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    ABSTRACT- Finding an object or a face in the input 
image is a search problem in the spatial domain. Neural 
networks have shown good results for detection of 
object/face in a given image. However, they consume long 
time in the dection process. Our idea is to move the test 
process from the spatial domain to the frequency one. A 
fast algorithm for object/face detection is presented. Such 
algorithm is designed based on cross correlation in the 
frequency domain between the input image and the input 
weights of neural networks. Moreover, the problem of 
local sub-image normalization in the frequency domain is 
solved. Furthermore, the effect of image normalization on 
the speed up ratio of object/face detection is also 
presented. Simulation results show that local sub-image 
normalization by normalizing the input weights is faster 
than sub-image normalization in the spatial domain. 
Moreover, the overall speed up ratio of the detection 
process is increased as the normalization of weights is 
done off line.   

Keywords: Fast Object/Face Detection, Neural Networks, 
Cross Correlation, Image Normalization 

I. Introduction 

Object detection is a fundamental step before object 
recognition. Its reliability and performance have a major 
influence in a whole object recognition system. Nowadays, 
neural networks have shown very good results for detecting 
an object or a face in a given image [3,6,10]. But the 
problem with neural networks is that the computational 
complexity is very high and expensive. This is because the 
test is done in the spatial domain and neural networks have 
to process many small local windows in the images under 
test [5,7]. Some authors tried to speed up the detection 
process of neural networks [9,11,12]. They proposed a 
multilayer perceptron (MLP) algorithm for fast object/face 
detection. They claimed that applying cross correlation in 
the frequency domain between the input image and the 
neural weights is much faster than using conventional 

neural networks. They stated this without any constrains 
and introduced formulas for the number of computation 
steps needed by conventional neural networks and their 
proposed fast neural networks. Then, they deduced an 
equation for the speed up ratio. It was proved in [2] that 
their equations contain many errors which lead to an invalid 
speed up ratio. Moreover, a symmetry condition is 
necessary and must be found either in the input image or in 
the neural weights so that those fast neural networks can 
give the same correct results as conventional neural 
networks for detecting an object or a face in a given image. 
Recently, we succeeded accelerating the behavior of neural 
networks during the search process [1]. The speed up of the 
detection process is achieved by converting the input image 
into a symmetric one and applying cross correlation in the 
frequency domain between the new symmetric image and 
the input weights of neural networks. Mathematical proof 
and simulation results for fast testing of the new proposed 
symmetric image using Matlab are given. 
 
There is no problem to normalize the training examples 
used for learning neural networks. Also, there is no problem 
to normalize each sub-image if the test is done in the spatial 
domain. Here, the proposed new idea is to move the test 
from the spatial domain to the frequency one for fast 
detection process. Thus, the question arises, how to 
normalize each sub-image in the frequency domain?. The 
problem of sub-image (local) normalization in the Fourier 
space was presented in [8]. This problem was solved in [4]. 
We proved that the number of computation steps required 
for normalizing the input weights is less than that needed 
for image normalization. But, we did not discuss the effect 
of normalization on the speed up ratio. Here, the effect of 
weight normalization on the speed up ratio is theoretically 
and practically discussed. Mathematical calculations prove 
that the new idea of weight normalization, instead of image 
normalization, provides good results and increases the speed 
up ratio. This is because normalization of the input weights 
requires fewer of computation steps than sub-image 
normalization. Moreover, for neural networks, 
normalization of input weights can be easily done off line 



before starting the search process. In section II, fast neural 
networks for object/face detection are described. The effect 
of normalizing the input weights on the speed up ratio is 
presented in section III. 

 

II. Fast Neural Networks Based on Cross 
Correlation in the Frequency Domain For Sub-

Image (Object/Face) Detection 

Here, we are interested only in increasing the speed of 
neural networks during the test phase. By the words “Fast 
Neural Networks” we mean reducing the number of 
computation steps required by neural networks in the 
detection phase. First neural networks are learnt to classify 
face from non face examples and this is done in the spatial 
domain. In the test phase, each sub-image in the input image 
(under test) is tested for the presence or absence of the 
required object/face. At each pixel position in the input 
image each sub-image is multiplied by a window of 
weights, which has the same size as the sub-image. This 
multiplication is done in the spatial domain. The outputs of 
neurons in the hidden layer are multiplied by the weights of 
the output layer. When the final output is high this means 
that the sub-image under test contains the required 
object/face and viceversa. Thus, we may conclude that this  
searching problem is cross correlation in the spatial domain 
between the image under test and the input weights of 
neural networks.   

The convolution theorem in mathematical analysis says that 
a convolution of f with h is identical to the result of the 
following steps: let F and H be the results of the Fourier 
Transformation of f and h in the frequency domain. 
Multiply F and H in the frequency domain point by point 
and then transform this product into the spatial domain via 
the inverse Fourier Transform. As a result, these cross 
correlations can be represented by a product in the 
frequency domain. Thus, by using cross correlation in the 
frequency domain a speed up in an order of magnitude can 
be achieved during the detection process   [1,2,3,4,6].      

In the detection phase, a sub image I of size mxn (sliding 
window) is extracted from the tested image which has a size 
PxT and fed to the neural network. Let Xi be the vector of 
weights between the input sub image and the hidden layer. 
This vector has a size of mxn and can be represented as mxn 
matrix. The output of hidden neurons hi can be calculated as 
follows:  
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where g is the activation function and bi is the bias of each 
hidden neuron (i). Eq. 1 represents the output of each 

hidden neuron for a particular sub-image I. It can be 
obtained to the whole image Z as follows: 
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Eq. 2 represents a cross correlation operation. Given any 
two functions f and d, their cross correlation can be 
obtained by: 




 ∑∞
∞−=

∑∞
∞−=

++

=⊗

m n
n)ym,n)d(xf(m,

y)d(x,y)f(x,

         (3) 

Therefore, eq. 2 may be written as follows: 

( )ibZiXgih +⊗=                     (4) 

where hi is the output of the hidden neuron (i) and hi (u,v) is 
the activity of the hidden unit (i) when the sliding window 
is located at position (u,v) and (u,v) ∈[P-m+1,T-n+1].  

Now, the above cross correlation can be expressed in terms 
of the Fourier Transform: 

( ) ( )( )iX*FZF1FiXZ •−=⊗           (5) 

Hence, by evaluating this cross correlation, a speed up ratio 
can be obtained comparable to conventional neural 
networks. Also, the final output of the neural network can 
be evaluated as follows:  
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where q is the number of neurons in the hidden layer. 
O(u,v) is the output of the neural network when the sliding 
window is located at the position (u,v) in the input image Z. 

We can analayze the complexity of cross correlation in the  
frequency domain as follows [2]: 

1- For a tested image of NxN pixels, the 2D-FFT requires a 
number equal to N2log2N

2 of complex computation steps. 
Also, the same number of complex computation steps is 
required for computing the 2D FFT of the weight matrix for 
each neuron in the hidden layer.  



2- At each neuron in the hidden layer, the inverse 2D FFT is 
computed. So, q backward and (1+q) forward transforms 
have to be computed. Therefore, for an image under test, the 
total number of the 2DFFT to compute is (2q+1)N2log2N

2. 

3- The input image and the weights should be multiplied in 
the frequency domain. Therefore, a number of complex 
computation steps equal to qN2 should be added.  
4- The number of computation steps required by fast neural 
networks is complex and must be converted into a real 
version. It is known that the two dimensions Fast Fourier 
Transform requires (N2/2)log2N

2 complex multiplications 
and N2log2N

2 complex additions. Every complex 
multiplication is realized by six real floating point 
operations and every complex addition is implemented by 
two real floating point operations. So, the total number of 
computation steps required to obtain the 2D-FFT of an NxN 
image is [2]: 

ρ=6((N2/2)log2N
2) + 2(N2log2N

2)         (7) 

which may be simplified to: 

ρ=5(N2log2N
2)                       (8) 

Performing complex dot product in the frequency domain 
also requires 6qN2 real operations. 

5- In order to perform cross correlation in the frequency 
domain, the weight matrix must have the same size as the 
input image. So, a number of zeros = (N2-n2) must be added 
to the weight matrix. This requires a total real number of 
computation steps = q(N2-n2) for all neurons. Moreover, 
after computing the FFT2 for the weight matrix, the 
conjugate of this matrix must be obtained. So, a real number 
of computation steps =qN2 should be added in order to 
obtain the conjugate of the weight matrix for all neurons.  
Also, a number of real computation steps equal to N is 
required to create butterflies complex numbers (e-jk(2Πn/N)), 
where 0<K<L. These (N/2) complex numbers are multiplied 
by the elements of the input image or by previous complex 
numbers during the computation of FFT2. To create a 
complex number requires two real floating point operations. 
So, the total number of computation steps required for fast 
neural networks becomes [2]: 

σ=((2q+1)(5N2log2N2) +6qN2+q(N2-n2)+qN2 +N )    (9) 

which can be reformulated as: 

σ=((2q+1)(5N2log2N2) +q(8N2-n2) +N )        (10) 

 

6- Using a sliding window of size nxn for the same image of 
NxN pixels, (q(2n2-1)(N-n+1)2)  computation steps are 
required when using traditional neural networks for 
object/face detection process. The theoretical speed up 
factor η can be evaluated as follows [2]: 
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7- But as proved in [1,2], this cross correlation in the 
frequency domain (Fast Neural Networks) gives the same 
results as conventional cross correlation  (Conventional 
Neural Networks) only in two cases. Either the weights are 
symmetric or the input image is symmetric. It is very 
complex to allow the weights to be symmetric in the 
required form which needs to be as follows [2]: 
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Adding this constraint to the learning rules will cause many 
well known problems during the training process of the 
neural network. The probability that the network will not be 
trained is very high. Another solution is to convert the input 
non symmetric (original) image as shown in Fig. 1 into one 
of the required symmetric forms as shown in Fig. 2. As the 
input image has a dimension of (N), the new symmetric 
image will have a length of (2N). In this case, the number of 
computation steps required for fast neural networks can be 
calculated as follows [2]: 

σ2N=((2q+1)(5(2N)2log2(2N)2)+q(8(2N)2-n2) +2N) (13) 

But, converting the non-symmetric input image into a 
symmetric one will slow down the proposed fast neural 
networks more and more compared to conventional neural 
networks. In this case, for any size of the input image, 
dividing the number of operations required for conventional 
neural networks by those needed by fast neural networks 
(eq. 11) gives a speed up ratio lower than one listed in Table 
(1) [2]. 

8- In order to reduce the number of computation steps 
required by neural networks for object/face detection, 
another new symmetric form for the input image is 



presented. As shown in Fig. 3, the input image is converted 
into symmetric form by rotating it down. Then, both the up 
and down images are tested as a single (symmetric) image 
consists of two images. In this case, the new symmetric 
image has (2NxN) dimensions. By substituting in eq. 9 for 
the new dimensions, the number of computation steps 
required for cross correlating this new image with the 
weights in the frequency domain can be calculated as 
follows [1]:- 

σ=((2q+1)(5(2N2log2N+2N2log22N))+q6(2N2)+ q(2N2-
n2)+q(2N2)+2N)                                            (14) 

which can be simplified to: 

σ=((2q+1)(10N2(log22N+ log2N)) +q(16N2-n2)  

+2N)                                                     (15) 

So, the speed up ratio in this case can be calculated as: 
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The theoretical speed up ratio in this case with different 
sizes of the input image and different in size weight 
matrices is shown in Fig. 4. The algorithm of the 
conventional neural networks is compared with that of fast 
neural networks. Practical speed up ratio for manipulating 
images of different sizes and different in size weight 
matrices is shown in Fig. 5 using 2.80 GHz processor and 
Matlab ver 5.3. In our pervious work [1], the algorithm of 
fast neural networks was compared with the cross 
correlation (xcorr2) function in Matlab. This function uses 
the sum- Table scheme to fast the operation of cross 
correlation [13]. In our previous paper, we proved that our 
proposed fast neural networks algorithm is faster than this 
function. In this paper the comparison is accomplished 
between our proposed fast neural and conventional neural 
networks (conventional cross correlation in the spatial 
domain). 

Moreover, this new symmetric configuration is useful for 
reducing the number of patterns that the neural network will 
learn. This is because the image is rotated down as shown in 
Fig. 3. Then, the up image and its rotated down version are 
tested together as one (symmetric) image. If a face is 
detected in the rotated down image, then, this means that 
this face is found at the relative position in the up image. 
So, if conventional neural networks are trained for up and 

rotated down examples of the face, fast neural networks will 
be trained only to up examples when using the presented 
configuration for the input image. As the number of trained 
examples is reduced, the number of neurons in the hidden 
layer will be reduced and the neural network will be faster 
in the test phase compared with conventional neural 
networks. 

III. Effect of Normalizing the Input Weights on 
the Speed up Ratio 

 
In the learning phase, all of the training examples are 
normalized before starting the learning process. There is no 
problem in normalizing training examples before learning. 
The problem is how to normalize the input image in the test 
phase. In [6], the authors stated that image normalization (in 
the test phase) to avoid weak or strong illumination could 
not be done in frequency space. This is because the image 
normalization is local and not easily computed in the 
Fourier space of the whole image. In a previous paper [4], a 
simple method for image normalization has been presented. 
Centering and normalizing the image can be obtained by 
centering and normalizing the input weights according to 
the following equation [4]: 
 

iWrcXiWrcX ⊗=⊗               (17) 

which means that cross-correlating a normalized sub-image 

( X rc

_
) located at (r,c) in the input image ψ  with the weight 

matrix is equal to the cross-correlation of the  non – 
normalized image with the normalized input weight matrix 

( i

_

W ). 
 
Normalization of sub-images in the spatial domain (in case 
of using traditional neural networks) requires 2n2(N-n+1)2 
computation steps. On the other hand, normalization of sub-
images in the frequency domain through normalizing the 
weights of the neural networks requires 2qn2 operations. 
This proves that local image normalization in the frequency 
domain is faster than that in the spatial one. By normalizing 
the input weights, the speed up ratio for image 
normalization Γ can be calculated as:  
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The speed up ratio of the normalization process for images 
of different sizes is listed in Table 2. As a result, we may 
conclude that: 



1- Using this technique, normalization in the frequency 
domain can be done by normalizing the input weights 
in the spatial domain.  

2- Normalization of an image by normalizing the input 
weights is faster than normalization of each sub-image.  

3- Normalization of input weights can be done off line. 
So, the speed up ratio in the case of weight 
normalization can be calculated as follows: 

 
a) For Conventional Neural Networks:  

The speed up ratio equals to the number of computation 
steps required by conventional neural networks with image 
normalization divided by the number of computation steps 
needed by conventional neural networks with weight 
normalization, which is done off line. The speed up ratio 	 c 
in this case can be given by: 
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which can be simplified to: 
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b) For Fast Neural Networks: 

The over all speed up ratio equals to the number of 
computation steps required by conventional neural networks 
with image normalization divided by the number of 
computation steps needed by fast neural networks with 
weight normalization, which is done off line. The overall 
speed up ratio 	 o can be given by: 
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which can be simplified to: 
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The relation between the speed up ratio before ( 	 ) and after 
( 	 o) the normalization process can be conculded as: 

  2N))n-q(16N N))log 2N(log1)(10N((2q
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The practical over all speed up ratio with images of 
different sizes and different sizes of windows is shown in 
Fig. 6 using 2.80 GHz processor and Matlab ver 5.3. It is 
clear that the speed up ration is inreased with the size of the 
sliding window (n). Moreover, the speed up ratio in case of 

image normalization through normalization of the input 
weights is larger than the speed up ratio without 
normalization (which is shown in Fig. 5). This means that 
the search process with nomalized fast neural networks is 
done faster than conventional neural networks with or 
wihout normalization of the input image.  

V. Conclusion 
Normalized neural networks for fast sub-image (object/face) 
detection in a given image have been presented. It has been 
proved mathematically and practically that the speed of the 
detection process becomes faster than conventional neural 
networks. This has been accomplished by converting the 
input image into the presented symmetric form and 
normalizing the weights of the neural networks. Simulation 
results have confirmed this by using Matlab. Moreover, by 
using this new symmetric configuration for the input image, 
the number of neurons in the hidden layer has been reduced.  
As a result, fast neural networks, based on cross correlation 
in the frequency domain, have become faster than 
conventional neural networks. Furthermore, we have 
generally proved that, the speed up ratio in the case of 
image normalization through normalization of weights is 
faster than without normalization. 
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Table 1: A comparison between the number of computation steps (in millions) required for conventional and fast 
neural networks to manipulate images shown in Fig. 2 with different sizes (n=20). 

Image size Conventional Neural 
Networks 

 Fast Neural Networks (2N) Speed up ratio 

100x100 1.5727e+008 1.9609e+008 0.8020 
200x200 7.8528e+008 8.8202e+008 0.8903 
300x300 1.8927e+009 2.1130e+009 0.8957 
400x400 3.4795e+009 3.9185e+009 0.8880 
500x500 5.5457e+009 6.3191e+009 0.8776 
600x600 8.0913e+009 9.3306e+009 0.8672 
700x700 1.1116e+010 1.2966e+010 0.8574 
800x800 1.4621e+010 1.7236e+010 0.8483 
900x900 1.8605e+010 2.2150e+010 0.8399 

1000x1000 2.3068e+010 2.7716e+010 0.8323 
1100x1100 2.8010e+010 3.3943e+010 0.8252 
1200x1200 3.3432e+010 4.0836e+010 0.8187 
1300x1300 3.9334e+010 4.8402e+010 0.8127 
1400x1400 4.5715e+010 5.6646e+010 0.8070 
1500x1500 5.2575e+010 6.5574e+010 0.8018 
1600x1600 5.9914e+010 7.5190e+010 0.7968 
1700x1700 6.7733e+010 8.5499e+010 0.7922 
1800x1800 7.6032e+010 9.6505e+010 0.7879 
1900x1900 8.4810e+010 1.0821e+011 0.7837 
2000x2000 9.4067e+010 1.2063e+011 0.7798 

 
 
 
 
 
 



 
 
 
 

Table 2: The speed up ratio of the normalization process for images of different sizes (n=20,q=30). 
 

Image Size Speed up ratio  
100x100  219 
200x200 1092  
300x300 2632 
400x400  4839  
500x500  7712 
600x600  11252 
700x700  15459 
800x800  20332 
900x900  25872 

1000x1000 32079 
1100x1100  38952 
1200x1200 46492 
1300x1300 54699 
1400x1400  63572 
1500x1500  73112 
1600x1600  83319 
1700x1700  94192 
1800x1800  105730 
1900x1900  117940 
2000x2000 130810 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Fig. 1: The original non-symmetric image. 

 
 
 
 
 



 

 
Fig. 2. Image conversion from non-symmetric to symmetric one. 

 

 
Fig. 3. Image conversion from non-symmetric to symmetric one through rotation into down direction. 
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Fig. 4: The theoretical speed up ratio in case of converting an image into symmetric one through rotation into 
down direction. 
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Fig. 5:  Simulation results for speed up ratio in case of converting an image into symmetric one through rotation 
into down direction. 
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Fig. 6: Simulation results for speed up ratio in case of image normalization by normalizing the input weights. 


