 1: The original non-symmetric image.

Fig. 2. Image conversion from non-symmetric to symmetric one.

Fig. 3. Image conversion from non-symmetric to symmetric one through rotation into down direction.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

100 300 500 700 900 1100 1300 1500 1700 1900

N Pixels

Sp
ee

d
up

 R
at

io

Speed up ratio (n=20 pixels)
Speed up ratio (n=25 pixels)
Speed up ratio (n=30 pixels)

Fig. 4: The theoretical speed up ratio in case of converting an image into symmetric one through rotation into
down direction.

0

200

400

600

800

1000

1200

1400

1600

100 300 500 700 900 1100 1300 1500 1700 1900

N Pixels

Sp
ee

d
up

 R
at

io

Speed up ratio (n=20 pixels)
Speed up ratio (n=25 pixels)
Speed up ratio (n=30 pixels)

Fig. 5: Simulation results for speed up ratio in case of converting an image into symmetric one through rotation
into down direction.

0

500

1000

1500

2000

2500

3000

100 300 500 700 900 1100 1300 1500 1700 1900

N Pixels

Sp
ee

d
up

 R
at

io

Speed up ratio (n=20 pixels)
Speed up ratio (n=25 pixels)
Speed up ratio (n=30 pixels)

Fig. 6: Simulation results for speed up ratio in case of image normalization by normalizing the input weights.

