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Thesis  
 

Algorithms based on systematic search techniques can be successfully applied for 
multilayer perceptron (MLP) training and for logical rule extraction from data using MLP 
networks. The proposed solutions are easier to implement and frequently outperform  
gradient-based optimization algorithms.  
 
 
 
 

Abstract 
 

Search-based techniques, popular in artificial intelligence and almost completely 
neglected in neural networks can be the basis for MLP network training algorithms. There are 
plenty of well-known search algorithms, however since they are not suitable for MLP 
training, new algorithms dedicated to this task must be developed. Search algorithms applied 
to MLP networks change network parameters (weights and biases) and check the influence of 
the changes on the error function. MLP networks considered in this thesis are used for data 
classification and logical rule-based understanding of the data. The proposed solutions in 
many cases outperform gradient-based backpropagation algorithms. The thesis is organized 
in three parts. 
 

The first part of the thesis concentrates on better understanding of MLP properties.  
That includes PCA-based projections of error surfaces and learning trajectories, trends and 
statistics of weight changes and visualization of hidden and output neuron activities. Since 
the network training is in fact realized by searching for a minimum on the error surface, the 
knowledge obtained from the error surface analysis can be incorporated in learning 
algorithms, thus making network training more efficient. Learning trajectories are placed on 
the error surface. Observing them can also suggest some improvements to the existing 
learning algorithms or can help with designing new ones. Visualization of the hidden and 
output neuron activities can suggest possible ways of clustering or removing some training 
data. Analysis of trends and statistics of weight changes provides more information that can 
be used to tune the training parameters. Several conclusions drawn from this research are 
used for designing and optimizing MLP learning algorithms in the second part of the thesis. 
 

The second part of the thesis introduces two search-based MLP learning algorithms: 
numerical gradient and variable step search algorithm. In contrast to the training algorithms 
that use analytical gradients, they impose no restrictions on transfer functions, error functions 
or neural connection structures. In particular computationally cheap, non-differentiable 
transfer functions can be used. Spurious local minima are a typical problem of algorithms that 
back-propagate the error to hidden layers. Because the influence of hidden layer weights on 
the network error is directly checked in search-based algorithms, the direction towards the 
minimum can be determined in each learning step more precisely. The advantages of search-
based methods include fast and reliable convergence, low variance of results obtained with 
different starting points, low memory requirements and simple implementation of the 
algorithms because complicated derivatives of the error function are not required. Although 
local optimization methods, including search-based ones, do not guarantee finding a global 
minimum for every problem, for the prevailing number of real-world problems the proposed 
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methods are sufficient. Only in rare cases the use of global optimization methods that require 
much higher computational effort may be required, giving a greater chance to find optimal 
solutions for complex problems.  

 
The third part of the thesis presents a search-based approach to logical rule extraction 

from data using MLP networks with quantized parameters. The network training is quite fast, 
frequently one training cycle is sufficient and the final network function is converted to 
logical rules using a simple analysis of the network weights. If needed, the network structure 
is dynamically adjusted to the dataset properties. Feature selection and data discretization are 
also automatically performed by the network. Various modifications of the method are 
presented, each generating a specific form of rules. Depending on the desired information one 
of the methods can be chosen.  
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Part 1 
 
Properties of Multilayer Perceptrons 
 
 
 
1.1.  Introduction 
 

An artificial neural network is a general mathematical computing paradigm that 
models the operations of biological neural systems [Hen 2002]. Research on artificial neural 
networks was originated in 1943 by McCulloch and Pitts [McCulloch 1943] who proposed 
the first mathematical model of a neuron. In 1958 Rosenblatt [Rosenblatt 1958] introduced 
the first neural network known as perceptron. All neural network models that have been 
proposed over the years, share a common building block known as a neuron and a networked 
interconnection structure. The most widely used neuron model is based on McCulloch and 
Pitts’ neuron and the most widely used neural network called multilayer perceptron is based 
on several sequentially connected layers of perceptrons. 
 
 In general, neural networks can be divided into feed-forward and recurrent networks. 
In recurrent networks, the output signals of neurons are by feedback also given as their input 
signals. In feed-forward networks, an output signal of a neuron has no more influence on its 
input – the signals are propagated only forward. Multilayer perceptron considered in this 
thesis belongs to the feed-forward networks.  
 
 
 
1.1.1. Neuron Model 
 
 

x1

x2

x3

1

w1

w2

w3

w0

YY=f(X,W)

 
Fig. 1.1. Neuron model. 

 
A neuron consists of two parts: the net function and the activation function. The 

activation function is also known as transfer function. The net function determines how the 
input signals are combined inside the neuron.  
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The most commonly used net function and the only one considered in this thesis is 
given by the following formula: 

  (1.1) i

N

i
iwxu ∑

=

=
0

 
The parameters w are called weights. The weight w0 is called bias or threshold and its 
corresponding input signal x0 always equals 1 and does not form a connection between two 
neurons as other weights do. In the first and second part of the thesis the term “weight” is 
used as well for any weight connecting two neurons as for bias.  
 
 

Table 1.1. Commonly used neural transfer functions. 
 

transfer function formula comments 
hyperbolic tangent Y=(1-exp(-βu))/(1+exp(-βu))  
logistic sigmoid Y=1/(1+exp(-βu))  
threshold Y=a for u≤0, Y=b for u>0 usually a=-1 or 0, b=1 
linear saturated Y=a for u≤u1, Y=βu for u1<u<u2, 

Y=b for u≥u2 
usually a=-1 or 0, b=1 

linear  Y=βu used only in the output network layer 
for function approximation tasks, not 
used for data classification 

staircase  not suitable for analytical gradient-
based learning algorithms, usually b=1, 
a=-1 or 0 

 
 
 
 

             
 

            
 

Fig. 1.2. Commonly used neural transfer functions: a – hyperbolic tangent, b – logistic 
sigmoid, c – threshold, d – linear saturated (semi-linear), f – linear, d – staircase. 
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The output of a neuron denoted by Y is related to the output of the net function u by a 
transformation called activation (or transfer) function. Virtually any continuous non-linear 
and monotone function can be used as neural transfer function [Duch 1999b]. Moreover, if 
analytical gradient-based methods are used for network training, the functions must be 
differentiable. The transfer functions most commonly used for multilayer perceptron are 
summarized in Table 1.1. and their characteristics are shown in Fig.1.2. 
 
 
 
1.1.2. Multilayer Perceptron Model 
 

A single layer perceptron is able to classify only linearly separable data. For example, 
it is not able to solve the Xor problem. This fact was noticed by Minsky and Papert [Minsky 
1969] in their famous book “Perceptrons” in 1969. The book contributed to stagnation in 
research on neural networks for certain time. It was known that multilayer perceptron would 
solve linearly nonseparable problems, however efficient algorithms for training of MLPs 
were not known at that time. The first successful algorithm, called backpropagation, was 
developed several years later [Werbos 1974][Rumelhart 1986] and since that time the field of 
neural networks has been rapidly developing. 
 

A multilayer perceptron (MLP) is a network that consists of usually two or three 
layers of neurons and of an additional input layer. The input layer is counted by some authors 
as a separate network layer while by others it is not. In this thesis a three-layer network refers 
to a network of two layers of neurons based on the McCulloch and Pitts’ model and one 
additional input layer of neurons that only distribute the input signals, as shown in Fig.1.3.  

 
 

 
Fig. 1.3. Three-layer fully connected MLP network. Vertical arrows symbolize biases. 

 
 

 In practical implementations there is one input and one output layer and the number 
of hidden layers can be zero, one or two. During the training process the weights of the 
output layer and of all hidden layers are optimized. Two successive layers may but do not 
have to be fully connected. In addition, some weights that prove useless can be removed 
during or after the network learning process. An MLP network is said to be fully connected if 
every node in a given layer is connected to every node in the following layer. In some 
network architectures additional, so called “crossover” connections may be used that directly 
connect the input layer with the output layer (Fig.1.4). 
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Fig. 1.4. Three-layer MLP network with crossover connections. 

 
 
 
1.1.3.  Data Classification with Multilayer Perceptrons  
 

Classification is one of the most frequently encountered decision making tasks of 
human activity. A classification problem occurs when an object needs to be assigned into a 
predefined class (group) based on a number of observed features (attributes). [Zhang 2000]. 
Neural networks have emerged as an important tool for classification. 

 
The datasets used by neural networks can be organized in the form of two-

dimensional matrices. Each raw of the data matrix contains values of all features that describe 
a single point in the feature space, called a vector. Each vector is labeled with class 
information. Thus, the rows of the data matrix contain vectors and the columns contain 
features. A sample dataset organized in the matrix form is shown in Fig.1.5 

 
 

   
 Feature 1    Feature 2    Class 

    0               0                 0 
    0               1                 1 
    1               0                 1 
    1               1                 0 

 
Fig. 1.5. Representation of a sample dataset with class labels. 

 
 

The features can take numerical continuous, numerical discrete or symbolic values 
(e.g. red, yellow, green). Since MLP networks require numerical inputs, symbolic features 
must be represented by their numerical counterparts. There are two possible representations. 
In the first one, each symbolic value is assigned a numeric value and only one input neuron is 
used for a symbolic feature. In the second one, used in this work, each symbolic feature is 
represented by a vector of zeros and ones. The length of that vector equals the number of 
values that the feature can take. All positions in that vector are filled with zeros, except the 
position corresponding to the actual value of the feature, which takes the value of one. One 
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input neuron is created for each possible value of the feature, as shown in Fig.1.6. To reduce 
the number of inputs, one feature value can be considered as default. The default value does 
not require a corresponding input neuron – if it occurs in the data vector, than no signal is 
given to any input neuron. Using default values is especially convenient if there are only two 
discrete or symbolic values in a given feature. 
 

The data classification process consists of two phases. In the training phase the 
network learns to recognize which data vectors belong to given classes.  In the test phase the 
network is required to classify correctly vectors that have not been used in the training phase. 

 
Each output neuron is assigned a priori to one class. Only the output neuron assigned 

to the same class as the actual data vector should be activated and its signal should equal one. 
The signals of all other output neurons should be zero. Nevertheless, it is usually sufficient if 
the appropriate output neuron signal is higher than 0.5 and higher than the signals of all other 
output neurons. If this condition is satisfied, than we consider a given vector to be classified 
correctly. 

 
 

continuous
feature 1

symbolic
feature 2,
value 1

symbolic
feature 2,
value 1

 
Fig. 1.6. Each value of a symbolic or discrete feature is assigned to a separate input neuron. 

 
 
Usually before the training phase begins, all weights in the network are assigned a 

small random values, e.g. within the range (-1;1). Then the training dataset is given to the 
network inputs vector by vector and the signals propagate through the network. In an ideal 
situation, only the output neuron assigned to the same class as the actual data vector v is 
activated and its signal is one, the signals of all other output neurons are zero and the network 
gives zero error for this vector. In general, the error for a single vector is a function of the 
differences between the desired and actual signals of all output neurons. The total network 
error E is the sum of all single vector errors: 
 
 )( ,,∑∑ −=

v c
cvcv sdfE  (1.2) 

 
where d is the desired output signal and s is the observed output signal of the output layer 
neuron c in response to the training vector v. Many error functions f exist. The most 
frequently used error function is based on the mean squared error (MSE):  
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There is some ambiguity in the literature regarding MSE. According to some 

publications the formula (1.3) represents MSE, while according to other authors the error 
represented by (1.3) is called sum squared error (SSE) and the average error per single vector 
in a single output neuron is called MSE (1.4). 

 

 SSE
NN

MSE
cv

1
=  (1.4) 

 
where Nv is the number of vectors in the training set and Nc is the number of output 

neurons (which usually equals the number of classes, unless there is a default class that does 
not have a corresponding neuron. No output neuron should be activated in response to the 
default class vector). However, since MSE is the rescaled SSE, the errors always change 
proportionally and the mentioned ambiguity practically does not cause any problems.  

 
The aim of the network training is to maximize the classification accuracy as well for 

the training dataset as for the test dataset. In order to achieve this, the training algorithm 
minimizes the value of the error function by adjusting values of network parameters. The 
network error is a function of many parameters, such as the training dataset, network 
connection structure and weight values. However, if we assume that the training data and 
network structure is not being changed during the training, the weight values are the only 
parameters of the error function. The network error function can be imagined as a 
multidimensional surface, with each weight defining one dimension. Thus, the training 
algorithms search for a minimum on the error surface.  

 
Except for very simple cases the training algorithms change the weight values 

iteratively many times. The training set is given to the network inputs vector by vector, the 
network error is calculated and the weights are adjusted in order to minimize the error. The 
process of propagating once the entire training set through the network is usually called an 
“epoch”. The process of performing one iteration of the training algorithm is called a 
“training cycle” (however sometimes it may also be called an “epoch”). Depending on the 
training algorithm one training cycle can contain a single epoch, several epochs or only a 
fraction of an epoch. 

 
In supervised learning the network is explicitly told to which class a given vector 

belongs. By contrast, in unsupervised learning, the network uses unlabeled data (without 
class information) and has to deduce the classes from data. MLP training algorithms belong 
to supervised learning methods. 

 
MLP training algorithms can be divided into several categories, such as analytical 

gradient-based, global optimization or search-based methods. Analytical-gradient based 
algorithms calculate the derivative of error function with respects to every weight and than 
change the weights in order to minimize the network error (by moving downwards on the 
error surface). Global optimization algorithms do not change the weights basing on the 
gradient direction but search for the minimum in much broader areas. Many methods belong 
to that group. Search-based methods proposed in this work belong to local methods that 
instead of analytical gradients use variants of search algorithms. Detailed discussion of MLP 
training algorithms is presented in the second part of this thesis. 
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An MLP network used for classification performs a mapping from the input (feature) 

space to the output (class) space.  The aim of the network training is to obtain such weights 
(and such network structure if it is also modified by the training algorithm) that the mapping 
reflects the structure of the data and not the single data points. This is known as 
generalization. The training data frequently contains some noise and the noise should not be 
reflected in the mapping. If a network generalizes well then it achieves similar classification 
accuracy on a training set and on a test set. A test contains vectors, which belong to the same 
data distribution, but which have never been used in the training process.  

 
Often the availability of data is limited and using a part of it as a test set is not 

practical. An alternative is to use the procedure of crossvalidation. In k-fold crossvalidation 
the training set is randomly divided into k subsets, the network is trained using k-1 subsets 
and tested on the remaining subset [Bullinaria 2002]. Typically k=10 is considered 
reasonable. The process of training and testing is then repeated k times, using each one a 
different subset as a test set. The average classification accuracy on the k test subsets gives 
the estimate of the network performance.  

 
 

1.1.4. Applications of Multilayer Perceptrons  
 

The advantages of neural networks over conventional programming lies in their 
ability to solve problems that do not have an algorithmic solution or the existing solution is 
too complex to be found. Problems that were unsolvable using logical systems are now being 
tackled using an artificial neural network approach [Pennington 2003]. 

 
Multilayer perceptron is the most widely used type of neural networks and thousands 

of applications of MLP networks are known. These problems are in areas as diverse as 
medical diagnosis [Sordo 2002][Adamczak 2001][Jankowski 1999], medical image 
recognition [Pincho 1993][Kabarowski 1999][Pennington 2003], time series prediction 
[Osowski 1996], data compression [Gabriel 2003][Verma 1999], defect detections in 
materials [Karras 2001], bankruptcy prediction [Altman 1994][Raghupathi 1996], music 
classification [Maihero 2004], solar collectors sensitivity analysis [Zarate 2004], handwriting 
recognition [Garris 1998][Lee 1993],viruses and internet worms detection [Bielecki 2004],  
and many others. The applications found for neural networks continue to grow at a rapid rate.  

 
 
 

1.1.5. Further Development of Multilayer Perceptrons 
 

Using neural networks problems can be solved without the need to understand how a 
solution is achieved. As long as there are a finite number of attributes to the problem and an 
expected result, neural networks can find a solution to the problem. This makes them a useful 
tool for anyone working on pattern recognition problems. Nevertheless, many people do not 
trust neural networks because they do not explain how they have reached the solution. 
Especially in medicine, where the knowledge of how the result has been obtained is 
important, many doctors do not want to use neural networks, in spite they have higher 
diagnosis accuracy than other systems [Sordo 2002]. Although some attempts were made to 
extract logical rules from trained neural networks, many people still consider them as black 
boxes [Duch 2001, 2004c]. 
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The aim of this thesis is not only to propose new algorithms for MLP training and 

logical rule extraction but also to explain, as far as possible, how the networks work. Thus, a 
great emphasis is placed on the understanding of neural learning processes. Frequently plots 
are used to show many interesting aspects, including visualization of high-dimensional MLP 
weight spaces. A better understanding of how the networks work also allows us to develop 
better algorithms for the network training and logical rule extraction. 
 
 

 
 

1.2. Visualization and Properties of MLP Error Surface 
 
 
1.2.1.  The Purpose of MLP Learning Visualization 
 

Visualization of learning processes in neural networks shows the dynamics of 
learning, allows for comparison of different network structures and different learning 
algorithms, displays training vectors around which potential problems may arise, shows 
differences due to regularization and optimization procedures, investigates stability of 
network classification under perturbation of original vectors, and allows for estimation of 
confidence in classification of a given sample. 

 
There are many known methods of high dimensional data visualization [Atkosoft 

1997][Naud 2001], however most of them are not suitable for visualization of learning 
processes in neural networks. Thus, several methods especially dedicated to MLP learning 
have been proposed in the literature. In a Hinton diagram [Hinton 1986] each weight value in 
the network is represented by a box. The size of the box gives the magnitude of the weight, 
whereas the color (e.g. white or black) indicates whether the weight is positive or negative. 
The Bond diagram [Wejchert 1991] visualizes the weights on the topology of the network. 
Units are represented as simple points, with “bonds” of varying length (weight magnitude) 
and color (weight sign) emanating from unit outputs towards other units. Wejchert and 
Tesauro [Wejchert 1991] also consider a trajectory diagram, which emphasizes the 
visualization of the learning process itself by representing the multidimensional coordinate 
system in a two-dimensional plane by a star-like projection. The projection allows weight 
vectors to be plotted radially component by component, but it is practically limited to about 
six weights in the network. The plots of two different weight values against the error 
function, which produce a two-dimensional slice of the n-dimensional error surface, have also 
been used in the literature [Gallagher 2000]. 

 
PCA (Principal Component Analysis) was used for three-dimensional visualization of 

backpropagation learning trajectories [Gallagher 2000, 2003], for visualization of learning 
trajectories of several training algorithms [Kordos 2004b, 2004c, 2005] and for visualization 
of MLP error surfaces [Kordos 2004a, 2004c]. Visualization of each layer neuron signals was 
considered in [Duch 2004a]. The dependencies between the gradient components and the 
error surface sections in particular directions [Kordos 2004d, 2005] and the changes of 
weight values can also provide information that can be practically used to tune some training 
methods. 
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The most interesting visualization methods together with several statistics from 
network trainings are presented in the following chapters. The purpose of that visualization is 
to enhance the understanding of neural network processes and to give some hints for training 
algorithms design and optimization. The practical conclusions from the study allow for 
shortening training times and increasing the stability and accuracy of network learning 
processes. In this part of the thesis, as well by “epoch” as by “training cycle” we will 
understand one iteration of the training algorithm, after which all the weights change their 
values. 
 
 
 
 
1.2.2.  MLP Error Surface 

 
The error surface (ES) E(W)=∑X||Y-M(X;W)|| of a neural network is defined in the 

weight space W (including biases as W0 weights) for a given set of training vectors X, desired 
output vector Y and a vector mapping M(X;W) provided by the neural network. Only the 
multilayer perceptron (MLP) networks are considered here. Probably it would be possible to 
use similar techniques to investigate other types of feedforward networks, however it has not 
been attempted yet. An MLP training process can be defined as a search for a global 
minimum on the hyper-surface E(W), where it creates a learning trajectory. 

 
 

 
 

Fig. 1.7. MLP error surface sections of Iris (4-4-3) in gradient directions obtained using 
numerical gradient training cycles 1÷5. 

 
 
One way to understand better the learning dynamics of MLPs is to visualize both the 

ES and the learning trajectory using projections of the original space into a two- or three-
dimensional subspace. The projection directions should preserve most information about the 
original surface. In two-dimensional visualizations, the error value is displayed on the vertical 
axis, and one direction in the weight space on the horizontal axis. A good choice is either the 
local gradient direction or the first principal component direction that is calculated in the 
weight space.  
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A sample plot showing the change of the mean squared error (MSE) in the gradient 
direction is shown in Fig.1.7. The training of an MLP with a single hidden layer composed of 
four nodes has been done on the Iris data, frequently used for illustrations (chapter 1.2.5.1). 
The numbers of neurons in successive layers are given in brackets after the dataset name. For 
example (6-4-3-2) means that the network has 6 inputs, 4 neurons in the first hidden layer, 3 
neurons in the second hidden layer and 2 neurons in the output layer. The lines in Fig.1.7. 
were created by changing the length of the weight vector W in the gradient direction h. The 
starting point (h=0) for each line is in the minimum found along the previous training cycle 
gradient direction. The first curve has a narrow and deep minimum, indicating that a rather 
narrow funnel is traversed on the error surface. The second and the subsequent curves reach 
lower error levels and are broader, indicating that a broad plateau has been reached. This 
should be expected in all problems where separation of different categories is relatively easy 
and the error surface should be insensitive to weight changes corresponding to rotations and 
shifting of decision borders that do not affect the separation.  
 

It seems worthwhile to investigate the error surfaces not only in two, but also in three-
dimensional spaces. PCA (Principal Component Analysis) is a natural choice for visualizing 
the weight space because it provides components from which the original weight space may 
be reconstructed with the highest accuracy.  

 
Fig.1.8-left shows the error surface projection into two principal components c1 and 

c2, which has been obtained using weights from the same network training, as the error 
surface sections shown in Fig. 1.7. The learning trajectory lies on the bottom of one of the 
ravines. Beginning the training from another starting point could result with the trajectory 
lying on the bottom of another ravine. Learning trajectories will be discussed in chapters 1.3, 
2.3.9 and 2.4.4. 

 
 
 

1.2.3.   Research Methodology 
 
 
1.2.3.1.   Overview of Research Methodology 
 

In order to visualize the error surface the following procedure is used: 
 

1. A network is trained using either standard backpropagation [Rumelhart 1986][Hen 
2002][Bullinaria 2002], Levenberg-Marquardt second-order algorithm [Ranganathan 
2004][Marquardt 1963], scaled conjugate gradient [Moller 1993], numerical gradient 
[Kordos 2003b], the simplest search-based method that changes one weight at a time 
[Kordos 2003a] or its modified version with variable step search [Kordos 2004b]. It is 
worth to remark now that the experimental results do not depend significantly on the 
training algorithm.   

2. Weight vectors W(t) after each training cycle t are collected into the weight matrix WM. 
3. PCA (Principal Component Analysis) is performed on the weight covariance matrix (the 

covariance matrix of the weight matrix). 
4. Three-dimensional error surface projections are plotted. The horizontal axes correspond 

to the first and second PCA direction and the vertical axis shows the network error value.  
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1.2.3.2.   Principal Component Analysis 
 

Principal Component Analysis (PCA) is a technique that reduces the data 
dimensionality while preserving as much of the high dimensional space properties as 
possible. PCA is performed by a rotation of the original high dimensional coordinate system 
and then discarding the axes along which the data has the smallest variance. The rotation is 
done in such a way that the variances along the successive axes decrease as quickly as 
possible.  

 
Each weight vector W(t)=[w1t,…,wnt] is defined by a single point in the weight space. 

The training produces a set of points, on which PCA can be performed. Weight vectors after 
each training cycle t are collected into the weight matrix WM:  
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where T is the number of training cycles. PCA can be performed either directly on the weight 
matrix WM or on the weight covariance matrix CM:  
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The covariance matrix is a symmetric matrix, its entries cij are calculated as 
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and they represent the covariance between the weight wi and wj, where T is the number of 
training cycles, n is the number of network weights and the mean weight value is calculated 
as 
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The eigenvectors vi and their corresponding eigenenvalues λi of the weight covariance matrix 
are the solution of the characteristic equation: 

 iii vv ⋅=⋅ λCM ,  for i=1,…,n  (1.9) 

If the weight vector has n components, the characteristic equation becomes of order n. 
This is easy to solve only if n is small. Solving eigenvalues and corresponding eigenvectors is 
a non-trivial task, and many methods exist. One way to solve the eigenvalue problem is to use 
a procedure called singular value decomposition (SVD) [Kalman 2001]. The SVD procedure 
presented in “Numerical Recipes in C” [Press 1992] was used in the calculations. By ordering 
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the eigenvectors in the order of descending eigenvalues (largest first), we can create an 
ordered orthogonal basis with the first eigenvector having the direction of largest variance of 
the data [Hollmen 1996]. The data variance in a given eigenvector direction is proportional to 
the eigenvalue corresponding to the eigenvector. In this way, the directions in which the data 
has the most significant information can be found. Let V be a matrix consisting of 
eigenvectors of the covariance matrix as the row vectors. By transforming the weight vector 
W(t), we get  

   ( )WWVY −⋅= )(t  (1.10) 

which is a point in the orthogonal coordinate system defined by the eigenvectors. Thus, the 
axes of the new coordinate system are in the eigenvector directions. Components of Y can be 
seen as the coordinates in the orthogonal basis. We can reconstruct the original weight vector 
W(t) from Y by  

 WYVW +⋅= Tt)(  (1.11) 

using the property of an orthogonal matrix V-1 = VT. The data variance in each eigenvector 
direction, which will be further called simply the first, second and so on PCA direction is 
proportional to its corresponding eigenvalue. Only some directions with the greatest variance 
are preserved and all remaining directions are discarded.  

SVD can be calculated either on the weight matrix or on the weight covariance 
matrix. The resulting plots are of similar nature, although the eigenvalue distribution is 
different. A weight matrix gives a smaller first to second eigenvalue ratio and bigger the least 
significant eigenvalues, but in both cases the first and second PCA directions typically 
contain about 95÷97% of the total variance. Nevertheless,  SVD on the covariance matrix has 
a significant advantage: the error surface projections obtained in the experiments differ less 
from training to training (are less influenced by the random initial distribution of weights). 
For this reason all plots presented here are based on SVD on the covariance matrix, except 
for the two sample ES presented in Fig.1.11.  
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1.2.3.3.   Plot Construction 
 

Vertical axis in the plots shows the relative error E=E(W)/NVNC, where NV is the 
number of vectors and NC is the number of classes in the training set. For all error functions 
based on Minkovsky's metric ||⋅|| the error function is bounded from above by NVNC, thus the 
relative error E is bounded by 1. Horizontal axes show distances in the weight space in c1 and 
c2 PCA directions corresponding to the first and second eigenvector of the weight covariance 
matrix. Thus in a given point (c1,c2) of the plot the network weight vector W(c1,c2) is 
determined by the following equation: 

 
 2211021 ),( νν cccc ++= WW  (1.12) 

 
where v1 is the first and v2 is the second eigenvector of the weight covariance matrix, c1 and c2 
are the distance along the horizontal axes and W0 is the vector of constant weights. In most of 
the plots W0 consists of zero weights for the simplicity reason because W0  containing the 
mean weight values during the training produces plots that look very similar and that are only 
horizontally shifted. The aim here is to find the most interesting projection directions. The 
equation (1.11) refers to the data from the weight matrix. When the plot is drawn it uses only 
the PCA-based directions, but particular points on the error surface are not present in the 
weight matrix, thus the equation (1.12) as the generalized version of (1.11) is used for error 
surfaces. However, the equation (1.11) always applies to the visualization of learning 
trajectories in the PCA-based directions. Non-zero W0 vectors are considered in chapters 
1.2.10.2 and 1.3.  

 
The character of ES is determined by the dataset and network structure. In the 

experiments MLP networks were trained for data classification for as many training cycles as 
were required to bring them close to convergence. There was not a strict stopping criterion, 
since the results were very little sensitive to the stopping point, but in most cases the trainings 
were stopped when the error decrease reached about 95% of the possible error decrease. 
Sometimes the stopping point was intentionally determined in another way in order to show 
some phenomena, but this will be mentioned explicitly. The number of epochs varied 
depending on a training algorithm and a dataset. At the final training stage weights of output 
neurons tend to grow quicker then those of hidden neurons, but since the training was stopped 
before convergence, weights of each layer had still comparable contributions in determining 
PCA directions. The training was repeated several times for a given method with various 
random initial weights. 

 
Neither the random weight distribution nor the training method has significant 

influence on the shape of ES presented in the space of the two main PCA components. The 
projection of error surface for a given dataset and network structure may differ a bit - it may 
rotate from one plot to another, its elements may be a bit higher or lower, but the overall 
structure is well preserved. 

 
To obtain the most reliable ES projections, PCA should be calculated using the weight 

matrix containing data from the training cycles ranging from the initial weights (from the 
starting point) to that point when the error begins to change very slowly. Otherwise, 
especially if the initial training cycles with rapid error changes are omitted, some distortion 
described in later chapters will appear. 
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In most of the plots presented here logistic sigmoids are used as neural transfer 
functions but ES projections obtained with hyperbolic tangent do not differ significantly. 
Also some examples of ES obtained with other types of transfer functions will be presented. 

 
Over 20 datasets were used in the experiments, about half of them comes from the 

UCI machine learning database repository [Mertz 1998]. To be concise only one ES typical 
for a given situation will be shown; the others are qualitatively similar.  

 
 
 

        
 

Fig. 1.8. Left: MLP error surface of Iris (4-4-3) displayed in two PCA directions, the plot was 
made using the same data as in Fig.1.7. Right: MLP error surface of Iris (4-4-3) showing 
more faithfully how the ES might look like. 

 
 
Although PCA projections seem to be very good for ES visualization they do not 

reveal certain aspects of the original ES. The detailed reasons for this will be discussed in 
later chapters. At this stage three major differences between the original ES and their PCA 
projections are worth pointing out:  

 
• The ravines in which the training trajectories lie are curved, not straight as shown in 

the PCA projections. 
• The original ravines tend to be steeper (starting higher and ending lower) than those 

shown in PCA projections. 
• Sometimes shallow local minima close to the ES center are visible in PCA 

projections, although they do not exist in the original ES. 
 

Fig. 1.8-right is a modified version of fig.1.8-left that shows how the real ES might 
look like, addressing the points mentioned above. It can be only imagined or visualized if the 
projection directions are different in different fragments of the plot, however the detailed 
approaches to such a visualization model have not been attempted yet. 

 
Typically the first and second PCA directions contain together about 95% of the total 

variance and therefore, despite of the three shortcomings mentioned above, the plots reflect 
ES properties quite well. There is a strong correlation between the growth of a given weight 
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during the training growth(w) and its corresponding entry in the first principal component  
”1st PC(W)” (in the first eigenvector of the weight covariance matrix) (Fig. 1.9-left). The 
entries in the further principal component vectors seem to be uncorrelated with value of 
growth of their correspondent weights (Fig. 1.9-right).  

 
 

Table 1.1. Eigenvalues and variance captured by the PC-th PCA component for the same 
training as in Fig.1.7 and 1.8. 
 

PC 1 2 3 4 5 6 7 8 9 10 
eigenvalue 33.204 1.4550 0.5969 0.2554 0.1578 0.0679 0.0547 0.0324 0.0265 0.0191
% current 
variance 0.9245 0.0405 0.0166 0.0071 0.0044 0.0019 0.0015 0.0009 0.0007 0.0005

% total 
variance 0.9245 0.9651 0.9817 0.9888 0.9932 0.9951 0.9966 0.9975 0.9982 0.9988

 
 
 

      
  

Fig. 1.9. Left: Correlation between a given weight entry in the first eigenvector of the weight 
covariance matrix  1st PC(W) and the weight growth during the training growth(w) of Iris (4-
4-3). Right: Correlation of the 2nd PC(W) and growth(w) for the same training as in Fig. 1.7 
and 1.8. 
 
 

ES plots are based on weight matrices containing the weights from network trainings, 
which minimize the network error. Thus, the trajectories traverse rather the parts of the 
weight space with lower error values than the parts with higher error values. As a result, we 
can see the projected ES rather in the bottom than in the top part of the cube. It is not 
recommended to try to traverse and display a more diverse area of the weight space by 
combining the weights from several trainings into one weight matrix because the average 
value of each weight in such a matrix tends to zero as the number of trainings grow, as a 
result the ES projection approaches a horizontal plane. 
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1.2.3.4.   Independent Component Analysis 
 
 

 
Fig. 1.10. The data in this figure is clearly divided into two clusters. However, the principal 
component, i.e. the direction of maximum variance, would be vertical, providing no 
separation between the clusters. In contrast, the strongly nongaussian independent component 
direction is horizontal, providing optimal separation of the clusters. (the figure comes from 
www.cis.hut.fi/aapo/papers/NCS99web/node8.html) 
 
 

PCA projections are in the directions of maximum variance, thus even if the data is 
clearly divided into two clusters, PCA may not reveal this structure. ICA (Independent 
Component Analysis) projections are in the maximally nongaussian directions, providing 
usually good separation of clusters, though not necessarily the directions of maximum 
variance [Leino 2004]. So the ICA-based approach may show some additional ES properties, 
not visible in PCA projections, and produce generally more complex ES projections with 
more details.  

 
ICA starts with a vector of observations x (frequently PCA is used as data 

preprocessing for ICA and x is then the original vector projected into the PCA directions): 
 

 ),...,( 1 nxx=x  (1.13) 
 
The basic assumption here is that each of these observations can be derived from a set of n 
independent components: 
 

 ninii sasa ++= ...11x  (1.14) 
 
or, using a matrix notation, x=As. Here s=(s1,...,sn) is a random vector – the latent variables, 
or independent components, and A is a m x n mixing matrix. The task of ICA is to find both s 
and A. However, the matrix W=A-1 is directly searched for, so that the sources s=Wx can be 
estimated from vector x of the observed signals by optimizing a statistical independence 
criterion. The basic assumption of ICA is that the components si are independent of each 
other, that is P(si,sj)=P(si)P(sj).  
 
 The entropy H of a random vector x of density px(u) is defined as 
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  (1.15) duupuppH xxx )(log)()( ∫−=

 
H(px) is maximal for a gaussian random vector x. The negentropy J is defined by the 
difference of entropy between x and a gaussian random vector xg of the same covariance 
matrix as x: 
 

 )()()( xxg pHpHxJ −=  (1.16) 
 
The FastICA algorithm [Hyvarinen 1999, 2001] uses the following estimation of negentropy: 
 

  (1.17) 2)]}([)]([{)( gxgExgExJ −=
 
where g is any non-quadratic function. The maximization of the measure of negentropy is 
done by an iteration scheme, which for one independent component w is: 
1. choose an initial (e.g.) random weight vector w 
2. w+ ← E{x g(wTx)} - E{g’(wTx)}w, with g(u) = tanh(u), or g(u) = u exp(-u2/2) 
3. w ← w+ / ||w+ || 
4. if not converged (i.e. if old and new w point in different directions), go to 2 
 
The algorithm can be run for each independent component i. To prevent different vectors wx 
from converging in the same direction, the vectors are decorrelated after every iteration, 
using for example the decorrelation of matrix W: 
 
 W = (W WT)-1/2 W (1.18) 
 

  The FastICA algorithm was used in the calculations, resulting in very similar 
projections to those obtained with PCA on the covariance matrix. The global character of 
both projections is the same, only some more details are visible in ICA projections, mainly as 
the folded ridges (Fig.1.11-left). 
 
 

      
 
Fig. 1.11. A comparison of Iris (4-4-3) error surface projection in ICA directions (left) and 
PCA directions calculated by SVD on the weight matrix (right) for the same training as in 
Fig.1.7 and 1.8. 
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The first ICA direction is almost parallel to the first PCA direction with the cosine 
between them about 0.99, but the second directions seem uncorrelated with the cosine 
between them usually below 0.3. Change of various FastICA algorithm parameters (e.g. the 
function g) did not noticeably change the plots. Generally, the hopes to see much more details 
that would reveal some more ES aspects using ICA-based projections were disappointed. 
Thus, only one plot obtained with an ICA-based projection is presented in this thesis for 
comparison (Fig. 1.11-left) and all further plots are shown in PCA-based projections. 

 
 

1.2.3.5.   Two-weight Coordinate System 
 

Coordinate systems based on any two-weight directions do not provide so much 
information as PCA systems. A large number of error surface projections of networks with 
more than 10÷20 weights are composed of four horizontal planes, which are sometimes 
reduced to two or even a single plane. The surfaces have similar characters for many datasets 
and network architectures and resemble the ES projection shown in Fig. 1.12-left. More 
complex shapes of ES projection in two-weight systems are rare for medium to large 
networks. 

 
In networks with significantly more hidden neurons then the number required to learn 

the task, the neurons perform highly redundant roles. In that case changing any two weights 
of the trained network does not change the error because then signals propagate through the 
redundant paths and ES in a two-weight system creates only one horizontal plane. 

 
 
1.2.4.   Network Structure Influence on Error Surface 
 

Networks without hidden layers have very simple ES consisting only of some 
horizontal or slightly inclined half-planes, situated on various heights, with slopes connecting 
them (Fig.1.12-left). 

 
 

      
 

 
Fig. 1.12. Left: ES of a 2-layer network (Iris 4-3). Right: ES of a 4-layer network (Iris 4-4-4-3). 
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ES of networks with hidden layers has a starfish structure. An interesting depiction of 
it was given by Denker et. al. [Denker 1987] ”E(W) surface resembles a sombrero that has 
been warped in certain symmetric ways: near the middle (w=0) all configurations have 
moderately bad E values. Radiating out from the center are a great number of ridges and 
valleys. The valleys get deeper as they go out, but asymptotically level out. In the best 
valleys, E is exactly or asymptotically zero, other valleys have higher floors”. Pictures 
presented in this thesis confirm that global minima rarely create craters but frequently ravines 
reaching their minimum in infinity. This corresponds to the infinite growth of (usually output 
layer) weights when continuing the training enough long.  

 
Each of h hidden neurons may be labeled with an arbitrary and unique number from 1 

to h. Renumerating the network parameters does not change the mapping implemented by the 
network, thus giving h! permutational symmetries. A neural activation function for which 
f(-x)=-f(x)+const gives further 2h sign-flip symmetries [Sussmann 1992]. This gives together 
2hh! equivalent global minima. A training algorithm converges to that minimum which is the 
easiest to reach from the starting point. Only some of the minima are clearly visible in the 
PCA projections.  

 
Four layer networks have more complex ES than the three layer ones, even with fewer 

neurons. Thus they can map more complex data (Fig.1.12-right). In 3-layer networks with 
crossover connections (Fig. 1.4) the output layer is connected directly to both: the input (as in 
2-layer networks) and hidden layer (as in 3-layer networks). Consequently their ES displays 
features of 2-layer networks (low symmetry of ES) and 3-layers networks (complexity of ES) 
(Fig.1.13-left). 

 
 

      
 
Fig. 1.13. Left: ES of a 3-layer network with crossover connections (Iris 4-4-3). Right: ES of 
a 3-layer network with too many hidden neurons (Iris 4-100-3). 
 
 

Too few neurons in any hidden layer make a bottleneck and the network cannot learn 
the task. The ES consists of some horizontal planes all placed relatively high with some 
disturbances between them, but does not contain the characteristic ravines leading to global 
minima (not shown here). 
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The number of global minima visible in PCA projections initially grows when the 
number of hidden neurons increases, but with too many hidden neurons big horizontal planes 
begin to appear (Fig.1.13-right). This effect caused by the weight redundancy is visible more 
clearly in two-weight coordinate systems, where the projected ES is almost flat since many 
weights must be changed at the same time to change the error. 

 
 

 
1.2.5.   Training Dataset Influence on Error Surface 
 
 
1.2.5.1.  Description of the datasets used in experiments 
 
 

 

       
 

       
 
Fig. 1.14. The distribution of class instances shown in the space of two most informative 
features. Left-top: Iris, right-top: Breast, left-bottom: Ionosphere, right-bottom: Appendicitis. 
 
 
1. Iris (Fig.1.14.left-top): 4 continuous features (sepal-length, sepal-width, petal-length, petal-

width), 3 classes, 150 vectors, 50 in each class. Two of the features (petal-length, petal-
width) are most informative for classification, the remaining two features are more noisy 
and do not provide additional information. Although the classes are well separated, three 
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classes make the training a bit longer than the training of the Breast dataset. The accuracy 
that may be achieved in 10-fold crossvalidation is about 96%. The dataset is publicly 
available at UCI [Mertz 1998]. 

 
2. Wisconsin Breast Cancer (Fig. 1.14.right-top):  10 continuous features (f1,...,f10), 2 classes 

(class 1-red cross in , class 2-blue square), 699 vectors, 458 in class 1 and 241 in class 2. 
The classes are separated rather well, the set is very easy for training. The possible 
accuracy in 10-fold crossvalidation is about 96%. The dataset is publicly available at UCI 
[Mertz 1998] and described in chapter 3.2.12.4. 

 
3. Ionosphere – training dataset (Fig. 1.14.left-bottom):  34 continuous features (f1,...,f34), 2 

classes , 200 vectors, 100 in class ‘good’ and 100 in class ‘bad’. The classes are not so well 
separated as in the two first datasets. The possible accuracy in 10-fold crossvalidation is 
about 94%. The dataset is publicly available at UCI [Mertz 1998]. 

 
4. Appendicitis: 10 continuous features (f1,...,f10), 2 classes (class 1-red cross in Fig. 

1.14.right-bottom, class 2-blue square), 106 vectors, 21 in class 1 and 85 in class 2 
(strongly asymmetric class distribution). The classes are not so well separated as in the two 
first datasets. The possible accuracy in 10-fold crossvalidation is about 89%. The dataset is  
described in chapter 3.2.12.3. 

 
 
 
1.2.5.2. Experimental Results 
 
 

      
 

Fig. 1.15. Left: ES of Breast (10-4-2) The arrow shows a point to which the jump described 
in chapter 1.2.10.2 was made . Right: ES of Ionosphere (34-4-2).  
 
 

A similar network structure x-4-2 has been used for various datasets. Generally the 
following tendencies can be observed:  

• More complex training datasets produce more complex ES with more ravines, 
especially for data that is not approximately linearly separable. 

• Equal classes of examples lead to a more symmetric ES.  
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Breast (Fig.1.15-left) has two classes with few overlapping vectors and therefore the 

simplest ES. Iris (Fig.1.8-left) has 3 classes with little overlap and Ionosphere (Fig.1.15-right) 
2 classes with more overlap – they both give similar ES.  

 
Appendicitis (21 vectors of class 1 and 85 of class 2) gives a highly non-symmetric 

ES (Fig.1.16-left). Setting the network weights (chapter 1.2.9) to the values represented by 
the appropriate parts of the error surface indicates that the big flat area situated in the front 
part of the plot corresponds to the majority classification accuracy (for the points located on 
this fragment of ES the predicted class is class 2). Frequently training of datasets with 
unbalanced classes is more difficult because this part of ES is very flat and very broad. It is 
easy to get there, but difficult to leave this area. The ravines between this part and the higher 
situated areas in the back of the plot correspond to the optimal classification accuracy (about 
90-92% in the case of Appendicitis). But the same dataset with only 42 vectors left (all of 
class 1 and randomly chosen 21 vectors of class 2) produces a quite symmetric ES (Fig.1.16-
right). The topic of unbalanced classes will be further discussed in chapter 1.6. 

 
An n-bit parity is a problem, where the dataset has n features and two classes. Each of 

the features can take two values: zero or one. If an even number of features in a given vector 
take the value of one then the vector belongs to the first class, otherwise it belongs to the 
second class. Xor, which is a 2-bit parity problem, is linearly non-separable and therefore has 
a complex ES (Fig.1.17-left). 6-bit parity is linearly non-separable and has 32 clusters per 
class (Xor has only two) and its ES is very intricate, however symmetric because the number 
of vectors in each class is equal (Fig.1.17-right). Moreover, datasets that are easier for 
training have error surfaces with broader valleys, while the error surfaces of difficult datasets 
have only narrow ravines. 

 
 
 

      
 

Fig. 1.16. Left: ES of entire Appendicitis dataset (7-4-2). Right: ES of Appendicitis dataset 
(7-4-2) with only 42 vectors – all 21 vectors of class 1 and randomly chosen 21 vectors of 
class 2. 
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Fig. 1.17. Left: ES of Xor (2-2-2). Right: ES of 6-bit parity (6-8-2). 
 
 
 
1.2.6.   Transfer Function Influence on Error Surface 
 
1.2.6.1.   Monotone Transfer Functions 
 

 
 

 
 
Fig. 1.18. Transfer functions: a) sigmoid with offset, b) stretched sigmoid, c) staircase 
function. 
 

This chapter contains examples of error surfaces with various transfer functions, such 
as a sigmoid with offset, a staircase function and a stretched sigmoid. The purpose of 
introducing the functions is to prevent the weights from an infinite growth and in the case of 
a staircase function also to simplify the calculations. 

  
Discontinuities  are visible in the plot of ES obtained with a staircase function and 

with a sigmoid with offset. Both functions give a similar ES (Fig.1.19-right) with the 
distinguished feature of sharp edges. The differences are visible in a smaller scale; the 
sigmoid with offset gives smooth surfaces with curbs (Fig.1.20-left), while the staircase 
function produces quite irregular surfaces (Fig.1.20-right). Both the offset increase and the 
decrease of the number of stairs make the training more difficult and produce sharp edges on 
the ES. Moreover, these transfer functions are not continuously differentiable and impose 
problems to analytical gradient-based methods. The stretched sigmoid does not cause any 
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sharpness on the error surface and in this way it differs from the two previous transfer 
functions. With a small stretch (1.01÷1.1) it seems to be an optimal solution. But with a 
bigger stretch the function becomes similar to a step function and has a limited usefulness for 
complex datasets – the error surfaces are becoming simple with big flat areas (Fig.1.19-left). 

 
 
 

      
 

 
Fig. 1.19. Left: ES of Ionosphere (34-4-2) with stretched sigmoid (stretch=1.3). Right: ES of 
Iris (4-4-3) with staircase transfer function (5 stairs).  
 
 

 
 

      
 

Fig. 1.20. Left: ES of Iris (4-4-3) with sigmoid with offset=0.2 visible with large zoom. 
Right: ES of Iris (4-4-3) with staircase function (11 stairs) visible in a big zoom.  
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1.2.6.2.   Non-monotone Transfer Functions 
 

 
 

      
 

Fig. 1.21. ES of Xor (2-2-2) with sinusoidal transfer function S=0.3+0.9·sin(0.3·x). 
 
 

Non-monotone transfer functions produce lots of local minima. Fig.1.21 shows ES of 
Xor (2-2-2) with a sinusoidal transfer function. The training of the network was successful 
because during the training all weight remained in the monotone interval of the sinusoid (-
π/2; π/2).  ES visible in this figure has nothing in common with ES of MLPs with monotone 
transfer functions, such as widely used logistic sigmoid and hyperbolic tangent, where local 
minima are very rare for real-world datasets, although they may exist as an effect of 
superpositions of two or more sigmoids. Mainly an ill-conditioning, large flat areas and 
choosing a wrong ES ravine cause many difficulties for training algorithms. 

 
 
 

1.2.7.   Local Minima 
 

The most well-known difficulty that arises in general optimization problems is the 
issue of local minima. Mathematical programming and optimization research was originally 
concerned with univariate problems, or with solving systems of equations involving only a 
few variables. In the one-dimensional case, the concept of local minima follows closely from 
the issue of convexity. The conceptual picture is that if there are no local minima, then the 
optimization problem is trivial, and the cost function resembles a parabolic bowl or a single 
valley. This picture has persisted in MLP research, perhaps mainly because it was used to 
explain the failure of backpropagation to learn, and because the large amount of techniques 
from optimization being applied to the development of training algorithms [Gallagher 2000].  

 
Rumelhart stated that the occasional failure of MLPs to learn simple problems 

including Xor was caused by local minima [Rumelhart  1986b]. This together with the 
experience from the low-dimensional optimization problems led to a widespread perception 
that local minima are the greatest obstacle in successful MLP learning (if the training was 
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successful, then the algorithm found a global minimum, whereas if the training did not 
progress satisfactorily then the algorithm was stuck in a local minimum). A good example of 
the widespread improper conceptual picture can be found in [Wilson 2003], where a picture 
very similar to Fig.2.21 is placed followed by a comment “there may be many thousands of 
weights, making the error surface difficult to visualize”. 

 
Some authors claimed that the ES of Xor 2-2-1 and Xor 2-1-1 (with cross-over 

connections) contain local minima [Blum 1989 ] [Lisboa 1991] [Gori 1992] [Horikawa 1993] 
by which backpropagation can become trapped.  

 
However, a more detailed analysis of the problem revealed that the error surface of 

both Xor 2-1-1 [Sprinkhuizen 1996] and Xor 2-2-1 [Hamey 1995] [Hamey 1998] networks 
have no local minima. All stationary points in the 2-1-1 Xor problem are saddle points and 
there exist finite trajectories, which allow escape, without increasing the error, from all finite 
stationary points. Thus the points are not local minima. It was also shown [Sprinkhuizen 
1998] that all stationary points with finite weights are saddle points with positive error or 
zero error and not local minima. 

 
Overall, the analysis of the Xor error surface indicates that local minima are not the 

cause of poor training performance for algorithms such as backpropagation. Other features, 
such as saddle points and plateaus, seem more likely explanations of training difficulties. 
Coetze [Coetze 1997] indicates that empirical MLP error surfaces have an extreme ratio of 
saddle points to local minima. 

 
It is known that MLP error surfaces are often ill-conditioned [Le Cun 1991],  

[Saarinen 1993], with the Hessian eigenvalues differing by orders of magnitude. This fact 
means that there are often directions on the error surface in which the gradient varies quickly 
(cliffs or steep ravines) and others, where the gradient variation is quite slow (plateaus or flat 
regions) [Hecht  1990 ] [Lehr 1996]. For an algorithm such as backpropagation with a fixed 
step size, this feature leads to periods of very slow progress, sudden drops and oscillations in 
the error values.  

 
There are several factors that contribute to the ill-conditioning in MLP error surfaces. 

The properties of transfer functions are reflected in the properties of the error surface, as it 
was seen in the ES projections obtained with various transfer functions. The sigmoids and 
still more their superpositions cause the ill-conditioning. Attempting to make sure the 
sigmoids in the network operate effectively in their useful regions is one way to reduce the 
effects of ill-conditioning  [Le Cun 1998]. Very small training sets may also contribute to ill-
conditioning [McKeown 1997]. 

 
The local minima were never visible in the ES projections, while the ill-conditioning 

effect was frequently. Though it was shown that local minima can exist [Sontag 1989], they 
are important mostly from the theoretical point of view, while ill-conditioning has much more 
direct and practically important effect on the training algorithms performance. 
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1.2.8.   Error Function Influence on Error Surface 
 

Using MSE error function with desired output signals 0.1 and 0.9 (or 0.2 and 0.8) 
produces very similar ES as with desired outputs 0 and 1 but a global minimum tends to lie 
close to the ES center in a shallow valley (not shown here). 
 
 
1.2.8.1.   Different Exponents in Error Function 
 

An error surface depends also on the power exponent of the error function. Typically 
MSE functions (exponent=2) are used but for exponents ranging from 0.5 to 8.0 error 
surfaces look very similar to those obtained with MSE. 

 
Two plots of error surfaces obtained with the exponent = 0.1 and 32 are shown here. 

High error exponents successfully reduce the weight growth and can be used as a weight 
regularization method. The learning trajectory remains near the ES center. For Iris (4-4-3) the 
length of the weight vector never exceeded 25, no matter how long the training was and the 
network was always successfully trained. Low exponents produce ES with relatively high 
plateaus and the slopes the ES fall down very slowly. With the exponent = 0.1 it is usually 
enough to reduce the distance error by 20% to achieve the same classification accuracy on a 
training set, as would require reducing MSE by 90%. However, the network training with 
such low exponents of the error function may be difficult. 

 
 
 

   
 

Fig. 1.22. Left: ES of Iris (4-4-3) with power function exponent=32. Right:  ES of Iris (4-4-3) 
with power function exponent=0.1. 
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1.2.8.2.   Weight Regularization 
 

The regularization term is added to the error function to prevent the weights from 
excessive growth in order to provide better generalization (chapter 2.6.3). In the simplest 
weight decay model the penalty term for big weight values is added to the error function as 
the sum of  the weight squares. The error function is: 

 
 ∑∑∑ +−=

i
i

v c
cvcv wcsdfE 2

,, )(  (1.19) 

 
The error surface then lifts up, less near the center and more further from the center, 

thus we can see a superposition of the original ES with the paraboloid caused by the 
regularization term. The effect is stronger for bigger c values. A plot for the Breast dataset 
with c=0.03 is presented in Fig.1.23.  

 
 

      
 

Fig. 1.23. ES of Breast (10-4-2) with weight regularization, c=0.03. 

Solla [Solla 1988] showed that for a cross-entropy error measure, the error surface is 
inimum, in comparison to MSE function. Thus, using the cross-

entropy error function can improve the network convergency close to the minimum. 

The cross-entropy error function is given by the following formula: 
 

 
 
 
1.2.8.3.   Cross-Entropy Error Function 

 

steeper in the region of a m

 

 ( )∑∑ −−+−=
v c

vcvcvcvc STSTE )1ln()1(ln  (1.20) 

 
where v is the vector number, c is the output neuron number, corresponding to the class 
umber, T is the desired output neuron signal and S is the actual output neuron signal The 

error is summed over all vectors v and all output neurons c. But since for (S=0 ,T=1) and 
(S=1,T=0) the function takes infinite values the following modification is used: 

n
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(1.21) 
where d is a small (about 10-10) positive number.  
 

Comparing to MSE or other power error functions, cross-entropy error functions give 
similar or more complex ES. Fragments of the ES are higher then 1, due to the fact that the 
error is not bounded by NvNc as in the case of power error functions. 
 
 
 

( )∑∑ +−+−−++−+−=
v c

vcvcvcvc ddSTddSTE )1ln()1)(ln(1())1ln()(ln(  

      
 
Fig. 1.24. Left: ES of Appendicitis (7-4-2) with cross-entropy error function. Right: ES of 
Xor (2-2-2) with cross-entropy error function. 
 
 

 

Using the principal components, from the equation (1.12) we can calculate the weight 
values at any point of the projected error surface:  
 

  (1.22) 

 
On average the weight values in the areas of lower error are more symmetric with respect to 
zero and the disproportions between the values of different neuron weights are smaller. 
However, the tendencies are not very strong. 
 

 

 
1.2.9.   Weight Changes on Error Surface 
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Fig. 1.26. Left: ES of Iris (4-4-3). Right top: weight values in the point with low error (red 
ne intersecting the ES). Right bottom: weight values in the point with high error (blue line 

 weights, in red: output neuron weights.   

 

 

ection the possibility to use of PCA to reduce the number of effective training 
arameters is discussed. After training the network for some epochs, PCA is performed on 
e weight covariance matrix. Then searching for the er

reduced space of PCA-determined directions.   
 

.2.10.

li
intersecting the ES). In violet: hidden neuron
 

 
1.2.10.   Reducing the Number of Effective Parameters 
 

PCA is a well-known technique, widely used for the preprocessing of training data to 
reduce the number of network inputs. PCA was also proposed for weight pruning [Levin 

994]. In this s1
p
th ror minimum takes place in the 

 
1 1.   Directions in the Weight Space 
 

The analysis of directions in a weight space reveals interesting properties of ES that 
can be used to design or improve some neural training algorithms [Kordos 2004b]. Some 
trends and tendencies are common for many datasets and network structures with differences 
only in details. 
 
The cosine of the angle between two vectors A=[a1, a2, ... an] and B=[b1, b2 , ... bn]T can be 
calculated as: 
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The lines for cos W, ||W||, E, cos(W,PC) shown in Fig.1.27-left look very similar for 

various training methods (the sample training was performed on the Iris dataset using  
backpropagation with variable learning rates). It can be seen that the error E decreases 
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proportionally to the changes of weight vector direction cosW. At the final stage of the 
training, the direction remains almost constant and the error is decreasing very slowly, 
although the weights are still growing. The trajectory is then already in the flat part of the ES. 
In some cases, such as weight regularization, the weights do not grow to infinity, but only to 
limited values, nevertheless the error decreases as long as the weight vector changes its 
direction. 
 
 
 

     
 

Fig. 1.27. Left: Change of parameters during network training. Vertical axis: normalized 
||W||, normalized (rescaled to 1) MSE and cosW=cos(W[epoch]-W[last epoch]). Horizontal 
axis: epoch number. Right: Change of parameters during network training. Vertical axis:  
cos(W,PC)=cosine between the weight vector W and the first PCA direction, 
cos(dw,DW)=cos(W[epoch]-W[epoch-1],W[last epoch]), cos(dw,PC)=cos(W[epoch]-
W[epoch-1],PC). Horizontal axis: epoch number. 
 
 

The line cos(W,PC) in Fig.1.27-right shows the cosine of the angle between the first 
CA di

 using PCA for learning trajectory 
xtrapolation, thus making a jump several epochs ahead, is not an easy task, since the proper 
irection of the jump must be determined very precisely. 

 
The two other lines (red and blue) in Fig.1.27-right show the cosine of angles between 

the temporary direction of the trajectory (a vector connecting the last and the actual trajectory 
point) and the first PCA direction cos(dw,PC) and between the temporary direction of the 
trajectory and the direction determined by the starting and the last trajectory point 
cos(dw,DW). These two characteristics differ strongly depending on a training algorithm. The 
values of some other angles are shown in Table 1.2. 
 
 

P rection and a line connecting the starting point with the actual trajectory point. Only 
the weights from the first 100 epochs were included in the weight matrix for PCA calculation. 
The cosine takes the greatest value about the 50th epoch. Afterwards PCA and W directions 
diverge. The divergence is sometimes even stronger than in Fig.1.27-right. For that reason a 
big jump only seldom can be made along PCA directions while training the network. PCA 
directions are very good for ES and even better for trajectory visualization, where a little 
difference in angles does not matter. However
e
d
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Table 1.2. Cosine between particular directions in the MLP weight space for the same 
training as in Fig.1.27. 

 

 PCA_c1 (λ1) PCA_c2 (λ2) ||1|| traject  
ICA_c1 -0.99585 0.08037 0.05832 -0.88185 
ICA_c2 -0.96653 -0.15675 0.1038 -0.75964 
||1|| -0.06087 -0.02601 1 -0.04991 
traject 0.86626 -0.25371 -0.04991 1 
PCA_c1 (λ1) 1 0 -0.06087 0.86626 
PCA_c2 (λ2) 0 1 -0.02601 -0.25371 

  
traject – direction of a line connecting the first and last trajectory point  
||1|| – direction of the diagonal vector [1,1,1,...,1]  
 
 
 
 
1.2.10.2.   PCA-based Parameters Reduction. A Case Study 
 
1. Starting from the random weights (error=326) the network (10-4-2) is trained on the 

Wisconsin Breast Cancer dataset for some training cycles using numerical gradient 
(chapter 2.2). The training is stopped with the error=240. 

2. PCA directions are determined.  
3. A minimum in the PCA directions is found (also using numerical gradient) with the 

error=43 and a jump is made to that point (blue arrow in Fig 1.15-left). 
4. No further error decrease in PCA-directions is possible. The network is trained again with 

a standard numerical gradient for 5 training cycles. 
5. Again, PCA directions are determined on the weight matrix from the last 5 training 

cycles.  
6. PCA provides the eigenvectors that determine only the directions, the constant values 

must be added to the weights. The values do not have to be the mean values that were 
subtracted from the weights while calculating the covariance matrix (equation 1.7). We 
would rather like them to be the values of the last trajectory point, since this ensures that 
the training in the reduced weight space can start from the last point of the training in the 
full weight space. However three possibilities of choosing the point (called “fixing 
point”) are considered: 
a) The zero point in the weight space. However this causes that the projection of the ES 

lifts up. The lowest point on it has now the error=244 (Fig.1.28-left) 
b) The point of the mean weight values. The obtained ES looks like an intermediate 

stage between Figs. 2.28-left and 2.28-right. Moreover the point of mean weight 
values is usually not contained in the learning trajectory and much higher error can 
correspond to that point. 

c) The last training point (Fig.1.28-right). This is the only reasonable choice. When the 
point is chosen as a fixing point, the projection of ES does not lift up, but because 
PCA directions are determined on the weight matrix from only a small part of the 
training, we get some local PCA directions. In the local PCA directions the minimum 
is situated very close to the last training point.  

7. Thus, the big jump several training cycles ahead could be made only once. 
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Fig. 1.28. ES of Breast (10-4-2) determined basing on 5 training cycles after the jump. Left: 
fixing point at the zero point in the weight space. Right: fixing point at the last trajectory 
point. 
 

Breast dataset was chosen for the case study intentionally because the dataset is very 
easy to train (what is clear, since its ES is very simple). For most datasets such big jumps in 
PCA directions (from error=240 to 43) are impossible. However, using a PCA-based ES 
projection on which the last training point is situated, it is usually possible to find a point with 
lower error (Fig.1.28-right). The reason for which the method is in most cases impractical is 
the computational cost of calculating PCA every some epochs in order to make only a small 
step in the reduced space. 
 
 
 
1.2.11.   Sections of MLP Error Surface 

 
MLP error surface changes slower in the parts that are located further from its center. 

These parts are reached by the learning trajectory at the final stage of the training. However 
mostly output layer weights contribute to the slower changes. At the beginning of the training 
(close to the ES center) usually the error function derivatives in output layer weight directions 
are bigger, although the distances from the actual point to the error minimum are shorter. 
That is quite opposite to BP assumptions. (There are also versions of BP that use different 
learning rates in different layers.) Therefore RPROP, which takes into account only the sign 
of a derivative, performs not worse than BP. At the final training stage the landscape changes, 
but mainly in output layer weight directions. The differences between error surface sections 
in hidden weight directions at the beginning and at the final stage of the training are not so 
significant. In any case, gradient direction is not the optimal next step direction. 

 
Frequently some features are irrelevant for the classification task. Error surface 

sections in the directions of the weights that connect the irrelevant inputs with hidden neurons 
are almost flat. They may only slightly change due to random noise contained in the features.   
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Fig. 1.29. Left: ES sections in hidden weight directions in the first NG (numerical gradient) 
training cycle. Right: ES sections in output weight directions in the first NG training cycle. 
 

 
th

   
Fig. 1.30. ES sections in hidden weight directions in the 15  NG training cycle. Right: ES 
sections in output weight directions in the 15th NG training cycle. 

used for training algorithm optimization and they 
ave been implemented into numerical gradient algorithm thus achieving significant 
duction of training times (chapter 2.3.5). 

1.2.12

ces in 3 dimensions without any 
distortions, the first and second PCA component coordinate system gives quite a good insight 
into ma elow: 

•  networks has a starfish structure. 

  
 
The observations can be practically 

h
re
 
 
 

.   Conclusions 
 

Although it is impossible to see n-dimensional spa

ny important ES properties, which are listed b
 
ES of MLP

• ES depends on network architecture and training data as well as on transfer and error 
functions. 

• Local minima in craters are very rare in standard MLP networks with monotone 
transfer functions trained on real-world datasets.  

• With MSE error function and sigmoidal transfer functions global minima are in 
infinity in the ravines reaching the lowest error values. 
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• With MSE error function and sigmoidal transfer functions local minima are also in 
infinity but in the ravines reaching higher error values. 

• Ill-conditioning, large flat areas, or choosing a wrong ES ravine due to a poor weight 

och. If the training is not successful than the 
learning trajectory does not traverse enough space and both the trajectory and the ES 
project

radients are big in this point. It 
cannot in this case be trained with BP or NG, but this is due to the limitations of the training 
method

eduction of training times. This may be one of the future research subjects 
imed at a better understanding of neural networks and  improving network architectures and 
aining methods.  

.3.   Visualization and Properties of MLP Learning Trajectories 

 the learning trajectory projections. Using 
e equations (1.10) and (1.11) does not always work well because the point given by (1.11) 

is usua

pt Fig. 1.28-right). Although such ES 
rojections are very similar to ES projections fixed to a given point of the learning 

trajectories, they do not adhere to the trajectories well. 
 

initialization may cause many difficulties for training algorithms.  
 

The training method used to generate data for PCA does not significantly influence 
the ES projection shape. The learning trajectories of many algorithms create an arc lying on 
the bottom of one of ES ravines, though the arc may be smoother or rougher. The view of ES 
projection depends on the weights after each ep

ions are too flat and too highly situated.  
 

The shape of ES has the greatest diversity close to its center. Far from the center, the 
surface changes slowly and flat horizontal areas occupy much place. If the random initial 
weight range is too broad then there is a great chance that the starting point lies somewhere 
on the flat area, and as a result the network cannot be trained with any gradient-based or local 
search methods. On contrary, if all initial weights are zero, the network can be successfully 
trained with appropriate methods, such as VSS, because g

s and not of the ES properties around the zero point. 
 

In some cases the network training can be accelerated by determining PCA 
components in the weight space after some initial training and then jumping to a minimum 
found in PCA coordinates or by extrapolating the learning trajectory in PCA directions. 
However, a universal solution has not been found so far. Non-linear techniques, such as 
principal curves, principal surfaces or kernel PCA, can also be used to display the surfaces 
and to attempt the r
a
tr
 
 
 
1
 
 
1.3.1. Error Surface and Learning Trajectory 
 
 In the 3-dimensional plots the learning trajectory usually intersects the error surface in 
only one point that will be called a „fixing point” and that corresponds to W0 in the equation 
(1.12). One of the learning trajectory points can be arbitrary selected as the fixing point, 
while placing in the same plot the error surface and
th

lly not traversed by the learning trajectory.  
 

The convention in this thesis is that the zero point in the weight space is always in the 
middle of the base of the cube (c1=0 and c2=0). In all figures presented so far ES projections 
were fixed to the zero point in the weight space (exce
p
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Fig. 1.31. Left: ES and learning trajectory of Ionosphere (34-4-2). Right: vertical axis: 
training error in the point (c1,c2) (red) and corresponding error value on the ES projection 
(blue), horizontal axis: training cycle. Fixing point (red cross) at the starting trajectory point.    
 
 
 The learning trajectory obviously does not lie on the two-dimensional ES projection, 
but somewhere in the multidimensional weight space and therefore it cannot ideally adh

e ES projection. The first and second PCA components comprise typically 95-97% of the 

 

ere to 

tal variance in the weight (“horizontal”) directions. Nevertheless, the information about the 
ons. Therefore, it may happen that although the 

“horizontal” distance between the original multidimensional trajectory and its projection into 
the first and second PCA direction is within 5% accuracy, the network error in the two points 
may differ much more. The effect is caused by a high nonlinearity of the error surface. 
 
 

th
to
error value is not included in PCA calculati

    
 
Fig. 1. 2. Left: ES and learning trajectory of Ionosphere (34-4-2). Right: vertical axis: 
training error in the point (c1,c2) (red) and corresponding error value on the ES projection 
(blue), horizontal axis: training cycle. Fixing point (red cross) at the 20th training cycle.  

3
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   However, such rapid changes in the error surface are relatively rare. In most of 
network trainings the learning trajectory adheres to the ES projection relatively well along 
quite a significant fragment around the fixing point (Fig. 1.32). For small networks and 
simple datasets the good adherence can be obtained for the entire trajectory (Fig. 1.33). The 
vertical coordinate of a given trajectory point corresponds to the factual network error during 
the training, whereas the vertical coordinate of the ES projection point (which has the same 
horizontal coordinates as the given trajectory point) shows the error calculated using only the 
first and second PCA component.  

 
 

 

   
 
Fig. 1.33. Left: error surface and learning trajectory of Xor (2-2-2). Right: vertical axis: 
training error in the point (c1,c2) (red) and corresponding error value on the ES projection 
(blue), horizontal axis: training cycle. Fixing point at the 7th training cycle.   
 
   

Even if the trajectory does not adhere to the ES projection well, it at least shows us 
which ravine was chosen by a training algorithm. The trajectories in n-dimensional weight 
space frequently create arcs. The mean direction of the arc usually corresponds to the 
direction of the ES ravine in PCA projections. The beginning of a trajectory (the training 
cycles before the fixing point) lies often over the ES projection and its end (the training 
cycles after the fixing point) under it. Thus, the ES projections are often flatter then original 
ES on which the trajectories lie. 
 
 
1.3.2.   Learning Trajectory Extrapolation 
 

PCA projections are most reliable and the original proportions are best preserved if 
CA directions are determined using the weights from all training cycles (Fig. 1.33). If PCA 

ible as ”bigger teeth” (Fig. 1.36-1.37). 
oreover, quite irrelevant results are obtained outside that fragment (Fig. 1.34). That is clear 

ecause the remaining data is projected using not its own PCA directions.    

P
is calculated using only weights from a fragment of the training and the entire learning 
trajectory is projected into so obtained PCA directions than the fragment of trajectory 
included in PCA calculations not only tends to be magnified but also has a higher ratio of its 
size in c2 to its size in c1 direction, what is vis
M
b
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Fig. 1.34. Left: error surface and learning trajectory of xor (2-2-2). Right: vertical axis: 
training error in the point (c1,c2) (red) and corresponding error value on the ES projection 
(blue), horizontal axis: training cycle. PCA was calculated on weights from the training 
cycles  0...10. Fixing point at the 7th training cycle.  
 
 

 
FIG. 1.35. Projection of the Iris (4-4-3) learning trajectory trained with NG with an oversized 
step in the first and second PCA direction. PCA was calculated on weights from the entire 
training (cycles  0...50). The color changes every training cycle. 
 
 

 

 
F
step in the first and second PCA direction. 

ig. 1.36. Projection of the Iris (4-4-3) learning trajectory trained with NG with an oversized 
PCA was calculated on weights from the training 

cycles  20...55. The color changes every training cycle. 
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Fig. 1.37. Projection of the Iris (4-4-3) learning trajectory trained with NG with an oversized 
step in the first and second PCA direction. PCA was calculated on weights from the training 
cycles  0...5. The color changes every training cycle. 
 
 
1.3.3. Learning Trajectories of Various Training Algorithms 

 
The shape of a learning trajectory depends on all parameters that influence the shape 

of ES and additionally on the training algorithm and its parameters. For example, BP with a 
small learning rate produces very smooth trajectories. Increasing learning rate gives more 
irregular trajectories [Gallagher 2003]. Fragments of the BP trajectories may go as well 
downwards as upwards, while trajectories obtained with some other algorithms (NG, VSS) go 
only downwards.  

 
 
  

   
 

   
 
Fig. 1.38. Projection of the Iris (4-4-3) learning trajectory trained with various algorithms (1-
NG, 2-VSS, 3-LM, 4-SCG, in the first and second PCA direction. The cross shows the zero 
point in the weight space. The color changes every training cycle. 

 
Only the trajectories of batch versions of learning algorithms are shown here. The ES 

is strictly associated with a given set of vectors. In any training, which does not calculate the 
error on the entire set (e.g. online backpropagation), a different ES corresponds to a different 
subset of training vectors. It would be impractical to show such trajectories for two reasons: 
first it is unclear in what coordinate system they should be shown and second the trajectory 
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fragments in online trainings are very small and it would be difficult to see them in the entire 
trajectory scale. 
 

 
 

                          
ig. 1.39. Left: Projection of the very beginning of the Iris (4-4-3) learning trajectory trained 

: Projection of the Iris (4-4-3) learning 
direction. 

 

F
with VSS in the first and second PCA direction. Right
trajectory trained with VSS in the third and forth PCA 
 

 
 

 
 

Fig. 1.4

 total variance. Thus, the PCA projections of learning trajectories reflect the properties of 
the original trajectories quite well. The similarity between all trajectories presented in Figs. 

ing the shape of the Iris error surface ravine. 
in chapter 2.4.4. The easier the training of 

0.  Projection of the Thyroid (21-4-3) learning trajectory trained with VSS in the first 
(c1), second (c2) and third (c3) PCA direction. Horizontal axes: c1 and c2, vertical axis: c3. 
 

 
In spite the fact that learning trajectories look differently for different training 

algorithms, the first and second PCA directions usually capture together about 95-97% of 
their

1.38 is obvious; they create similar arcs follow
he differences between them will be discussed T
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the dataset is the simpler and more regular is the learning trajectory. The Iris dataset is 
relatively easy for training and its learning trajectories create regular arcs. Higher PCA 
components have significant values only at the beginning of the training, what is clear 
because at that stage training algorithms chose the proper direction. As the training 
approaches the final stage, the direction changes are usually small.  
 
 
 
1.4. Weight Changes during MLP Training 
 

This chapter contains only a short review of the properties of weight changes that are 
common for local MLP training algorithms (analytical gradient-based and search-based). The 
changes of weight values during network training depend on the shape of the error surface as 
well as on the training algorithm. This analysis proved to be a useful factor when designing 
VSS algorithm.  

 
 

 
Fig. 1.41. Typical changes of weight values during MLP training with local methods. 

 
In general, three properties can be noticed. First, on average the change of a given 

weight value in the actual epoch is similar to its change in the previous epoch. Second, the 
final values of different weights can vary ranks of order. Third, after several training epochs 
some weights stop to change. Thus, it seems that the following conclusions can be drawn: the 
previous change of the weight can be used while determining the next change (and some 
algorithms really use it, for example in the form of momentum), the changes of particular 
weights can differ significantly, the weights that are no longer changing can be either frozen 
or pruned.  

 
If we know the typical tendencies, then we can try to use some educated guesses of 

the weight values in the next epoch. Frequently the verification of the guess is quicker than 
calculating the value from scratch. Moreover, there are strong differences between the 
changes of weights in particular layers, however, the differences depend on the training 
algorithm. Detailed discussion of the weight changes for backpropagation, Levenberg-
Marquardt algorithm, numerical gradient and VSS algorithm can be found in chapters 2.3 and 
2.4. 
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1.5.   Neural Activity and Data Spaces 
 
 While calculating the network error values the input signals are given to the first layer 
of the network and then the signals propagate through the network layer by layer. The 
number of signals i(n) propagating simultaneously in parallel through the n-th layer equals to 
the number of this layer outputs, what in turn equals to the dimensionality of this layer 
“signal space” or “data space” or “data representation” or “hypercube”. The first space is the 
input data space (feature space), then there are as many hidden spaces as the number of 
hidden layers (in practice 0, 1 or 2) and finally there is the output (class) space. 
 
 

input (feature)
space

hidden space output (class)
space

 
Fig. 1.42. Data spaces in a three-layer network. 

 
 

The aim of this chapter is to analyze how particular vectors of the training or test set 
are placed in all the data spaces, how their positions change during the training and to draw 

me practical conclusions from this analysis. A single layer of a network can correctly 
ivide only data, which can be separated by a single hyperplane (linearly separable data). If 

the network has more layers than each next layer separates with hyperplanes the data space of 
the previous layer. 

 
In classification problems, the training data is divided into labeled subsets 

corresponding to classes. Neural networks try to map each of the training subsets into one of 
the vertices of the hypercube created in the output space. The task of the hidden layers is to 
map the vectors from the feature space in such a way that they could be separated according 
to their classes with the hyperplanes determined by the output layer. The higher layer 
frequently simplifies the internal representation of the lower layer by reducing the 
dimensionality of the data space and by reordering the training vectors (Fig. 1.43). The input 
data can be visualized in the input hypercube, the representation of hidden layers in their 
hypercubes and finally the network output in the output hypercube. If the dimensionality of a 
given hypercube is higher than three, then it is more practical to use parallel coordinates, 
though also other projection methods can be used [Duch 2004a]. 

so
d
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Fig. 1.43. Vectors of 3-bit parity (3-3-2) in the hypercubes of feature, hidden and class 
spaces.   
 
  
 
 

      
 

      
 
 

Fig. 1.44. Hidden (left) and output (right) neuron signals for Thyroid (21-3-3). Top: before 
the training starts (random initial weights). Bottom: after the 1st training cycle of VSS. 
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ig. 1.45. Hidden (left) and outputF
4

 (rights) neuron signals for Thyroid (21-3-3). Top: after the 
th  training cycle of VSS. Bottom: after the 20th training cycle of VSS. 

 
 

 
Fig. 1.4 th6. Hidden neuron signals for Thyroid (21-4-3) after the 10  training cycle of VSS 
shown in parallel coordinates. 
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Neural networks can achieve the same results using various weights. With the same 
istribution of vectors in the feature and class spaces

hidden spaces. The various possible distributions are visible as symmetries in the error 

 
 Some vectors are far from the decision borders (close to the proper vertices in the 

ypercube). These vectors do not provide useful informatio
they give almost zero error.  An easy and effective method to accelerate the network training 

 to gradually eliminate or group together some of the vectors [Duch 2004b] (chapter 2.5.1). 

1.6.   S

such a situation it is likely that the cost 
of misclassifying a vector of class 1 as a vector of class 3 will be higher than vice versa 
(chapter 3.2.12.1).  

 
Frequently the network training on datasets with unbalanced classes is more difficult 

because big flat ES areas (situated in the front part of Fig. 1.49-left) corresponding to the 
majority classification accuracy are difficult to leave (see chapter 1.2.5.2).  

 
The standard accuracy is given by 
 

 

d , there exist many vector distributions in 

surface plots. 

h n in the training process, since 

is
 
   
 

tandard and Balanced Classification Accuracy 
 

The Thyroid dataset (chapter 3.2.13.5) is an example of a dataset with an asymmetric 
class distribution. The training set has 3772 vectors, 93 of class 1, 191 of class 2 and 3488 of 
class 3. The test set has 3428 vectors, 73, 177 and 3178 of class 1,2 and 3 respectively. Thus 
the percentage of vectors in particular classes is 2.47%, 5.06% and 92.47% for the training 
set and 2.13%, 5.16% and 92.71% for the test set. In 

total
correctAstd =  (1.24) 

 
where correct is the number of correctly classified vectors and total is the total number of 
vectors in the dataset. 
 
The balanced (weighted) classification accuracy is defined here by 
 

 ∑
=

 
here nc is the number of classes, correct(c) is the numbers of correctly classified vectors of 

class c and total(c) is the total number of vectors in class c. 
 

A network training can be optimized for standard or for balanced accuracy by 
adjusting the error function. With a square error function, the standard error is given by 
 
 

=
nc

c
bal ctotal

ccorrect
nc

A
1 )(

)(1  (1.25) 

w

2
,, )(∑∑ −=

c v
cvcvstd sdE  (1.26) 
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and the balanced error is given by 
 

 ∑ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
−=

c v
cvcvbal sd

ctotalnc
totalE 2

,, )(
)(

1  (1.27) 

 
where d is the desired signal, s is the observed signal of an output layer neuron c in response 
to vector v and total(c) is the total number of vectors in class c. 
 

A network trained with the error function (1.26) achieves higher standard accuracy 
and with (1.27) - higher balanced accuracy. Also the error surface of both networks looks 
differently, since among other factors, the error surface depends on the error function. In the 
first case the PCA-based ES projection shows asymmetries, which are caused by the unequal 
class distribution. In the second case the error surface projection becomes symmetric because 

 
 

the error function (1.27) has an equivalent influence on the error surface as balancing the 
number of instances in each class of the training set.  

 

       
 

Fig. 1.47.  Projection of  Thyroid (21-4-3) error surface in the first and second PCA direction 
obtained with: left - standard error function (1.26), right - balanced error function (1.27). 
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Fig. 1.48. Output neuron signals for Thyroid (21-4-3) after the 10th training cycle. Left: with 

able. 1.3. Classification accuracies for thyroid dataset with standard and balanced error 
functio

standard error function, right: with balanced error function (visible better separation of 
classes with fewer vectors). 
 
 
T

ns achieved after 10 cycles of VSS training. (Longer training allows for much higher 
accuracies  - see chapter 3.2.12.5). 
 

error function Estd Ebal

Astd(%training) 99.39 99.34 
Abal(%training) 95.30 99.60 
Astd(%test) 98.13 98.02 
Abal(%test) 85.17 92.98 

 
 
 
 

1.7.   Decision Borders 
  
 MLP decision borders are hypersurfaces in the feature space that divide the space into 
subspaces assigned to particular classes. After the network training is finished, the vectors in 
the class space should be situated close to these hypercube vertices, which correspond to their 
classes. Vectors situated on the decision borders in the feature space will be placed on the 
equidistance hypersurfaces (shown in gray in Fig.1.49-right) in the class space.  
 

ns), which evenly covered all the space in 
ig.1.49-left. That allowed for determining the decision borders, which are shown in 
ig.1.49-left. The representation of the test vectors in the class space is shown in Fig. 1.49-
ght.  

 
  

In the example shown in Fig. 1.49. only two features (petal-width and petal-length) of 
the Iris dataset were used for network training (the network structure was 2-2-3). The test set 
consisted of 961 vectors (31 rows and 31 colum
F
F
ri
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Fig. 1.49. Left: training vectors and decision borders of Iris (2-2-3) using only two most 

ectors in the output 

 test vectors cover evenly the entire 
 but most of them is attracted to the 

roper vertices and almost all others are located close to the lines connecting the vertices of 
ame was observed for the Thyroid dataset (Fig. 1.45, 1.48). The 
d cross and blue square are separated quite clearly. On the other 

and th

requently a great disadvantage of neural networks is that as a result of a little 

ace are concentrated close to the hypercube vertices and do not 
flect their probability of particular class membership. Thus, it may be desired to provide 
ore smooth transitions between the vertices of the output

o it is to use weight regularization or early stopping of the
lthough such a network may have lower training classification accuracy, it can provide 

In the same way, as training the neural network is equivalent to searching for a 
inimum on the error surface, extracting logical rules from da
e description of decision borders (chapter 3.2). 

 

significant features. Right: class subspaces and representation of test v
pace. s

 
 

It is an interesting observation that although the
nput space, they do not cover the entire output space,i

p
two neighbor classes. The s
lasses represented by the rec

h e border between the vectors shown in green and the vectors shown in blue is not so 
sharp, with higher density of the test vectors in the intermediate region.  

 
F

perturbation of the input values the vector is classified to a different class [Duch 2005]. Most 
of the vectors in the output sp
re
m  hypercube. One possible way to 
d  network training (chapter 2.6.2). 
A
more information, its decisions will be more stable and it may generalize better avoiding 
overfitting of the data. Thus, the classification accuracy, frequently used as the only 
measurement of the classifier quality, is not the only value that should be taken into 
consideration (chapter 3.2.12.1). Decision borders will be further considered in chapter 2.6.2. 

 

m ta is equivalent to providing 
th
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Part 2 

or MLP Training 

2.1.1. Analytical Gradient-based Algorithms 
 

Backpropagation was the first successful trainin
[Werbos 1974][Rumelhart 1986]. Other analytical gradient-based algorithms use the same 

ren weight update methods. 

ay: 

 
Search-based Algorithms  
f
 
 
 
 
 
2.1.  Review of MLP Training Algorithms  
 
 
 

 
2.1.1.1.  Backpropagation 
 

g algorithm for multilayer perceptron 

error backpropagation mechanism, but diffe t 
 

The sum-squared error function, which is minimized by backpropagation algorithm, can be 
ritten in the following ww

 

 2)()( )(
2

)( n
j

v j
j

n
ij outdesiredwE −= ∑∑  (2.1) 1

here desiredj is the desired signal and outj is the
error is summed over all j output neurons and all v vectors. The network weights are adjusted 

)  (2.2) 

s the 

 
w  actual signal of the j-th output neuron. The 

by a series of gradient descent updates. For sigmoid transfer function after some calculations 
that can be found literature, the equations that constitute the basic BP algorithm are obtained 
in the form presented below. We define 
 
 1()( )()()()( n

k
n

k
n

kk
n

k outoutoutdesireddelta −⋅⋅−=
 
a delta for the output layer, where n is the index of the layer. Then we back-propagate 
the deltas to earlier layers using 
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 (2.3) 

 
where wkl is the weight connecting the k-th neuron in the n-th layer with the 
n+1 layer. Then each weight update equation can be written as 

1( )()()1()1()( nnnnn outoutwdeltadelta −⋅⋅⎟
⎞

⎜
⎛ ⋅= ∑ ++

k

l-th neuron in the 

 
 )1()()( −⋅=∆ ∑ n

j
v

n
k

n
kl outdeltaw η  (2.4) 

 
o enhance the BP algorithm, variable learning rate and momentum can be used. Since T

similar enhancements can be used with numerical gradient (NG), they will be described in 
etail in the c ut NG. 

 

RPROP is a modification of standard backpropagation, which considers only the sign 
of the derivative, but not its value [Riedmiller 1992] 

d hapters abo

 
.1.1.2. RPROP (Resilient Backpropagation) 2

 

 

⎟
⎟
⎠

⎞⎛ ∂ )(kE ⎜
⎜
⎝ ∂

−=∆
)(

sgn)(
kw

kw
ij

ijij η  (2.5) 

 
The learning rate η is adjusted individually for each weight in each training cycle; if the 
direction of error derivative with respect to w e in the actual and in the previous ij
epoch then 
 )),1(min()( max

 is the sam

ηηη −= kak ijij  (2.6) 
 

where a and b are constants, a=1.2, b=0.5. 
with respect to wij in the present and in the previous If the directions of error derivatives 

pochs are opposite then e
 )),1(max()( minηηη −= kbk ijij  (2.7) 

 
If the direction of error derivative with respect to wij was zero either in the actual or in the 
previous epoch then 
 )1()( −= kk ijij ηη  (2.8) 

Thus, the lea ate increases if the  the same 
and decreases otherwise. RPROP due to omitting the information about gradient value makes 

ckprop 

 
rning r  derivative sign in two successive epochs is

the learning process much faster in the areas of low error surface steepness. 
 
 

.1.1.3. Qui2
 

The idea of the quickprop algorithm [fahlman88][Osowski 1996][Duch 2000] is to 
approximate the minima on the error surface with a parabola. Using the values of weights and 
gradients in two points (β in equation 2.11) a parabola is determined and a step is made to its 
minimum. 
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Quickprop algorithm uses the following rule of weight changes: 
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)(
)()( −∆+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
∂
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kEkw ijijij

ij
ij αγη  (2.9) 

 
he change of the weight depends here on three factors: the error function derivative with 
spect to this weight, the actual value of the eight and the previous change of the weight 
omentum). The coefficient γ (typically γ ≈ -4) is responsible for weight reduction and 

revents the weights from excessive growth. The learning rate η takes one of the two values:   

η=η0    if   

T
re w

 10(m
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 η=0   
 

he momentum term α is adjusted individually for each weight in each epoch: 

 otherwise 

T
 

max)( αα =kij   if  ( max)( αβ >kij  or  0)()1()( <−∆ kkwkS ijijij β )  (2.11)  
otherwise  )()( kk ijij βα =                             
 

where )()()( kwkEkS ijij γ+
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=    and   
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)(kwij∂ kSkS ijij
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r than standard backpropagation and less prone to spurious 
cal minima. Also a simpler version of the algorithm exists, which uses only the parabolic 

pproximation to find the error function minimum. 

2.1.1.4

dient g0 and initial vector p0=-g0 the conjugate gradient method 
cursively constructs two vector sequences: 
 

   and   

 
Quickprop is much quicke

lo
a

 
 

. Scaled Conjugate Gradient 
 

With initial gra
re

 )( 11 ++ ∇= ii wEg 1−+−= kkkk pgp β  (2.12a) 

where
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1
2

||
||

−

−−
=

k

k
T
kk

k g
gggβ  (also other definisions of

 

pi to the minimum of E at wi+1 through line minimization and then set gi+1 at the 
inimum.  

The idea of the conjugate gradient is to sp
urrent step as little as possible by making the current step in the direction orthogonal to the 

s step. The conju

idly in the steepest descent directions.  

 βk a can be used) 

where g is gradient direction and p is called conjugate direction. We proceed from wi along 
the direction 
m
 

oil the results of the previous step in the 
c
previou gate direction p minimizes trajectory oscillations and allows longer 
steps, which leads to a faster convergence than steepest descent directions, although the error 
function decreases most rap
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Scaled conjugate gradient algorithm is a version of conjugate gradient that avoids the 

time-consuming line search along conjugate directions. SCG algorithm [Möller 1993][Haykin 
1994] is considered to be the quickest one among the well-known algorithms for larger 
networks. As a Levenberg-Marquardt algorithm, it introduces a scalar λ to regulate the 
Hessian .   
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=∆  (2.12e) 

 
here E is the real error, Eq is the quadratic approximation of the error, λk is a scaling

which in each iteration is raised or lowered according to how close E/Eq is to one, i.e. how 
lose the error approximation is to the real error. 

Since conjugate gradient methods do not compute any matrices, they scale well with 
he net

ptimization. [Dennis 1983] [NN Tolbox 2004]. The gradient descent algorithm uses the 
llowing update rule: 

)

w  factor, 

c
 

t work size (chapter 2.4.5). 
 
 
2.1.1.5. Quasi-Newton 
 

Newton’s method is an alternative to the conjugate gradient methods for fast 
o
fo
 
 (01 iii wEww ∇−=+ λ  (2.13) 
 

(2.14) 
 

olving the equation

Expanding the gradient of  E(w) using a Taylor series around a point wi,  
 
 restwEwwwEwE i

T
iiii +∇−+∇=∇ ++ )()()()( 2

11 , 

 0)( =∇ iwE  higher order rest, we get Newton’s and neglecting the 
rule: 

S
update 
 

 
)(
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1
i

i
ii wH

wEww ∇
−=+  (2.15a) 

 
w rmance index at the current values 
of the weights and biases.  

here  is the Hessian matrix of the perfo )()( 2
ii wEwH ∇=
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Because it is complex and expensive to compute the Hessian matrix H for feedforward neural 
network

⎤

⎢

⎡ ∂∂∂ EEE

was developed. It 
pdate of the algorithm. 

lar method of calculating the approximate Hessian G is the BFGS (Broyden-
er-Shanno) method, which calculates the inverse of the approximate Hessian:  

s, a version of the algorithm called quasi-Newton (or secant) 
s only the approximate Hessian matrix G entries at each iteration k u

The most pupu
oldfarb-FletchG
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where    kk GV      10 =V       1−−= kkk WWs         1−∇−∇= kkk EEr     1−=        
 

uasi-Newton algorithm requires more computation in each iteration and more 
storage than the conjugate gradient methods, alt
iterations. The approximate Hessian must be stored, and its dimension is Nw x Nw, where Nw is 
equal to the number of weights and biases in the network. For very large networks it may be 

 the well-known algorithms 
for smaller networks [Ranganathan 2004][Marquardt 1963][Ranga 2004][Fang 1999]. LM 
algorithm uses both gradient descent and curvature information (Newton’s method). 
Combining these two algorithms, the following update rule can be written: 
 

 (2.16) 
 
where   is the Hessian matrix and 

Q
hough it generally converges in fewer 

better to use Rprop or the conjugate gradient algorithm. For smaller networks, however it can 
be an efficient training method. 
 
 
2.1.1.6. Levenberg-Marquardt Algorithm 
 

LM algorithm is considered to be the quickest one from

 )()( 1
1 iii wEIHww ∇+−= −

+ λ

)(2
iwEH ∇= )( iwE∇ is the Jacobian matrix. Replacing the 

identity matrix with the Hessian diagonal increases the step in the direction of small gradient 
minimizing the trajectory oscillations. Thus, we get the final Levenberg-Marquardt update 
rule: 
 

 (2.17) 
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1 iii wEHdiagHww ∇+−= −
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λ is dynamically decreased about a rank of order if the error decreases. If the error increases 
λ is increased about a rank of order, learning trajectory returns to the previous point and the 
step is 

N and that of Hessian is . That in practice terms means that for satellite 
age database with 27 hidden neurons as discussed in [Ranga 2004] the Jacobian alone 

quires 248 MB memory using double (8 Byte) type. To reduce the memory requirements 
parts and Hessian calculated by summing partial 

t computational overhead. For comparison the VSS algorithm 
hapte  2.4) r

repeated.  
 

The main disadvantage of LM algorithm is a high memory requirement. The size of 
Jacobian is v NN 2

wo wN
im
re
the Jacobian may be divided into several 
results but this adds a significan
(c r equires whov NNNN 2)( ++ memory for network parameters, what gives only 
1.26 MB memory with double (8 Byte) type. Storing the training set in memory requires 1.30 
MB with double type. (Nw is the number of weights, N  – number of training vectors, N  – 
number of hidden neurons, N

v h

o – number of output neurons.) 

The RLS (Recursive Least Square) algorithm relie

 
The algorithm minimizes the following perfor
 

j
j

t ==

  
here λ

tailed equations describing RLS 
lgorithm are rather complex and therefore even though RLS requires fewer training cycles 
an BP the total computational cost of RSL is comparable or only slightly lower than that of 

  
 
.1.1.7.   RLS 2

 
s on the analogy between adaptive 

filters and neural networks [Azimi 1992][Bilski 2002, 2004]. It is well known that in adaptive 
filtering the RLS algorithm is typically an order of magnitude faster than LMS algorithm (on 
which backpropagation is based).  

mance measure: 

 )()(
2

tnJ
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L
n

tn ∑∑ −= λ  (2.18) e
11

w , called the forgetting factor, is a positive constant less than one, e is the error in the 
linear part of the j-th neuron in the highest (L-th) layer, n is the number of the iteration and 
NL is the number of neurons in the highest layer. The de
a
th
BP. 

  

 61



2.1.2. Global Optimization Algorithms 
 

plied to neural networks are computationally much 
ore costly than gradient-based methods. Nevertheless, they are used because of their ability 
 find frequently much better solutions then anal

.1.2.1. Simulated Annealing 

 Simulated Annealing [Kirkpatrick 1983] is inspired by the annealing (cooling) 
rocess of crystals that reach the lowest energy corres
ooled significantly slowly. 

)  (2.19) 

the probability of accepting the new set of parameters, based on the energy landscape 
property at the new and at the old states 
 

Global minimization methods ap
m
to ytical gradient-based methods can find 
[Duch 1999a]. 
 
 
 
2
 

p ponding to perfect crystal structure, if 
c

 
An annealing methodology requires three functions [Harold 1997]: the probability 
distribution of parameters 
 
 /exp()2()( 25.0 TXTXxGT −=+ −π
 

 )]/exp(1/[1 TEPT ∆−+=  (2.20) 
 
and the cooling schedule for changing the temperature T to generate a new state  

 
 )1/(0 TTT +=  (2.21) 
 
 In  interesting paper by Engel [Engel 1998], simulated annealing was applied to a 

etwork i hich the adaptive param
an

n w eters were discretized. 

.1.2.2

perature parameter in a manner similar to that in simulated annealing.  
 
The algorithms can be described as follows: consider a neuron i connected to neuron j 

n
 
 
 
2 . Alopex 
 

Alopex uses local correlations between changes in individual weights and changes in 
e global error measure [Unnikrishnan 1994]. The algorithm is stochastic and uses the th

tem

with a weight wij. During the nth iteration, the weight wij is updated according to the rule: 
 
 )()1()( nnwnw ijijij δ+−=  (2.22) 

 
where δij(n)=- δ with the probability pij(n) and δij(n)= δ with the probability 1-pij(n). The 

robability for the negative step pij(n) is given by the Boltzman distribution: p
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 )(npij ))](/)(exp(1/[1 nTnCij+=  (2.23) 
 

where Cij(n) is given by the correlation 
 
 )()()( nEnwnC ijij ∆⋅∆=  (2.24) 

 
and T(n) is positive temperature. )(nwij∆  and )(nE∆  are the changes of weight wij and the 
error measure E over the previous two iterations. 
 
 )2()1()( −−−=∆ nwnwnw ijijij  (2.25) 

 
 )2()1()( −−−=∆ nEnEnE   
 
If )(nE∆  is negative, the probability of moving each weight in the same direction is greater 
than 0.5. The temperature T is updated every N iterations using the following annealing 
schedule: 
 

 ∑ ∆= |)
N

n
−

−=

|)'(( nET  if n is a multiple of N and T(n)=T(n−1) otherwise (2.26) 

 

1nδ
' Nnn

In Alopex, the magnitude of w∆ is the same for all weights and that point does not 
seem to be a very good solution since it does not take an advantage of the natural ill-
conditioning of MLP error surfaces. So in empirical tests [Unnikrishnan 1994] Alopex 
required 487 training cycles to solve the Xor problem, while algorithms such as Levenberg-
Marquardt or proposed further in this thesis Variable Step Search Algorithm require less than 
10 training cycles for the Xor problem. On the other hand, the aim of global optimization 
algorithms is not to compete with local algorithms for the speed but for the quality of solution 
for difficult problems. Thus, it seems worthwhile to modify Alopex so that it could use 
different w∆  for different weights. 
 
 
2.1.2.3. NOVEL Algorithm 
 

Novel is a hybrid, global-local trajectory-based method, exploring the solution space, 
locating promising regions and using local search to locate promising minima [Shang 1996]. 
Trajectory in the global search stage is defined by a differential equation 
 

  (2.27) 

The first component allows the trajectories to be attracted by local minima, and the second 

fine search. 
 
 

 

))()(())(()( tPtTtPMtP tg −+∇−=
•

µµ
 

one allows them to walk out of the minima. The trace function T should assure that all space 
is finally traversed. It may either partition the space into regions or make first coarse and then 
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2.1.2.4.  Genetic Algorithms 

ith sexual 
reproduction, where stronger individuals in the population have a higher chance of creating 
an offs

o not guarantee 
nvergence to the single best solution to the problem, they are frequently efficient search 
chniques. The main advantage of GA is that they are able to manipulate numerous strings 
multaneously, where each string represents a different solution to a given problem. Thus, 
e possibility of the GA getting stuck in local minima is greatly reduced because the whole 
ace of possible solutions can be simultaneously searched. A basic genetic algorithm 

 population of strings (representing possible solutions), 
te successive generations. First, pairs of individuals of 

the current population are selected to mate with each other to form the offspring, which then 
s based on the survival-of-the-fittest strategy with the 
 of the population. The most commonly used strategy 

to select pairs of individuals is the method of roulette-wheel selection, in which every string 
is assigned a slot in a simulated wheel sized in proportion to the string’s relative fitness. This 
ensures that highly fitted strings have a greater probability to be selected to form the next 
generation through crossover. The mutation operator, which with low probability randomly 
cha

pairs of parent strings, the crossover operator is 
applied to each of these pairs. 

arent A = a1 a2 a3 a4 | a5 a6 Parent B = b1 b2 b3 b4 | b5 b6  (2.28) 

al between the two parents on either side of the selected 
rossover point, represented by “|”, produces the following offspring:  

 
Genetic Algorithms (GA) were proposed by Holland [Holland 1992] in the 1970s as 

an algorithmic concept based on a Darwinian-type survival-of-the-fittest strategy w

pring [Rutkowska 1997][Jain 1998][Michalewicz 2003].  
 
Every member of a population has a certain fitness value associated with it, which 

represents the degree of correctness of that particular solution or the quality of solution it 
represents. The basic approach is to model the possible solutions to the search problem as 
strings of ones and zeros. The strings are manipulated by the GA using genetic operators, to 
finally arrive at a quality solution to the given problem. Although GA d
co
te
si
th
sp
comprises three genetic operators: 

 
•  selection  
•  crossover 
•  mutation  
 
Starting from an initial random

the GA use these operators to calcula

form t tion. Selection i
key idea to select the better individuals

s he next genera

nges single bits in the individuals, is introduced to prevent premature convergence into a 
suboptimal solution. After selection of the 

 
The crossover operator involves the swapping of genetic material (bit-values) between 

the two parent strings. In a single point crossover, a bit position along the two strings is 
selected at random and the two parent strings exchange their genetic material as illustrated 
below. 

 
P
 

The swapping of genetic materi
c

 
Offspring A= a1 a2 a3 a4 | b5 b6 Offspring B= b1 b2 b3 b4 | a5 a6   (2.29) 
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Genetic algorithms are very popular as a training method for neural networks 

[Matthews 2000][Seiffert 2001], although not many commercial programs use them and it is 
difficult to find results that show their clear advantage in this type of applications.  

In the case of neural network training with GA, the fitness function corresponds to the 
net ed in the genome. However, 
the y, 
both encoded in the genome [Kwaśnicka 2004]. The networks can be also trained with 
gradient-ba n be used only for optimization of network topology - then 
genome en an also 
be used as one  training (chapter 3.2.10). 
  
 
 
 
 

2.2. Basis of Search Algorithms 
 

Search is a systematic examination of states to find a path from the start state to the 
goal stat  The outpu f a sea on to t problem. The basic search 
algorithms can be divided as follows: 

• Breadth-First 
formed (heuristics) search methods: 

• Beam-Search 

Best-First 
 
The simplest search methods are uninformed. They have no information about the state 

space and perform blind systematic search. 
 

If knowledge about the problem is available, we can attempt to guide the search to a 
more efficient conclusion. The knowledge we have about the solution cannot be explicit - this 
would mean we could solve the problem directly. Instead, we have rules of thumb – 
heuristics. They are not guaranteed to find a good solution, nor necessarily to find one at all, 
but they will usually help us find an adequate solution more swi . 

 
 

 
The depth-first search algorithm searches through the tree systematically, exploring 

each b

nd non-optimal (the algorithm will 

 

work error (e.g. MSE), and particular weight values are encod
 fitness function can be also a weighted sum of network error and network complexit

sed methods and GA ca
codes only the network structure [Mandischer 1993]. Genetic algorithms c

 possible method of SMLP network

e. t o rch algorithm is a soluti he 

ftly

 
Uninformed (blind) search methods: 

• Depth-First 

In

• Hill Climbing 
• 

 
2.2.1.  Depth-First Search 

ranch until it finds a goal node. One alternative is selected and pursued at each node 
until the goal is reached or a node is reached where further downward motion is impossible. 
When further downward motion is impossible, the search is restarted at the nearest ancestor 
node with unexplored children. This search is complete a
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not necessarily find the most efficient route through the state space). For a tree with 
ber of children of each node) at depth d, the time efficiency 

Th
 

ot node  
etermine if the first element in Q is 

the goal  
a. If it is, do nothing  

irst element from Q and add the first element’s 
 front of Q  

3. If the goal is reached then success else failure  
 

branching factor b (average num
bd) and the space efficiency is O(bd). 

 
is O(

e Depth-First Algorithm: 

Form a one element queue Q consisting of the ro1. 
2. Until Q is empty or the goal has been reached, d

b. If it is not, remove the f
children, if any, to the
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Fig. 2.1. The D ue. 
The hich the nodes were examined. 

 
2.2.2.   Breadth-First Search 
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Fig. 2.2. The Breadth-First Search. The num ers inside the nodes correspond to the error 
tside the nodes show the order in which the nodes were examined. 

 

7 8 9 10 11 12

 
b

value. The red numbers ou

 
The breadth-first search algorithm searches for the goal node among all the nodes of a 

particular generation (level) before expanding further. If there is more than one goal node, 
always the nearest one in a given generation is found. This search is complete and non-
optimal. Time efficiency O(bd). Space Efficiency: O(bd). 
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The Breadth-First Algorithm: 
 

1. Form a one element queue Q consisting of the root node  
2. Until Q is empty or the goal has been reached, determine if the first element in Q is 

g b. If it is not, remove the first element from Q and add the 
Q  

  

 
2.2.3.   H
 

Hil  on depth-first search. A heuristic is used to improve the 
search effic ice is likely to be better than another 
and the choices are ordered accordingly. This search is complete and non-optimal.  

 
he Hill Climbing Algorithm: 

 
1. Form a one eleme
2. Until Q is empty or the goal has been reached, determ

the goal.  
a. If it is, do nothing  
b. If is not, remove the element from Q, sort the first element's children, if any, 

by estimating remaining distance, and add this sorted list to the front of Q  
3. If the goal is reached then success else failure  

 

the goal. If it is, do nothin
first element's children, if any, to the back of 

3. If the goal is reached then success else failure  

ill Climbing Search 

l climbing search is based
iency. At each step, it is estimated if one cho

T

nt queue Q consisting of the root node  
ine if the first element in Q is 

 

810

4 6

5 1 0

7

2 4 5

3

S

1

43

2

3

 

Fig 3 des correspond to the error 
val . 

 
 

2.2.4.   Beam Search 

on problem of breadth first search by 
xpanding only the p most promising nodes at each level. A heuristic is used to predict which 

nodes 

 
. 2. . The Hill Climbing Search. The numbers inside the no
ue. The red numbers outside the nodes show the order in which the nodes were examined

 

 
Beam search avoids the combinatorial explosi

e
are likely to be closest to the goal. Beam search expands several partial paths and 

purge the rest. Beam search is like breadth-first search because it progresses level by level but 
it is also like depth-first search, because the beam search moves downward only through the 
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best p nodes at each level; the other nodes are ignored. This search is incomplete and non-
optimal. There is a danger that a goal-finding route will be removed from Q before it can be 
explored. This may lead to not finding any goals at all. At each level there are only p nodes 
stored. This avoids the exponential explosion problem of breadth-first search.  

 
he Beam Search Algorithm: 

ot node  
2. Until Q is empty or the goal has been reached, determine if any of the elements in Q 

c. Sort Q by heuristic.  
d. Remove all but the first p nodes from Q.  

3. 

T
 

1. Form a one element queue Q consisting of the ro

is the goal.  
a. If they are, do nothing  
b. If they are not, remove the elements from Q and add their children, if any, to 

the back of Q.  

If the goal is reached then success else failure  
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Fig. 2.4. The Beam Search. The numbers inside the nodes correspond to the error value. The 
red numbers outside the nodes show the order in which the nodes were examined and the red 
rrows the paths taken by the beam search. 

.2.5.  Best-First Search 

2. Until Q is empty or the goal has been reached, determine if the first element in Q is 

to the 
Q.  

The Best-First Search is based on as well breadth- as on depth-first search. A heuristic 
is used to improve the search efficiency. At each step, the expansion of nodes is resumed 
from the most promising node opened so far, no matter where it is in the tree. This search is 

a
 
 
 
2

 
The Best-First Algorithm:  
 

1. Form a one element queue Q consisting of the root node  

the goal.  
a. If it is, do nothing  
b. If is not, remove the element from Q and add the first element's children 

c. Sort Q by estimated remaining distance  
3. If the goal is reached then success else failure  
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complete and non-optimal. Since there are
best) node, there are some variants of the 

 different ways to compute the most promising 
best-first search: uniform-cost search (estimated 

est is the least cost so far), greedy search (least estimated cost to goal), A* (cost so far plus 
stimated cost to goal), and many refinements of those.  

 

raining algorithms, such as NG, VSS and SMLP training 
methods had to be developed. 
 

k are thought of as tree nodes then the number of nodes is 
limited but each node can be assigned an infinite number of values. Also the points in the 

 

 

s converge to that one with the lowest error after the first training epoch.  
 

at makes a step in 
random irections instead of always downward can be implemented with beam search. 

owever, the node analogy does not seem to be the best choice for MLP networks and 
therefo

. 

(
b
e
 
 

2.2.6.  Search Algorithms for MLP Training 
 

There are two significant differences between the weight space in MLP networks and 
nodes of trees or graphs. First, network weights take continuous values. Second, except for 
very simple cases, it is impossible to determine the optimal value of a given weight in a 
single step and the process must be repeated iteratively always in interaction with other 
weights.   
 

For that reason, the described above search algorithms are not very suitable for MLP 
networks and new search-based t

If the weights of the networ

weight space can be thought of as tree nodes. Then there are an infinite number of nodes and 
each node can be assigned only two values (the learning trajectory passes or does not pass 
through this point). 

 The first approach, where a weight represents the node, is closer to SMLP networks 
(chapter 3.2), where the weights can take only three values (-1, 0, +1). SMLP training 
methods, which change one or two weights at a time, resemble the best-first search with 
many significant modifications. Also an SMLP training method based on the beam search is 
proposed. 
 

The second approach, where a point in the weight space represents the node, is closer 
to the standard MLP networks. Numerical gradient (NG) and variable step search algorithm 
(VSS) use a strategy similar to hill climbing search.  
 

However, it seems that there is no use to apply a modification of the beam search to 
standard MLP networks trained with NG and VSS. We can generate several sets of random 
weights (several starting points) but there are no forks in the road along the trajectory paths 
and all the beam

Nevertheless, methods based on beam search can be used for MLP training, but not 
with such search methods, as NG or VSS. For example, an algorithm th

 d
 
H
re it is no further used in the thesis. Instead, the weights and the points in the weight 

space are considered in MLP training algorithms
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2.3.   Numerical Gradient 
 
 

 
2.3.1.    Overview of Numerical Gradient Algorithm 

 
Numerical Gradient (NG) is a local gradient-based search algorithm. In contradiction 

to the tr ina ing algorithms, which use analytical gradient, it does not require the knowledge of 
connection structure among neurons. Also the neural transfer functions do not have to be 

ifferen iable. Moreover, special tables that remember neuron signals can be used to reduce 
 to several hundred times. In chapter 2.3 only the batch training is 
n of the semi-batch and on-line training can be found in chapter 

.5.2. T

d t
the computational cost up
onsidered, the discussioc

2 he networks discussed here consist of usually three fully connected layers and the 
neurons use sigmoidal transfer functions. In the second part of the thesis it is assumed that the 
slope β of logistic sigmoids used as neural transfer functions equals one, thus the transfer 
function is given by the formula:  

 

 ue
Y −+

=
1

1
  (2.30) 

 
where Y is the neuron output signal and u is given by (1.1). The networks considered here are 
used for data classification. 

 
As all MLP learning algorithms, NG optimizes weights (including biases as w0 

weights) of output and all hidden layer neurons. Before the training starts, the weights are 
initialized with small random values. If the random initial weight range is too broad then it is 
a great chance that the starting point lies somewhere on the flat area of the error surface and 
s a result the network cannot be trained wita h any gradient-based or local search methods 
hapter 1.2).  

 
The initial values of all weights cannot be equal (e.g. all zero), because this would 

provide no difference between the signals of hidden neurons at the starting point. Although 
the gradient components are different from zero, they are the same for the corresponding 
weights of each hidden neuron, what makes the training impossible. This situation resembles 
the vertex of a cone, where the numerically calculated gradient components are different from 
zero, but they are the same in each direction and cancel each other, what finally gives zero 
gradient. 

 
NG algorithm consists of two stages: finding the gradient direction and finding the 

minimal error along this direction. To find the gradient direction, a constant, small value dw 
is added to a single weight w and the error decrease dE(w) is calculated as 

 

(c

 )()()( dwwEwEwdE +−=  (2.31) 
 
E(w) takes the same value for all weights because the gradient component dE(w) is 

tional minimization converges better than BP without 

calculated in the same point for each weight w.  
  
Such a simple NG algorithm shows better convergence than standard 

backpropagation. NG without direc
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directional minimization and NG with directional minimization better than BP with 
directional minimization. (In directional minimization the minimum along the gradient 

ched for and  this version 
ycles ng 
tional t  
. The m h redu  
 convergence, will be 

 

eight i a time, the signals do not have to be propagated 
k to late the error, but only through the fragment of the 

re and after the change. The remaining signals 
incomi

 
nce per each training cycle. The dimension of the signal table is NV x (NH+NO) where NV is 
e number of vectors in the training set and NH and NO the number of hidden and output 

le are 
to be 

alcula

direction is sear than a step is made to that minimum.) NG in
requires fewer training c

a
than BP, but has higher compu

 frequen
tational effort per one traini

cycle. The total comput effort is comparable or ly even higher than that of BP
ost andwith optimal parameters

improve the algorithm
odifications of NG, whic

successively introduced in the following 
ce the computational c

chapters. 
 

 
2.3.2.   Signal Table 
 

ne wSince only o
through the entire networ
network in which the signals are different befo

s chan
 calcu

ged at 

ng to all neurons of hidden and output layers are remembered for each training vector 
in an array called “signal table”. With VSS the signals must be propagated through the entire 

etwork only once at the beginning of the training thus filling in the signal table and with NGn
o
th
neurons. After a single weight is changed, only the appropriate entries in signal tab

pdated. Also the error of each output neuron is remembered and does not have u
c ted again if a weight of another output neuron is changed. The signal table reduces 
three types of calculations: summing the signals incoming to the neuron, calculating the 
neural transfer function values and calculating the network error. It significantly shortens 
training times, especially for bigger networks. For a network structure 125-8-2 the training is 
accelerated about 35 times, for smaller networks less and for bigger networks more. The 
acceleration is stronger for VSS than for NG. 
 
 
 

 
 

Fig. 2.5. Signals that change if an output neuron weight is changed are shown in red. Signals 
that change if a hidden neuron weight is changed are shown in blue. The remaining signals 
are remembered in the signal table. 
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Table 2.1. Number of particular operations with and without a signal table required to calculate 
numerical gradient direction. Ni, Nh, No – number of input, hidden and output neurons.  
 
type of operation without signal table with signal table 
calculating sigmoid value [No(Nh+1)+Nh(Ni+1)](No+Nh) No(Nh+1)+Nh(Ni+1)(1+No) 
adding incoming signals [Nh(Ni+1)+No(Nh+1)]2 2[No(Nh+1)+Nh(Ni+1)(1+No)] 
calculating network error [Nh(Ni+1)+No(Nh+1)]No [Nh(Ni+1)+(Nh+1)]No 

 
Table 2.2. Number of particular operations with and without a signal table required to calculate 
numerical gradient direction for the network structure 125-8-2 (Ni=125, Nh=8, No=2). 
 
type of operation without signal table with signal table 
calculating sigmoid value 10260 (100%) 3043 (29.7%) 
adding incoming signals 1052676 (100%) 6084 (0.0058%) 
calculating network error 2052 (100%) 2034 (99.1%) 
total calculation time 
(experimental measurement) 

100% 2.63% 

 
Th
ined on m

e values in table 2.1 and 2.2 are given for a single training vector. If the gradient is 
determ ore vectors at once, the values must be multiplied by the number of vectors. 
 
 
 
2.3.3.   Analytically and Numerically Determined Gradient Directions 
 

An interesting comparison can be made between the gradient direction determined 
analytically by BP (the same direction is used by all algorithms that use the backpropagation 
mechanism to calculate gradients) and the gradient direction determined numerically (given 

radient direction. Thus the numerical gradient directions 
r dw=0.02 and dw=0.0002 do not differ noticeably. The plots in Fig. 2.6 are made for the 

ormalized length of the gradient vector = 1. That is justified, since only the proportions 
between particular gradient components are meaningful and not their absolute values. 

 

by the formula 2.31) [Kordos 2004d, 2005]. To obtain a good estim
direction in a given point, dw must sufficiently small. As the experiments showed any 
dw<0.02 gives practically the same g

ation of the gradient 

fo
n

  
Fig. 2.6. Comparison of numerically (NG) and analytically (BP) determined gradient 
components in particular weight directions in the first training cycle. Left: Iris (4-4-3). Right: 
Thyroid (21-4-3). 
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The main difference between numerically and analytically determined gradient 
directions is that backpropagation interprets small gradient components (frequently hidden 
neuron weight components at the beginning of the training) as still smaller and big ones as 
still bigger. The differences between particular numerical and analytical gradient components 
are stronger for bigger networks and more complex datasets (for example the differences are 
stronger for the Thyroid than for Iris dataset, as shown in Fig. 2.6). 

a. Spurious means that 
e minima are in the backpropagation-estimated gradient direction, but there exists a 

irection in which the trajectory can still go downward. In the experiments the networks were 
ained with BP. When they got stuck in a “local minimum”, then from the same point in the 

ases were able to leave the apparent 
inimum and finally converge. 

 
There are two reasons to assume that the direction towards minimum is closer to the 

numerical gradient than to the analytical one. First, in NG the gradient is determined directly 
and not assessed by backpropagation or by any other mechanism. Second, BP frequently does 
not converge. The effect is known as falling in spurious local minim
th
d
tr
weight space the trainings continued with NG in some c
m

 
  

    
 

Fig. 2.7. Iris (4-4-3) trained with NG. Left: the first hidden neuron weight changes. Right: the 
first output neuron weight changes. 
 
 

     
 

Fig. 2.8. Iris (4-4-3) trained with BP. Left: the first hidden neuron weight changes. Right: the 
first output neuron weight changes. The training started from the same initial weights as the 
NG training shown in Fig .2.7. 
 

) 
e 

g the training are shown for the first hidden and first output neuron. The 
rst difference that can be noticed is that after the network is trained, the hidden weights are 

only slightly smaller than the output ones for NG training, while for BP training they are 

 
Figs. 2.7-2.8 present the results of experiments conducted with the network (4-4-3

trained on the Iris data with NG and with BP, starting from the same initial weights. Th
eights values durinw

fi
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signific

erence is that some weights in NG and BP trainings after initially moving in the 
same direction, finally went in opposite directions and both trainings ended in different points 
of the w

 

antly smaller than output weights. This could be expected, because of different 
gradient component distributions (Fig. 2.6). Thus, it can be concluded that the hidden layer 
weight values are underestimated in backpropagation-based trainings. This problem will be 
further discussed in chapter 2.4.3.  

 
The second difference is that in BP the weights after some cycles grow very slowly, 

almost asymptotically. In NG the weight growth also slows down, but not so dramatically. 
The third diff

eight space, although the initial starting point was identical.   
 
 
 
2.3.4. Continuous and Discrete Search Space 
 

The discrete NG is an algorithm, which assesses very roughly both the gradient 
direction and the optimal step length along this direction (Fig. 2.9-left). It works well for 
simple datasets, however in more difficult cases the continuous version of NG may be 
required. A comparison between discrete and continuous NG is presented in table 2.3.  
 

Continuous Numerical GradientDiscrete Numerical Gradient

START START

find g ction

N

radien dire
dw = 0.02

 

NE<t*OE

find gra
dw = D

N

dien direction

Y

Y

NE<AE

move
 thi

 1 unit D
in s direction

N

D = D/2

STOP

Y

NE<AE

find m um
in thi ction

inim
s dire

STOP
 

 
Fig. 2.9. Discrete and continuous numerical gradient algorithms. Any combination of these 
models is possible. 
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At the beginning of the discrete NG training both dw=0.5 and the precision of finding 
minimum D=0.5. If the error in the next training cycle is greater than 0.999 of the error in the 
previous training cycle, than both dw and D are divided by two (Fig. 2.9-left). The 
approximated gradient component dE(w) can take only 3 values: –1 if the error increases after 
perturbing weight w with dw, 0 if it does not change and +1 if the error decreases. Other 
symbols used in Fig. 2.9: NE is the new error, OE – the (old) error in the previous training 
cycle, t s a threshold (t=0.995÷0.999), reducing the error to AE (acceptable error) terminates 

 

 the continuous space, but it requires more training cycles to converge. 
oreover, it is frequently unable to converge to such a good solution as the continuous 

ersion.  
 

Table 2.3. Comparison of discrete and continuous NG - number of training cycles required to 
chieve

discrete NG continuous NG (2.37) 

 i
the training. 

Numerical gradient in the discrete search space can be realized using only as few bits 
as four or five to represent all the weights and the value of the transfer function, which also 
can be discretized. Higher precision is required only to store the error value. The algorithm is 
simpler than NG in
M
v

Both search spaces continuous and discrete can be realized with sigmoid, staircase 
and many other transfer functions [Duch 1999b]. The thesis concentrates on NG in 
continuous search spaces, and by “NG”, the NG in the continuous search space will be 
nderstood. u

 
 

a  a given 10-fold crossvalidation accuracy (%test). 
 

dat
number of total number of total 

aset %  
test 

network 
structure 

training 
cycles 

computational 
effort (scaled 
training time) 

training 
cycles 

computational 
effort  (scaled 
training time) 

Iris 96 4-4-3 60 668 11 175 
Breast  96 10-4-2 9 195 4 112 

Mushrooms 98 125-4-2 82 3551 21 1070 
 
 
The total computational cost of NG training consists of two terms: the cost of finding 

the gradient direction and the cost of finding the minimum along this direction. The higher 
the precision of finding the minimum along the gradient direction is the fewer training cycles 
are required to train the network, but the cost of finding the minimum grows. 

 
While finding the gradient direction, only one weight is changed at a time and the 

signal table is used, thus the signals are propagated only through small fragments of the 
network. While finding the minimum along gradient direction, all the weights are changed at 
once and the signal table cannot be used, thus the signals must be propagated through the 
entire network. The ratio of the cost of finding the gradient direction cdir to the cost of 
checking the error in one point along this direction cmin depends on the network structure.  
For networks with 50÷1000 weights usually cdir/cmin=15÷30. Detailed explanation of how 
cdir/cmin as calculated can be found in chapte .3.2, where the signal table is discussed. 

 
 w r 2
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There exists an optimal precision of finding the minimum along the gradient direction 
that allows for achieving a minimal cost of the training. As the experiments showed, using 
single or double parabolic approximation (the error is calculated 3 or 6 times) during the line 
search is frequently close to the optimal solution. 

 
 

2.3.5.   Gradient Direction and Optimal Next Step Direction  
 

It would not necessarily be optimal to search for the minimum along the gradient 
direction (chapter 1.2.11). The statistically optimal search direction component dS(w) is a 
function of three variables: the network layer, the training cycle Tc and the gradient 
component dE(w):  
 
  (2.32) 
 
The function f can be considered as a product of two functions fTL=f(Tc,layer(w)) that 
depends on the training phase and on the network layer and fD=f(dE(w)) that depends on the 
gradient component in weight w direction. 
 

 

))(),(,()( wdEwlayerTcfwdS =

 DTL ffwdS =)(  (2.33) 
 
The aim of the following reasoning is to determine how to select the functions fTL and 

 to obtain the best approximation of the search direction dS(w) for a wide range of training 
atasets. 

tribute to slower changes (Fig. 1.29-1.30). The 
ifferences between error surface sections in hidden weights directions at the beginning and 

at the final stage of the training are not so significant.  

e training the values dE(w) are greater in the output layer than in the hidden layer, while 
w is smaller. Moreover, as the training progresses – the proportions change. 

 
Although the function mw=f(dE(w)) cannot be a priori defined for any particular 

weight, some statistical correlations are quite easy to observe. Thus mw=f(dE(w)) should be 
rather thought of as a statistical distribution than as a function given by an analytical formula. 
As many statistical distributions must be maintained during the training as the number of 
neuron layers with optimized weights: one for each hidden layer and one for the output layer. 
The distributions must be gradually modified as training progresses, since the error surface 
landscape changes.  

 

fD
d

 
The error surface changes slower in the areas located further from its center. 

However, mostly output layer weights con
d

 
We are in a given point of the weight space and we want to assess the relation 

between the gradient component dE(w) in the direction of the weight w and the distance mw 
from the actual point to the error minimum in the direction w (Fig. 2.10). Both values dE(w) 
and mw can be obtained from the plots in Figs. 1.29-1.30. Some algorithms (wrongly) assume 

at mw=f(dE(w)) is a linear correlation. However, it is clearly visible that at the beginning of th
th
m
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ig. 2.10. dE(w) is proportional to the error derivative in the actual point with respect to 

 

F
weight w. Since dE(w) is not proportional to mw, we search for the value dS(w) that allows 
for a better approximation of mw. 

 
 

 

     
Fig. 2.11. Dependence between the gradient component dE(w) and the distance from the 
actual point to the error minimum mw in a given weight direction at the beginning (left) and 

same network layer: 

 

at the end of the training (right) for Iris (4-4-3). 
 
 

In the first approximation we can assume a linear dependence between the optimal 
search direction component dS(w) and the gradient component dE(w) within the same 
training cycle and the 
 

)()())(,()( wdEfwdEwlayerTcfwdS TL ⋅=⋅=  (2.34) 

rom a higher value at the initial 

 
 fTL is the more important factor and using only fTL we can get a better approximation of the 
direction toward the minimum than using only fD.  fTL equals 1 for the output layer and for 
hidden layers it can either equal 1 or decrease gradually f
phase of the training down to 1 at the final stage of the training. 
 

 77



 
 

            
 

 the 
actual point to the error minimum in a given weight direction mw at the beginning (left) and 
at the e

 

Fig. 2.12. Dependence between the gradient component dE(w) and the distance from

nd of the training (right) for Iris (4-3-3-3). Red cross = first hidden (counting from 
input), green triangle = second hidden, blue square = output layer. 
 

 

  
 

3. Linear approximation

 

       

Fig. 2.1  of the dependence between mw and dE(w) for hidden layers;  
1 –  training cycle 1 through 3; 2 – training cycles 4 through 6; 3 –  training cycles 7 through 
11; 4 – training cycles above 11. The red line (4) also approximates the dependence between 
mw and dE(w) for the output layer in any training cycle. Left: the hidden layer in three-layer 
networks and the first hidden layer in four-layer networks. Right: the second hidden layer in 
four-layer networks.  

 
 In case of a four-layer network, the dependence between mw and dE(w) for the second 
hidden layer can be approximated with a line situated between the lines approximating the 
dependencies for the first hidden and for the output layer, however at the end of the training 
all the three lines converge to one. 
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Thus, the formula (2.34) can  be written as: 
 
 )())exp(1()( wdETcbawdS ⋅⋅−⋅+=  (2.35) 
 
where the typical, experimentally determined, optimal values are: 
 
for 3-layer networks: 

a=0 for the output layer 

T ication works signif better, but as experiments showed, too big 
dE(w) do not correspond to mw linea  sh d ue.  

 
There are several ways to do it. For example tead a li  function, a linear 

function e outsi cer
used:  

 
w for - ≤dE dE0

00 )()( dEdEsignfwdS TL

a=0 for the output layer 
a=10÷20 for the hidden layer 
b=0.10÷0.15  
 
for 4-layer networks: 

a=3÷5 for the second hidden layer (between the first hidden and the output layer) 
a=10÷20 for the first hidden layer (between the input and the second hidden layer) 
b=0.10÷0.15.  
 

his modif icantly 
husrly. T , they ould be limite to a certain val

, ins  of near
 with a constant valu de a tain range (a saturated linear function) can be 

dE0 (w)≤  (2.36) )       
 

)( dEfwdS ⋅= (TL

⋅⋅=      otherwise  
 
where )exp(1 TcbafTL ⋅−⋅+= .  
Another possibility is to use a square root of dE(w)  

 
 |)(|))(()( wdEwdEsignfwdS TL ⋅⋅=      for -dE1≤dE(w)≤dE1 (2.37) 
 ||)()( 11 dEdEsignfwdS TL ⋅⋅=     otherwise  
 
where )exp(1 TcbafTL ⋅−⋅+= . 
Still another option is to use a non-monotone transfer function, for example: 
 
     (2.38) 
 
where dE0,dE1,dE2 are proportional to the standard deviation σ of 
gradient components in a given training cycle (dE0=4σ, dE1=8σ, dE2=2σ). 

A series of experiments was conducted to assess which approximation would be the 
best. Instead of using the least square error as an index of the approximation quality, the 
network convergence was observed. The experimental results are presented in Table 2.4. 

 
Though the differences are not big, on average the formula (2.37) gives the best 

performance and it will be used further. This formula was tested with various exponents from 
(0;1), not only with 0.5. However, the exponent 0.5 seems to be the most optimal one. It is 
interesting that the convergence speed for the exponent being zero and being one are very 

))(exp()())(()( 2
2

2
2 wdEdEwdEwdEsigndEfwdS TL ⋅−⋅⋅⋅⋅=

)exp(1 TcbafTL ⋅−⋅+= , 
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similar. RPROP is an algorithm, which takes into consideration only the sign of the 
erivative, but not its value (exponent=0) and it performs not worse than BP (exponent=1). 

Sin-Ch
d

ung Ng [Ng 2004] has also recently proposed that the gradient components calculated 
by backpropagation should be taken in power 0.5, however their main reason for that is 
increasing the small gradients to accelerate the training in the flat error surface areas. 

 
 
 

 
 

Fig. 2.14. Iris 4-3-3. Dependence between the search component dS(w) and the distance mw 
from the actual point to the error minimum in a given weight direction at the beginning of the 
training for Iris (4-4-3) calculated with (2.37), which displays the best convergence properties 
of the methods considered here. 

 
 

Table 2.4. Average number of training cycles required to reach a given accuracy on the 
training set with various versions of NG. 
 

dataset Iris Ionosphere Thyroid 
network 4-4-3 43-4-2 21-4-3 
accuracy 92% 98% 90% 96% 94% 97% 
gradient (2.33) 18 30 20 70 - - 
Tc optimized (2.34) 12 18 12 64 32 - 
linear + limit (2.36) 9.3 14 12 42 28 52 
sqrt + limit (2.37) 8.0 11 12 42 18 40 
a·dE·dE·exp(-a·dE) (2.38) 9.5 14 20 44 - - 
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2.3.6. Error Surface Curvature and Second Derivative 
 

The second order analytical gradient based MLP training algorithms, such as 
Levenberg-Marquardt (LM) use not only the information con
second derivative (error surface curvature). They assume tha
in the direction w is approximately proportional to the ratio of the first to the second 

 very 

tained in the first but also in the 
t the optimal search component 

derivative. This assumption seems to be right, because LM algorithm displays much better 
convergence properties than first order methods, but on the other hand its memory 
requirements and calculation times grow rapidly with the network and dataset size, which 
causes that in practice LM can be used only for small networks and small datasets (chapter 
2.1.1.6). However, the second order methods are not very stable. LM sometimes finds a

ood solution but frequently does not converge at all. g
 
 
 

   
 

Fig. 2.1

r convergence than the first order 
methods, while being still suitable for large ne
would 

5. Left: Dependence between the search component dS(w) and the distance from 
actual point to the error minimum in a given weight direction mw at the beginning of the 
training for iris (4-4-3) trained with: left – LM, right – NG using equation (2.40).  

 
 
The equation (2.37) aims at achieving a bette

tworks and large datasets. Nevertheless, it 
be interesting to see the correlation between the ratio of the numerical gradient 

component to the curvature of the error surface section in a single weight direction and the 
distance to the error minimum in that direction. To achieve this, the numerical second 
derivative d2w is calculated as the curvature measure, only in single weight directions. We 
already know the error E(w) in the actual point and the error in the point E(w+dw). In order 
to assess the curvature, we must calculate the error in one additional point, for example in 
(w+0.5dw):  

 
 ( ) )5.0()()(5.0)(2 dwwEdwwEwEwEd ⋅+−++⋅=  (2.39) 
 
Thus calculating the second derivative requires twice as much calculation as 

calculating only the first derivative. Therefore, this approach may be justified only if it allows 
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for reducing the number of training cycles at least twice in comparison to the number 
achieved with (2.37). 

 

 
|)(|

)()()()( dwwEwEwdEw
|)(| wEdwEd 22dS +−
==  (2.40) 

 
d2E(w)<0 means that the error surface in weight w direction is concave. It is fortunately 
concave in the prevailing number of points covered by the training trajectory. That is 

bvious, because the trajectory tends to occupy rather the error surface ravines than ridges. 
he absolute value of d2E(w) is taken in (2.40), because the sign of dS(w) is determined only 

by the direction of error decrease and not by the error surface being concave or convex. 
 

Although using the second order information gives on average a slightly better 
linearity of the correlation between mw and dS(w), it allows to train the network on average 
in the same number of training cycles as the search direction given by (2.37), as shown in 
Table 2.5. Moreover, sometimes problems with convergence may occur and the amount of 
calculations is doubled. Thus, it is not suggested to use this method. 

  
The most efficient solution would be probably when we get a linear dependence 

dS(w)=f(mw), except for the cases when a minimum in a given direction lies in infinity or 
very far - then the move in this direction must be limited. In this aim, the minimum in each 
weight direction must be searched for separately. Searching for the minimum in each weight 

ver, after 
me modifications this idea can work exceptionally well (chapter 2.4). 

 
 

 
2.3.7.  Numerical Gradient with Momentum 
 

The idea of momentum is to accelerate the training convergence by using the 
information about the weight changes in the previous training cycle while determining the 
changes in the actual training cycle. Usefulness of this approach can be explained in two 
ways: either using the information about single weight changes or using the information 
about MLP error surface and learning trajectory shapes. 

 
The average changes of a given weight in two successive training cycles are usually 

similar. Therefore, it seem easonable to force greater changes in the same direction in order 

 gradient 
direction in that point strongly differs from the gradient direction close to the bottom of the 
ravine.

with 

o
T

direction separately will be computationally costly and as it is known from the experiments, 
the results expressed by the number of training cycles improve only a little. Howe
so

s r
to minimize the required number of training cycles. However, forcing the algorithm to go 
beyond the minimum in the gradient direction does not work very well. After making such an 
oversized step we reach a point on the opposite slope of the error surface ravine. The

 Consequently, the trajectory will oscillate from one side of the ravine to the other. 
Thus, when the step size increases beyond the minimum in a given direction, also the 
direction must be corrected. This leads to a conclusion that error surface ravines create arcs. 
If the same distance along the arc must be covered in fewer steps, then it is obvious that the 
angle between the directions of the successive steps must be smaller. That can be obtained by 
using a weighted sum of the previous step and the line from the current position to the 
minimu  in the gradient direction. This method known as momentum can be realized m
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NG in 

d in the weight w direction if the trajectory  
moved in the gradient direction. With momentum the weights grow quicker, especially at the 
beginni

a similar way as it is realized with BP. The following formula expresses the change of 
weight w, using NG with momentum: 

 
 dw(Tc) =mometum·d(wTc-1)+d(wTc)     (2.41) 
 

where d(w) is the distance that would be covere

ng of the training. 
 
 

  
 

ig. 2.16. Iris (4-4-3) trained with NG without momentum. Left: MSE (red) and classification F
accuracy (blue) on the training set. Right: values of the first hidden neuron weights. 
 
 

      

accuracy (blue) on the training set. Right: values of the first hidden neuron weights. 
 
 

Also another interesting effect caused by momentum can be observed with some 
datasets: many weights do not grow slowly to infinity or to very big values, but stabilize at 
constant values after some training cycles (Fig 2.17). The stabilization occurs already in the 
area of network convergence. A network trained with NG without momentum requires much 
more training cycles to reach such big weights values. Moreover, momentum decreases the 
oscillations of classification accuracy on the training set at the beginning of the training. 

 

Fig. 2.17. Iris (4-4-3) trained with NG with momentum. Left: MSE (red) and classification 
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Momentum can be also used to minimize trajectory oscillations. The oscillations can 
appear if we use the discrete version of NG, where the minimum along the gradient direction 
is not localized, but a constant step is used. With continuous NG, the oscillations are limited 
to the accuracy of finding the minimum along the gradient direction and are too small to have 
practical influence on the training process. Thus, there is no need to reduce them by 
averaging the directions from several iterations.  

 
Momentum works very well for the Iris dataset but it does not work equally well for 

every dataset. The optimal momentum value must be chosen individually for each dataset. 
Usually higher momentum values are possible for smaller networks. Moreover, while used 
with NG, it must be sometimes switched off the final stage of the training, since after 
accelerating the initial stage of the training, e momentum term can prevent the network 
from the final convergence (the weight stabilization can occur too early). 

 
Other possibilities of decreasing training times include weight pruning and freezing 

(see chapter 2.4.3), using border vectors (chapter  2.5.1) and updating the weights after only a 
part of the training set is propagated through the network (chapter 2.5.2). 
 
 
 
2.3.8.  Experimental Comparison of various NG Methods  
 
 
Table 2.5. Average number of training cycles required to obtain a given accuracy on the 
training set with various versions of NG. The optimal  was determined 
xperimentally for each dataset. 

 at 
th

 momentum
e
 

dataset Iris Ionosphere Sonar 
network 4-3-3 34-4-2 60-8-2 
accuracy 90% 96% 90% 96% 90% 99% 
gradient (2.31) 18 30 20 56 12 32 
optimized (2.37) 7.9 11 12 32 10 30 
second derivative (2.40) 8.1 11 12 - 17 45 
momentum (2.41) 8.0 11 12 24 14 60 
optimized+momentum 7.1 10 8.2 16 12 45 
step to a minimum  
in each weight direction 

5.1 8.6 5.4 13 6.8 25 

 
 
Figs. 2.18-2.21 are presented as comments to Table 2.5.  
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Fig  2

 
. .18. Standard NG (2.13) for iris 4-3-3. Left-top: error surface sections in the search 

directions dS at the starting point and in training cycles: 5, 10, 15, 20 and 25. Right-top: 
PCA-based learning trajectory projection. Middle: on vertical axis: E - MSE error, acc - 
accuracy, |W| - length of weight vector, on horizontal axis: training cycle (the vertical axis is 
in relative values that can be compared among pictures 2.14-2.17). Left-bottom: Dependence 
between search components dS(w) and the distance mw from actual point to the minimum in 
weight w direction in the first training cycle. Right-bottom: dS(w) and mw in the 25th training 
cycle.  
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Fig. 2.19. NG with optimized direction (2.37) for iris 4-3-3. Left-top: error surface sections in 
the search directions dS at the starting point and in training cycles: 5, 10, 15, 20 and 25. 
Right-top: PCA-based learning trajectory projection. Middle: on vertical axis: E - MSE error, 
acc - accuracy, |W| - length of weight vector, on horizontal axis: training cycle. Left-bottom: 
Dependence between search components dS(w) and the distance mw from actual point to the 
minimum in weight w direction in the first training cycle. Right-bottom: dS(w) and mw in the 
25th training cycle. 
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Fig. 2.20. NG with momentum = 0.25 (2.42) for iris 4-3-3. Left-top: error surface sections in 
the search directions dS at the starting point and in training cycles: 5, 10, 15, 20 and 25. 
Right-top: PCA-based learning trajectory projection. Middle: on vertical axis: E - MSE error, 
acc - accuracy, |W| - length of weight vector, on horizontal axis: training cycle. Left-bottom: 
Dependence between search components dS(w) and the distance mw from actual point to the 
minimum in weight w direction in the first training cycle. Right-bottom: dS(w) and mw in the 
25th training cycle. Momentum does not work so well on every dataset..  
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Fig. 2.21. NG with optimized direction and momentum (2.43) for iris 4-3-3.Left-top: error 
surface sections in the search directions dS at the starting point and in training cycles: 5, 10, 
15, 20 and 25. Right-top: PCA-based learning trajectory projection. Middle: on vertical axis: 
E - MSE error, acc - accuracy, |W| - length of weight vector, on horizontal axis: training 
cycle. Left-bottom: Dependence between search components dS(w) and the distance mw from 
actual point to the minimum in weight w direction in the first training cycle. Right-bottom: 
dS(w) and mw in the 25th training cycle. 
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2.3.9.    Conclusions 
 

The numerically and analytically determined gradient directions in MLP weight 
ace differ. Though the difference is usually not great, its cumulative effect during the 

merical and analytical gradients will find 
e initial weights. A significant difference 

xists b

tional cost per one training cycle, however it requires more training cycles and 
s tota

sp
training can cause that the algorithms based on nu

uite different solutions while starting from the samq
e etween any of the gradient directions and the optimal next step direction. The 
common tendency of many training algorithms based on analytical gradient is to 
underestimate the modifications of the hidden layer weights (Fig. 2.7, 2.8 and 2.28). 

 
The discrete NG is the simplest version of the numerical gradient algorithm. It has 

ower computal
it l computational effort is higher than that of continuous NG. There exists an optimal 
precision of finding the minimum along the gradient direction or along the modified search 
direction, which allows for the lowest training costs.  

 
The optimized direction dS allows for longer steps and thus the training can be done 

in fewer steps. Since this does not impose any additional overhead, it is advocated to use the 
optimized direction dS. Except for the optimized direction dS, each other enhancement 
increases the training speed by reducing the amount of information calculated by NG 
algorithm (including semi-batch or on-line training or using border vectors – see chapter 
2.5.1–2.5.2). The information cannot be reduced too much, since then the training will not be 
able to converge. For that reason if some of the methods are combined together, each of them 
should modify the basic training algorithm less than if used separately (for example the 
optimal momentum can be 0.4 with the batch training and 0.2 with the semi-batch training).  
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2.4. Variable Step Search Algorithm 

e 
point on the error surface and then a single step is made in the calculated direction. In the 
progressive search, after each weight change is examined, immediately a step in this weight 

ges are examined already in the new point on the 

2
y  the new point. Then we move to the minimum found in the weight w2 direction and 

so on. 

hat 
changi

he quality of the solution is the most important factor and the 
training

f minimizing the cost. The first method is 
remem

 
 
 
2.4.1. In-Place versus Progressive Search 
 
  the in-place search used by NG, all the weight changes are examined in the samIn

direction is made and the next weight chan
rror surface. e

 
As the experimental results showed  (chapter 2.3.8), the best method of searching for 

the next step direction is to find a minimum in each weight direction separately (using any 
line search method) and then to move to that point.  

 
However, if the minimum in the weight w1 direction is found, we can immediately 

move to that minimum and then search for the minimum in the weight w  direction being 
alread  in

Always a step in a given weight direction is made immediately after the minimum in 
that direction is found, while all remaining weights are not changed. Thus, there are as many 
steps in orthogonal directions during one training cycle as the number of weights. Many 
experiments aiming at determining the optimal weight change sequence were performed, 
however the various sequences did not have significant influence on the training efficiency. It 
cannot be concluded that any sequence produces the same results because it is also possible 
that the optimal sequence has not been found so far. Therefore the weights are changed one 
be one, first all weights from the hidden layer than all weights from the output layer, or first 
all weights from the output layer and then from the hidden layer. Only after detecting t

ng a given weight does not change the error, the weight is frozen or pruned  (chapter 
2.4.3). 

 
The computational cost per training cycle is the same as for the NG in-place search, 

but as experiments showed, several times fewer training cycles are required to train the 
network. Moreover, the progressive search method is usually able to find better solutions than 
the in-p ace search. Frequently tl

 time is less important or not important at all, especially for small datasets.  
 
The progressive search as an MLP training algorithm is more stable and allows for 

training the network in a fewer training cycles than any other method considered so far. 
However, several modifications are still required to decrease the computational cost of the 
solution.  

 
There are at least three methods o
bering neuron signals in the signal table instead of calculating them every time 

(chapter 2.3.2). Signal tables can reduce the cost up to hundreds times. The second method is 
to use appropriate search heuristics while determining the weight values (chapter 2.4.2). The 
cost reduction due to the heuristics is difficult to assess precisely, because it depends on many 
factors. After applying these two methods, this algorithm performed exceptionally well and 
the name variable step search algorithm (VSS) was proposed for it [Kordos 2004b]. 
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The third, optional, method is to use a staircase transfer function instead of sigmoids, 

which can be used since no gradient and no derivatives are calculated by VSS. The values of 
the staircase functions can be read from arrays instead of being calculated each time. The 
time of calculating the neuron signals is ranks of order shorter, but the total training times are 
about 3÷30% shorter compared to logistic sigmoids and 4÷40% shorter compared to 
hyperbolic tangents, depending on the network structure and the training algorithm.  

 
 
 

2.4.2. Determining Weight Values 
 

The simplest search-based algorithm works in the following way: in one training 
cycle the value of dw is added to or subtracted from a single weight w. If the error decreases 
then the change is kept, otherwise it is rejected. Then dw is added to or subtracted from the 
next weight and again the error is calculated, until the changes of all weights are examined. 
dw can be gradually decreased each training cycle. This algorithm used for logical rule 
extraction from MLP networks with not fully connected layers will be presented in chapter 
3.2.  

  
VSS is the modified version of the simplest search-based algorithm, in which dw is 

not constant, but dynamically adjusted independently for each weight during a rough 
minimization in each weight direction. VSS was designed taking the advantage of MLP error 
surface properties that its steepness in different directions varies ranks of orders, and the 
ravines in which the MLP learning trajectories lay are usually curves, slowly changing their 
directions [Kordos 2004a, 2004c][Gallagher 2000, 2003]. Basing on the properties we can 
expect that an optimal dw for the same weight in two successive training cycles will not differ 
much while dw for different weights in the same training cycle may differ ranks of order.  

 
In each training cycle i the first guess of dw(w,i) for a given weight w might be the 

value dw(w,i−1) that the weight changed about in the previous training cycle. However the 
detailed experimental analysis of the algorithm behavior leads to the conclusion that for most 
cases the least number of calculations is obtained when the first guess is dw(w,i)= 
c1·dw(w,i−1), with c1 in the range 0.3÷0.4, in spite that statistically the ratio of 
dw(w,i)/dw(w,i−1) is close to 1. 

 
Fig. 2.22. shows a diagram for determining dw of a single weight in one training 

cycle. Before the training starts, the weights are initialized with random values from the 

liminated from 
rther training. After the first training cycle all hidden weights that still equal zero are 

 Since dw(w,0)=0, for each weight w in the 
st tra

close to
cannot 
at all du
problems

interval (−1;+1). Initializing all hidden layer weights with zero values and setting the first 
guess d0 of each weight change to a large value is an effective method of feature reduction in 
the first training cycle. The larger d0 (0.5, 1, 2) is the more features are e
fu
runed and d0 is again set to a smaller value. 

 
p

In the first training cycle d=d0=0.2÷0.3.
fir ining cycle the first guess is dw(w,1)=d0. The ravine on the error surface is narrow 

 the algorithm starting point. Thus setting d0>0.5 frequently causes that the trajectory 
well fit into the ravine bottom and some weights oscillate while others do not change 

ring some initial training cycles, resulting in a slow training or convergence 
. 
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dw(w,i-1)=0

d=c1*dw(w,i-1)

NE<OE

Y

d=d1*sign(w)
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dw(w,i)=d
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d= -d

NE<OE

dw(w,i)=0

Y
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N

Y

N

Y

n<max_n
& |w|<max_w
& |d|<max_d

n=n+1

NE<OE

7

10

8

9

5

n=1

n=1

6

c3*(VE-OE)
N Y>NE-OE

11

dw(w,i)=d

d=c2*d

d=d/c2

 
 

ig. 2.22. Determining a single weight value in one training cycle of the Variable Step Search 

1: if dw(w,i)=0 then goto 3. 
2: the value c1·dw(w,i-1) is added to the weight w.  
3: if the weight w did not change in the previous training cycle try to add (or subtract) 

to it a smaller value d=d1·sign(w). Each weight is more likely to change in the 
same direction in the next training cycle. For that reason d1 is multiplied by sign(w) 

F
Algorithm. Typical values of constants c1, c2, c3, d1 are given in Table 2.6.  
 
 
Comments to the VSS algorithm diagram (Fig. 2.22): 
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to minimize the number of operations. If the situation repeats twice or more than 
the weight can be optionally frozen. 

nge the direction of search . 
ror NE after the change is not smaller than the old error OE before the 

of weight regularization and can be set to 
infinity if weight regularization is not required or already provided by a standard 
penalty term added to the error function. 

: If the new error NE after the change is smaller the than old error OE before the 
change then goto 7 else goto 10. 

10: If c3·(VE-OE)>NE-OE then accept that point in spite that the error in the previous 

1: d=d/c2. Return to the previous point.  
     

 
 
Table 2.6. VSS parameters with sigmoid slope=1. The sensitivity column contains the range 
of a parameter within which the VSS effectiveness is at least 90% of that for the optimal 
parameter. The values are only approximate and do not include interactions between 
parameters. 
 

parameter optimal
value 

sensitivity 
(10% range) 

explained 
in point No. 

4: If the new error NE after the change is smaller than the old error OE before the 
change then the direction of the change is correct, goto 7. 

5: otherwise cha d=-d
: If the new er6
change then do not change the weight. 

7: Search for an approximate minimum along this direction; set d=c2·d  
8: If n<max_n and |w|<max_w and |d|<max_d then goto 9 else goto 11. max_n is 

given to prevent the loop through points 7-9 from being executed too many times. 
Maximal acceptable values for a single weight max_w and for a single weight 
change max_d provide an optional way 

9

point was a bit lower else return to the previous point (goto 11). VE is the last error 
before OE, i.e. NE=error(n), OE=error(n-1), VE=error(n-2). It works like a 
momentum with standard backpropagation and is likely to bring gain in the next 
training cycle. 

1
  

d0 0.2 0.10÷0.30 above 
Fig.2.18. 

d1 0.03 0.01÷0.10 3 
c1 0.33 0.22÷0.44 2 
c2 2.0 1.5÷3.3 7 

max_n 4 3÷8 8 
c3 0.3 0.1÷0.5 10 

 
 
 

Many experiments with various weight updates strategies were made. On average the 
calculated about 3 times while determining a single weight value in one training 

cycle. It is possible to reduce this number but this leads to a higher number of training cycles. 
It is likely that a more efficient weight update scheme exists, however it has not been found 
so far. 

error is 
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2.4.3. Analysis of Weight Changes 
 

The VSS algorithm is very convenient for visualization purposes since it changes only 
one weight at a time, which allows us to assess the influence of single weights on the 
convergence process.  

 
The plots presenting error value as a function of epoch number are widely used in 

literature. From Fig. 2.23 it can be seen that the weight changes (absolute values) in the first 
training cycle are either zero or the initial change d0. As the training progresses some weights 
change slower and some faster. After several training cycles it is clearly visible which 
weights do not change any more or their little anges do not significantly influence the error 

 

ch
value and these weights can be frozen or pruned.  

 
 

 
 

Fig. 2.23. Thyroid (21-4-3) trained with VSS: MSE (red) and classification accuracy (blue) 
on training set, length of weight vector W (black), absolute value of single weight change 
|dw| (yellow), MSE decrease due to a given change dE (green). All values are rescaled to fit 
the plot. (see chapter 3.2.12.5 for the Thyroid dataset description)  
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Fig. 2.24. Mean values (M) and standard deviation (S) of hidden (H) and output (O) weight 

anges during the Thyroid dataset (21-4-3) training with VSS.  

           

ch
 
 

  

 
 

Fig. 2.25. Selected output layer weights. Thyroid (21-4-3), training with VSS. 
 
 

 
 

Fig. 2.26. Selected hidden layer weights (among the 8 input features only 2 are meaningful)  
hyroid (21-4-3), training with VSS. 

 

T
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Fig. 2.27. Selected hidden weights of irrelevant features. Mushrooms (125-8-2), training with 
VSS. (see chapter 3.2.9.2 for the Mushrooms dataset description) 
 
 

In many datasets, especially in those with large number of features, only some 
features are useful for classification purposes. The weights connecting hidden layer neurons 

ining cycle. Mushrooms and Thyroid are 
xamples of datasets with plenty of irrelevant features (Fig. 2.26, 2.27). 

s of a few weights (Fig. 2.23). Since some of the weights changed at 
nnot be assumed that they are irrelevant, but rather that they 

have already reached their optimal values and these weights can be frozen and not modified 
any more. A threshold for the minimal weight change must be determined or set a priori. If 
the weight change in a given training cycle is below the threshold, the weight is frozen for 2n 
training cycles, where n starts from one and is incremented each time the weight value is 
determined without being changed. If the change is above the threshold, the weight is 
normally taken into account in the next training cycle.  
 
 These methods of weights pruning and freezing, which can be used as well with VSS 
as with NG, aim at accelerating the training, however they also improve network 

timate the 
radient components in the hidden weight directions (chapter 2.3.3). As a result even the 

hidden weights of a network trained with LM, which assesses the optimal direction much 

ight values much quicker and after some training cycles no further 
hanges are required (after 4 training cycles in Fig. 2.28-right) That is one of the main 
asons why VSS requires fewer training cycles than LM. The output layer weights also grow 

quicker

with the irrelevant features do not change during the training with NG or VSS. Thus, it is 
very easy to detect the irrelevant features and to remove them from the further training by 

runing their weights after the first or second trap
e
 
 Observation of the weight changes shows that after several training cycles many 
weights do not change significantly any more and the further training concentrates on 
djusting only the valuea

the beginning of the training, it ca

generalization by removing the connections that transport only residual noise. 
 

The training algorithms based on analytical gradient frequently underes 
g

better than BP, grow much slower than when trained with VSS (Fig. 2.28). Thus VSS reaches 
the optimal hidden we
c
re

 in VSS trainings, but here the differences between LM and VSS are much smaller. In 
both algorithms the output layer weights grow faster than hidden layer weights in LM, but 
slower than the hidden layer weights in VSS. 
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Fig. 2.28. Hidden layer weights for Iris (4-4-3). Left: trained with LM. Right: trained with 

SS. 
 
 
 

2.4.4.  Learning Trajectories 
 

The first and second PCA directions usually capture together about 95-97% of total 
variance contained in the learning trajectory. Thus, the PCA-based projections of learning 
trajectories reflect the properties of the original trajectories quite well (Figs. 2.29-2.33).  

 
 
 

V

 
Fig. 2.29. PCA-based projection of Iris (4-4-3) error surface trained with VSS with visible 
learning trajectory. The trajectory color changes every training cycle.  
 
 

The trajectories show some regularity for every datasets. Not only dw for the same 
weight in two successive training cycles does not differ much, while dw for different weights 
in the same training cycle may differ ranks of order, but also some trends in weight changes 
may be observed. All sample plots in this chapter use the same network with 4 inputs, 4 
hidden and 3 output neurons trained on the Iris dataset. 
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Fig. 2.30. Projection of Iris (4-4-3) learning trajectory trained with VSS in the first and 
second PCA direction. The cross shows the zero point in the weight space. The trajectory 
color changes every training cycle. 
 
 
 
 

 
Fig. 2.31. Projection of the Iris (4-4-3) learning trajectory trained with NG without 
momentum in the first and second PCA direction. 
 
 

 
Fig. 2.32.  Projection the Iris (4-4-3) learning trajectory trained with LM in the first and 
second PCA direction. 
 

 
Fig. 2.33.  Projection of the Iris (4-4-3) learning trajectory trained with SCG in the first and 
second PCA direction. The training cycles are divided with short crosswise lines.  
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Fig. 2.34. Projection of the Iris (4-4-3) learning trajectory trained with VSS in the third and 
fourth PCA direction.  
 
 

Higher PCA components have significant values only at the beginning of the training, 
what is clear, because at that sta ge training algorithms chose the proper direction. As the 
training

endent on a 
factor that vanishes as the training progresses, so gradient-based algorithms have a tendency 
to decrease their learning steps as gradient decreases and thus slowing down the training even 

 
 VSS does not decrease the step when the gradient decreases, because VSS does not 

r n f a ,  r er t a ng s  c in  in  t .  
general, VSS also some r s e ,  t is re  o ig  c v e
the ravine, not of a sm
 
 

 approaches the final stage, the direction changes are usually slow.  
 
The similarity between all trajectories presented in Figs. 2.30-2.33 is obvious; they 

create similar arcs following the shape of the Iris error surface ravine. The differences are 
also clearly visible. Using gradient-based information makes the training dep

more.  

rely on g adie t in orm tion but ath  on he le rni  hi tory onta ed the rajectory In
times dec ease th  step  but hat  a sult f a t hter ur atur  of 

aller gradient. VSS stops when the gradient reaches zero values.  
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2.4.5. Experimental Comparison of VSS, NG, LM and SCG  
 

The numerical experiments were made on some well-known benchmark dataset from 
the UCI learning repository. The datasets and their detailed description can be found in 
[Mertz 1998]. Most of the datasets are also described in chapter 3.2.12. For each training 
algorithm about 20 experiments were made with every dataset. The network was tested on 
test sets (Thyroid, Shuttle) or in 10-fold crossvalidation (Iris, Wisconsin Breast Cancer, 
Mushrooms). A vector was considered to be classified correctly if its corresponding output 
neuron signal was higher then other neuron signals and than 0.5. All training algorithms were 
run with their default parameters, the same for each dataset. Only sigmoid transfer functions 
were used, so the additional acceleration of VSS that can be obtained with staircase transfer 
functions is not revealed here.  

 
Four values determining the algorithm efficiency are considered: the total 

computational complexity (Ct) required to achieve the desired effect, memory requirements 
 

 

y program. In general, it 
would not be the best idea to compare the tim  between Matlab and my program directly. 
Therefore, the computational complexity of the algorithms was assessed in the following 

umber of training cycles require to converge Nt for Mushrooms, Thyroid and Shuttle and the 
aining time Tt was measured. The real training times for Iris and Breast were too short for 
liable direct measurement, thus the algorithms were run 1000 training cycles and the 

t: Tt=Tm(Nt/1000). All on-screen display and additional 
programs (though for bigger datasets it had negligible 

 to 100 for the bigger 
etworks (Mushrooms). For LM Ce was between 4 and 540 and grew rapidly with network 

size. For SCG Ce did not depend much on the network size, being between 2 and 8. The 
number of the training cycles Nt  required to converge was always the lowest for VSS and the 
highest for SCG. 

 
The total computational complexity Ct shown in Table 2.7 reflects the algorithm 

speed. It expresses the ratio of the total training time to the time of propagating the dataset 
through the network once. Ct can be obtained by multiplying the per training cycle 
complexity Ce by the average number of training cycles Nt required to train the network: 

t=CeNt. It is clear that Ct cannot be calculated very precisely and it will surely vary 
l 

 

(MB), the quality of the solution the algorithm can find (% accuracy on the test) and the
ercentage of the algorithm runs that converge to the solution (CR) of this quality. p

VSS and NG calculations were done using my own program written in Delphi 
[Delphi]. Matlab Neural Network Toolbox [NN Toolbox 2004] was used for LM and SCG 
calculations. For bigger datasets (such as Shuttle) the time of propagating once the training 
set through the network in NN Toolbox and in my program did not differ more than 5%. For 

aller datasets (such as Iris) the times were much shorter in msm
es

way: first only the datasets were repeatedly propagated through the network with calculating 
the MSE error Ns times (in the case of Matlab it was done by modifying trainscg.m so that 
only sim() function was called within the plot). Then the algorithms were run the average 
n
tr
re
measured time Tm was rescaled to T
ptions were switched off in both o

influence). A given algorithm computational complexity was calculated for given dataset and 
network structure per one training cycle as: Ce=(Tt/Nt)/(St/Ns). 

 
For VSS Ce was from 18 for the smaller networks (Iris, Breast)

n

C
depending on a given algorithm implementation, nevertheless it provides quite a usefu
outlook. 

 100



In all cases Ct for VSS was lower than that for LM. In most cases, it was also lower 
than that for SCG, however for larger datasets that are relatively easy to train, such as the 
Mushrooms dataset, the differences were vanishing. 

 
Only VSS and LM were able to converge to the solutions with the lowest error on the 

training set (e.g. to classify all training set instances correctly, while the other algorithms 
made some errors on the training set). However, LM frequently did not converge to the 
solution and had to be repeated with other starting weights. The CR parameter in Table 2.7 
expresses the convergence rate of algorithms, i.e. the percentage of the algorithm runs that 
onverged to the desired solution within 5000 cycles. 

mber 
t given in Table 2.7, while for LM the difference was often over 100%. VSS and NG 

s had the smallest memory requirements. The performance of NG was poorer than 
that of VSS. The main difference between the algorithms is that NG uses directly gradient 
information, while VSS does not. 

 
Additional techniques such as weight freezing, weight pruning, calculating the error 

not on the entire dataset each training cycle (semi-batch or on-line training) or eliminating 
vectors that give the least error, lead to much shorter training times with each of the 
examined algorithms, but since the techniques can be used with all the compared algorithms 
they are not included here. The methods will be shortly discussed in chapter 2.5. 

 

T
 

c
 
For VSS and NG the minimum and maximum number of training cycles in that a 

iven algorithm converges to a given solution differed less than 30% from the mean nug
N
algorithm

 
able 2.7. Comparison of VSS, NG, LM and SCG algorithms.  

dataset % VSS NG LM SCG 
network test Nt MB CR Ct Nt MB CR Ct Nt MB CR Ct Nt MB CR Ct

Iris 
4-4-3 

96.0 3.5 - 100 62 11 - 100 175 20 - 80 223 118 - 90 948

Breast 
10-4-2 

96.0 1.5 - 100 45 4  -  100 112 20 1.5 100 109  147 0.4 60 271 

Mushrooms 98.0 1.2 100 124 21 100 1070 4 90 2180 20 100 167
125-4-2 99.6 2.0 

0.4
100 206 - 

0.4 
0 - 6 

240
90 3260 45 

40 
100 377

Thyroid 97.0 6.1 100 392 40 40 862 25 50 1640 103 70 581
21-4-3 98.0 10 

0.2
100 643 - 

0.2 
0 - 35  

30 
40  2300 - 

1.0 
0  - 

Shuttle 98.0 4.5 100 423 34  90  1300 14 60 1430 780 50 1480
9-6-7 99.0 6.0  

1.6
100 564  58 

1.6 
90  1740  19 

1400
60 1940 1620 

20 
30  3080

 
Nt - number of training cycles 
MB - memory usage in

alculated by subtract
 MB for storing network and training parameters, without memory used for the dataset 

ing the memory used by the program running the algorithm on a given dataset from the 
emory used by the program with the given dataset loaded in memory and running the algorithm on the Xor 

ataset. Memory usage was measured with Task Manager) 
R – convergence rate (percentage of training runs that converged to a given accuracy within 5000 training 

t mplexity (ratio of the total training time to the time of propagating the dataset 
hrough t

(c
m
d
C
cycles) 

  - total computational coC
t he network once) 
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Fig. 2.35. Comparison of VSS, NG, LM and SCG algorithms (mean values from Table 2.7). 
 
 
 VSS does not converge in 100% runs for every dataset (see next chapter). It also did 

ot outperform in every case the other algorithms so much as it could be concluded from the 
hart above. The chart is made for average values. Thus, the general tendencies shown in the 

e of VSS. 

n
c
plot below may reflect more faithfully the performanc
 

 
 

Fig. 2.36. Comparison of VSS, NG, LM and SCG algorithms. General tendencies of relative 
training times in function of network and dataset size (upper bound for difficult, lower for 
easy to train datasets). 
 
 
 
2.4.6.  N-bit Parity Problems 
 
 The n-bit parity problems (chapter 1.2.5.2) are very difficult for MLP training 
algorithms. The following plots of MSE and accuracy on the training set in the function of 
training cycle show typical VSS performance on n-bit parity problems. 
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Fig. 2.37. MSE (red) and training accuracy (blue) during the VSS training of: left: Xor (2-2-
1), convergence rate ≈ 90%, right: 4-bit parity (4-4-1), convergence rate ≈ 98%. 
 
 

      
 
Fig. 2.38. MSE (red) and training accuracy (blue) during the VSS training of: left: 6-bit parity 
(6-32-1), convergence rate=100%, right: 6-bit parity (6-16-1), convergence rate ≈ 95%. 
 
  

      
 

is case the 
conver

There are 2 =4 data clusters per class for the Xor (2-bit parity) problem, 2 =8 
clusters

output neuron joins the partial rules with the OR operator. With only 8 hidden neurons the 

Fig. 2.39. MSE (red) and training accuracy (blue) during the VSS training of 6-bit parity (6-
8-1). Left: successful training. Right: two vectors wrongly classified. In th

gence rate is about 35% but the accuracy of at least 96.88% (two vectors wrongly 
classified) is obtained in about 95% of the algorithm runs. 
 
 

(2-1) (4-1) 
 per class for 4-bit parity and 2(6-1)=32 clusters per class for 6-bit parity. If there are 32 

hidden neurons for the 6-bit parity problem, then the number of hidden neurons equals the 
number of data clusters per class and the network training is quite easy. Also 32 hidden 
neurons are required in this case for the SMLP network (chapter 3.2) to describe the 6-bit 
parity problem with logical rules – each hidden neuron generates one partial rule and the 
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representation of particular data clusters is distributed among them using complex 
the network training, since the ravines on the 
 very narrow (Fig. 1.17-left). In this case the 

SS tra

, popular in artificial intelligence and 
completely neglected in neural networks (with an exception of rarely used Alopex algorithm 

ar the performance of VSS as a standalone algorithm has been more than 
atisfa is fast, can fin  s. Since 

VSS is very simple to progra  r s), it is 
quite surprising that in empir ts it us

aces of real- rld datasets local minima in craters are extremely 
rare. Local search algorithms based on analytical gradient that do not have direct access to the 
influen  layer weights he network error cannot precisely d e the 
gradient direction and fall in spurious local minima. VSS does not fall in spurious minima 
and seldom requires multistart, only in that case when there is really no downward way from 
the star

 

ata but near the end of the training use only a small subset of vectors near the 
ecision borders. The same learning strategy can be used with neural networks, 
dependently of the actual optimization method used. The threshold for acceptance of 

vectors useful for training is dynamically adjusted during learning to avoid excessive 

dependencies, which are difficult to obtain in 
error surface containing the global minima are
V ining converges to 100% accuracy in only about one third of the runs, depending on 
the starting point.  
 
 
 
2.4.7.   Conclusions 
 

It is clear that search-based techniques

based on simulated annealing), may be the basis for network training algorithms. They may 
be used for initialization and in combination with traditional gradient-based techniques. 
However, so f
s ctory. It d very good

m (does not
al tes

solutions and has low memory requirement
equire calculation of derivatives and matrice
ually outperforms both LM and SCG. ic

 
For the error surf wo

ce of hidden on t etermin

ting point to one of the global minima.  
 
Although local optimization methods including VSS do not guarantee finding a global 

minimum for every problem, for the prevailing number of real-world problems they are 
sufficient and it is rarely required to use global optimization methods, which on the one hand 
have greater chance to find the solution for complex problems but on the other hand require 
much higher computational effort [Matthews 2000]. 
 
 

2.5.  Decreasing Training Time 
 

The methods of decreasing training time and improving generalization are outlined 
here because of their importance, though in most cases they can be used with any MLP 
training algorithms, not only with the search-based ones.  

 
 
2.5.1. Border Vectors 
 
 Neural networks are usually trained on all available data. Support vector machines 
tart from all ds

d
in
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oscillations in the number of support vectors. Benefits of such an approach include faster 
training, identification of small number of support vectors near decision borders and may also 
include higher accuracy of the final solution. balanced datasets 
(with small number of samples in some classes  i ) the solution may be 
significantly better, automatically focusing on  dif t classes vectors 
near the decision borders. 
 
 The goal of the Support Vector Neural Training algorithm [Duch 2004b] is to reduce 
the amount of training data, finding only those tr  vectors tha eally needed to 
support the training process. Network weights are updated after presentation of the training 
data, depending on the difference between the target output values and the achieved network 

utputs. Patterns that are close to the decision borders give significant errors and should be 
sed for further training. If a given pattern contributes to the error less than the threshold, 
en it is removed from further training.  

 
 

Moreover, for strongly im
and large
the same

n other classes
number of feren

aining t are r

o
u
th

         
 

ig. 2.40. Training vectors of the Iris dataset projected into two most significant input space 
ature

F
fe s. Left: the entire training set. Right: vectors with the greatest error selected for further 
training. 

 
 

   
 

Fig. 2.43. Left: Error surface sections get flatter after the 8th training cycle when border 
vectors are selected. Right: MSE and classification accuracy on the training set.  
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There is however one risk of such an approach. If the algorithm is not controlled 
carefully and the data are noisy, the classification process may invert the decision borders. 
There are two ways to prevent this: either to use efficient schemes of updating the threshold 
values [Duch 2004b] or to cluster the vectors with the lowest error instead of rejecting them. 
 

If some vectors are represented by points that lie very close to the proper output space 
hypercube vertex, they can be clustered and replaced by a single vector. This vector 
represents the cluster and its error is be multiplied by the number of that cluster instances. 
That guarantees that the decision borders will not be inverted. 

 
 

e of 
e vectors can be propagated through the network and after the partial error is calculated the 

i-batch training). In on-line training, the weights are updated 
after each single vector is presented. In the examples below, the training set is divided into 10 
parts for the Iris and 100 parts for the Mushrooms dataset. Every training vector is randomly 
assigned to one of the parts at each training cycle.  

 
 

Table. 2.8. Computational effort reduction of NG training obtained by dividing the training 
set into parts. 
 

dataset number of 
parts 
 

training time reduction (training time with 
calculating error on the whole data set = 1) 

2.5.2.   Batch Versus Online Training 
 

Weights can be updated after the entire training set is presented and the error is 
alculated on the entire set (batch training). In order to decrease training times, only somc

th
weights can be updated (sem

Iris 10 0.30 
Wisconsin Breast 
Cancer 

10 0.18 

Mushrooms 100 0.047 
 
 
No modification of the weight update step is required with the number of parts in the 

training set shown in Table 2.8. However, if we decrease more the number of vectors on 
which the error is calculated at a time (the batch size), then it is required not to go to the 
minimum in the gradient direction, but to make a shorter step with NG. Similarly with VSS, 
when the error is calculated only on a few vectors the weight update can be calculated 
according to the diagram in Fig. 2.22, but then each weight should be updated about a value 
proportional to but smaller than the calculated one. If the update values are not smaller than 
the calculated (as well with NG as with VSS), then the weights will oscillate and the network 
will be unable to converge. 

 
On-line training decreases the training time about a smaller factor than the number of 

vectors in the training set. A detailed comparison between efficiencies of batch and on-line 

ing was practically the same. The authors 

training using backpropagation was presented in [Wilson 2003]. Selected results from that 
work are summarized in table 2.9. Though the training time was different, the average 
generalization accuracy for on-line and batch train
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use about 60% of the original datasets for training
ifferent training algorithm and different network s

 and the rest for tests. Since they used a 
tructures, their results for Iris, Breast and 

ushrooms differ from mine, but the same trend is visible: stronger acceleration is obtained 
r bigger datasets. The same authors also compared training times for the Digit Speech 

sing various batch sizes. The results they obtained suggest that 
ecreasing the batch size below a certain number of vectors does not cause further training 
cceler

d
M
fo
Recognition database, u
d
a ation.  
 
 
Table 2.9. Selected experimental results from [Wilson 2003]; training time reduction 
obtained with on-line BP in comparison to batch BP.  

 

dataset training 
set size 

training time 
reduction 

Iris 90 1.00 
Wisconsin Breast Cancer 410 0.71 
Mushrooms 3386 0.011 
Shuttle 5552 0.010 
Ionosphere 221 0.50 
average of 26 datasets 1329 0.05 

 
 
 

    
Fig. 2.44.  MSE and classification accuracy on (the actual part of) the training set. Training 
set divided into 10 parts. Iris (4-4-3) trained with: left - standard NG, right - NG with 
momentum. 
 
 

Semi-batch training, momentum, border vectors and weight freezing/pruning can be 
used together in any combination. However, this must be done carefully, since adding each 
method causes some loss of information. The information cannot be reduced too much, 
because then the training will not be able to converge. For that reason if some of the methods 
are combined together, each of them should modify the basic training algorithm less than if 
used separately (for example the optimal momentum can be 0.4 with batch training and 0.2 

t for small dataset there is no need for 
aining acceleration. 

with semi-batch training). All the methods work fine with big datasets. If the dataset is small 
and noisy, efficiency of the methods decreases bu
tr
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Fig. 2.45. Iris (4-4-3) trained with standard NG. Training set divided into 10 parts. Left: 
weights of a selected hidden neuron. Right: weights of a selected output neuron.  
 
 

       
Fig. 2.46. Iris (4-4-3) trained with NG with momentum. Training set divided into 10 parts. 
Left: weights of a selected hidden neuron. Right: weights of a selected output neuron. 
 
 

  
 

ig. 2.  with NG with momentum and 100 parts in the 
aining set. Selected weights of an output neuron. 

F
tr

47. Mushrooms (125-8-2) trained
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2.6. Improving generalization 
 
 
2.6.1.  Introduction 
 

Generalization is the neural network ability to learn the data structure and not the 
single data vectors used for network learning and consequently to make reasonable decisions 
for data unseen in the learning process. It is known from the approximation theory (Tikhonov 
regularization) and from the statistical learning theory that too precise learning on a training 
set leads to overfitting, which results in poor generalization ability [Łęski 2002]. Vapnik-
Chervonenkis (VC) theory is a general theory for estimation of dependencies from a finite set 
of data [Vapnik 1998]. The most important in the VC-theory is the structural risk 
minimization (SRM) principle. The SRM principle suggests a tradeoff  between the quality of 
the approximation and the complexity of the approximating function. A measure of the 
approximation function complexity is called VC-dimension (VCdim). 

 
VCdim is defined as the number of elements in the greatest set S, for which the system 

can perform all possible 2n dichotomies of the set (linear divisions of the set into two parts). 

d in all possible configurations. VCdim can 
e assessed as: 

 
 NhN ≤ VCdim ≤  2Nw(1+logNn) (2.42) 
 
where N is the dimensionality of input data, Nh is the number of neurons in the hidden 

layer, Nw is the number of weights in the network and Nn is the total number of neurons. If the 
sigmoid transfer functions are used, than according to [Hush 1993], VCdim can be assessed 
as: 

 
 VCdim=2Nw

   (2.43)
 

In the case of a network used for binary classification, VCdim equals the maximal number of 
training vectors that can be correctly reconstructe
b

    
 

Fig. 2.48. Two factors determining generalization: network complexity corresponding to 
VCdim (left) and number of training cycles (right).  
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It is usually difficult to design an optimal network structure before the training, 
especially in situations, where a complicated problem must be solved, and the system must 
make optimal use of a limited amount of training data. It is known from theory [Denker 
1987] and experiments that for a fixed amount of train
weights do not generalize well. On the other hand, networks with too few weights will not 
have enough power to represent the data accurately (Fig. 2.48-left). The best generalization is 
obtaine

network must solve [Jankowski 1999]. The first choice for the number of hidden neurons 
may be

ut also the fully connected network is not always optimal and some 
weights can frequently be removed. A simple method of removing irrelevant weights was 
discuss

e popular methods aiming 
below. Since the methods can be used with m
search-based ones, they will be only shortly outlined. 

.6.2.  Early Stopping 
 

dating the 
ll decrease 

itially

emaining tasks as presented in the figures below. 
However, from the generalization point of view it is not always desired to solve all the 

maining tasks.  
 

corresponding to X and Y in Fig. 2.49-left), 20 hidden 
 of the training is 

 obta

0 for the instances shown in red 
i b ue 

ing data, networks with too many 

d by trading off the training error and the network complexity. 
 
The network complexity should correspond to the complexity of the problem the 

 the geometric mean of the input and output neuron numbers. However, if the data is 
simple then fewer hidden neurons or no hidden neurons at all will be optimal while for 
complex data more hidden neurons must be used. Not only the number of neurons should be 
properly selected b

ed in chapter 2.4.3. The purpose of that method was rather decreasing training times, 
although it also leads to improvement in network generalization.  

 
The ideas of som at improving generalization are presented 

any training algorithms, not only with the 

 
 
 
2
 

The idea is to use two datasets, one for training and one for vali
eneralization performance. Typically, both the training and validation errors wig

in  but the validation error will start to increase at some point (Fig. 2.48-right). Thus, the 
training should be stopped when the error on the validation set starts to increase.  

 
This can be explained in two ways. The first explanation (maybe better suited for 

networks trained for regression problems) is that network learning typically starts from small 
random weights. This corresponds to simple, essentially linear mappings. As the training 
proceeds, the weights grow and the network mappings become increasingly nonlinear, i.e. the 
model complexity grows.   

 
The second explanation is that first all neurons try to solve the task, which mostly 

reduced the network error, and then the r

re

The network with 2 inputs (
nits and 1 output is trained on the dataset shown in Fig. 2.49-left. The aimu

to in the following network output signal: 
 

1 for the instances shown n l
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The three remaining figures show the network output (vertical axis) corresponding the 
particular points of the input space area (the output signal value 0.5 corresponds to the 
decision border). After 3 training cycles of VSS the network is in the optimal state, though 
two training vectors are still misclassified. After 10 training cycles, the accuracy on the 
training set is 100%, but it is obvious looking at Fig. 2.50-right that such a network has poor 
generalization abilities. 

                            
 

Fig. 2.49. Left: class distribution of the training set. Right: decicion borders after 1 training 
cycle of VSS (84% accuracy on the training set). 
 
 

       
Fig. 2.50. Left: decision borders after 3 training cycles of VSS (92% accuracy on the training 
set). Right: decision borders after 10 training cyc

t). 

.6.3.  Weight regularization 

com  terms: the ordinary training 
erro he effect of using weight 
reg

s is added to 
the error function as the sum of all the weight squares. The error function is: 

les of VSS (100% accuracy on the training 
se
 
 
 
2
 

tradeoff between the training error and the network One technique to reach this 
plexity is to minimize the cost function composed of two

. Tr, plus some measure of the network complexity
 ularization is similar to that of early stopping. 

 
In the simplest weight decay model, the penalty term for big weight value
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As a result, the error surface lifts up (Fig. 1.23), less near the center and more further 

om the center, thus we can see a superpositio
by the regularization term. It is obvious that the weights will not grow much in this situation.  

l 
ts with the same strength, while frequently the best results can be obtained if some 

eights are allowed to grow to relatively high values and the others are set to zero 
ankowski 1999]. 

 
To solve this problem a weight elimination method was proposed [Weigend 1990, 

 

 

fr n of the original ES with the paraboloid caused 

 
Nevertheless, this quadratic regularization term has one disadvantage. It influences al

weigh
w
[J

1991], where the regularization term added to the error function is: 

∑ +i

 
i

i

ww
wwc 2

0
2

2
0

2

/1
/  (2.45) 

 this case, the limit of the regularization term for a single weight is c and not infinity, as in 

At the final stage of MLP trainings the weights of output layer neurons tend to grow 

ining goals must not require infinite weight values. One 
ossibility is to use a stretched sigmoid (Fig. 1.18.b) or other transfer functions that reach the 

value for a finite argument [Duch 1999b]. Another possibility is to set the 
 and 1.    

in
the standard weight decay regularization form. 
 
 
 
2.6.4.  Stretched Sigmoids and Desired Output Signals 0.1 and 0.9 
 

to very high values. This is caused by the sigmoidal transfer function properties (Fig. 1.2- 
a,b). To obtain zero error, the output neuron signals must be zero or one (-1 and +1 in the 
case of hyperbolic tangent). This is possible only with infinite weighted sum of the neuron 
inputs and that forces the infinite growth of weights. To improve network generalization and 
to prevent the training algorithm from wasting time for the excessive increase of output 

euron weights, achieving the tran
p
training target 
targets as 0.1 and 0.9 instead of 0

 
 

 
2.6.5.  ε-insensitive Learning 
 

 The ε-insensitive loss function has the following form: 
 

   ),0max( ε−= EE  (2.46) 
 
Roughly, the idea of this method is that the error must decrease at least by ε to accept the 
change of parameters leading to the error decrease. The ε-insensitive learning applied to 

euro-fuzzy models was considered in [Łęski 2002]. Since neuro-fuzzy models can perform n
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thinking tolerant to imprecision, but neural network learning methods are zero-tolerant to
imprecision, this can remove the inconsistency thus leading to better generalization. The
insensitive threshold t will be further used

 
 

 in this thesis to improve classification rules 
LP networks (chapter 3.2). 

 

Surgeon (OBS) 

t it is possible to take a perfectly reasonable network, 
elete half (or more) of the weights and achieve a network that works just as well, or better 
eCun 1990]. The saliency of a weight is defined as the change of the error function caused 

y deleting the weight. A simple strategy consists in deleting weights with small saliency. It 
n be observed that frequently small weights have the least saliency, so a reasonable initial 
rategy is to train the network and delete small weights. Then the network should be 
trained. This procedure can be repeated iteratively. 

 magnitude equals 
 the error function 

ith respect to the weights. The error function can be approximated by Taylor series: 
 

produced by SM

 

 
 (OBD) and Optimal Brain 2.6.6.  Optimal Brain Damage

 
 The basic idea of OBD is tha
d
[L
b
ca
st
re
 

The main point of OBD is to move beyond the approximation that
saliency and propose a saliency measure that uses the second derivative of
w

)||(||
2
1 3

2

2

dwOdw
dw

Eddwdw
dw
dEdE ⎜

⎛= T
T

+⋅⋅+⋅⎟
⎠
⎞

⎝
 (2.47) 

inished, it can be assumed, that the network is in the error function 
minimum and the first term of  (2.46) can be ignored. Also the terms higher than the second 
When the training is f

one can be ignored.  Only the second term (Hessian 2

2

dw
EdH = ) is important. LeCun assumed 

that only the Hessian diagonal is important, so (2.47) can be written as 
 

∑= 
i2

 
The saliency of each weight is defined as 
 
 2

iiii wHs =  (2.49) 
 
The OBD procedure can be carried out as follows: 

1. choose a network architecture 
2. train the network u

iiidwHdE 21  (2.48) 

ntil a reasonable solution is obtained 
3. ompute the second derivatives H  for each weight 
4. 

c ii

compute the saliencies si for each weight  
5. sort the parameters by saliency and delete some low-saliency parameters 
6. go to step 2. 
 

Optimal Brain Surgeon [Hassibi 1993] also uses only the second term in the Taylor 
series (Hessian). The weight saliency in OBS is: 
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ws  (2.50) 

 
nd after the a

d
selected weights are pruned all remaining weights are modified about the value 

wi: 
 

 i
ii

i H 12 −

 
where I

i IHwdw 1−=  (2.51) 

ros elsewhere. 
 
 

 
.6.7.  Statistical Weight Analysis 

i is a vector consisting of one at the i-th position and ze

2
 
 The statistical approach to weight pruning is based on cumulating the differences 
among different weights in one epoch [Finnhoff  1993][Cottrell 1995]. The weight saliencies 
are defined as 
 

 
)(

|)(|
j

j
ii

i dwstd
dwmeanws +

=  
i

(2.52) 

 

ning error and the network complexity can be 
obtained by starting with a very small network and then adding gradually neurons as 
required. This constructive approach is used by many algorithms [Fahlman 1990][Jankowski 

Adamczak 2001], also by the SMLP network presented in chapter 3.2. If the 
etwork without a hidden layer is not sufficient, then the hidden neurons can be added one by 

one unt

ith limited number of neurons, however the results 
with crossvalidation or on test sets are not better than for other classification algorithms. 
 

d. 

where wi is the weight value before the actual epoch, dwi
j is the change of the weight wi as a 

response to the presentation of the j-th training vector, mean(dwi) is the mean value and the 
std(dwi) is the standard deviation of all the weight changes in the actual epoch. The value si is 
large if the weight is large and its changes are small, otherwise si is small and the weight is 
supposed to be relatively useless. 
 
 
  
2.6.8.  Growing Networks 
 
 Another approach to trading off the trai

1999, 2003][
n

il the results are satisfactory. That can be realized in several ways. 
 

Perhaps the best-known network-growing algorithm is the cascade correlation 
[Fahlman 1990], which adds the hidden neurons using cascade connection. The network is 
able to fit perfectly into the training data w

A method used by SMLP networks is described in detail in chapter 3.2. The SMLP network 
has a separate hidden neurons assigned to particular classes. It starts with one hidden neuron 
per class and the others are added as neede
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Part 3 

MLP Networks 
 

 
 
3.1. 

.1.1. Decision Trees 

3.1.1.1. Introduction 
 

The attractiveness of tree-based methods is in large part due to the fact that decision 
by their nature [Ho Tu Bao 2002]. Therefore, the explanation of any 

particular classification or prediction is relatively straightforward. Decision-tree building 
algorith

here are also many weaknesses of decision tree methods. Decision trees are less 
approp
and fo orithms can only deal with binary-valued 
target classes, others are able to assign records to an arbitrary number of classes, but are 
error-p
decision tree is computationally expensive. At each node, each candidate splitting attribute 
must be sorted before its best split can be found. Pruning algorithms can also be expensive 
since many candidate sub-trees must be formed and compared. Most decision-tree algorithms 
re univariate, examining only a single feature at a time. This leads to hyperrectangular 

 
Logical Rule Extraction from  

 
 

 Review of Rule Extraction Algorithms  
 
 
3
 

Decision trees are a form of recursive partitioning [Lewis 2000]. Each node can be 
split into two or more child nodes, in which case the original node is called a parent node. 
“Recursive” means that the partitioning process can be applied repeatedly. Thus, each parent 
node can give rise to child nodes and, in turn, the child nodes can split themselves into two 
further nodes.  

 

trees represent rules 

ms have the ability to clearly indicate best splits. They put the split that divides into 
classes the largest number of training records at the root node of the tree. The second strength 
is that decision trees can deal with continuous and categorical variables. Categorical variables 
pose problems for some neural networks and statistical techniques. Discretization of 
continuous features by decision trees is a by-product of applying the splitting criteria in the 
process of tree building.  

 
T
riate for estimation tasks where the goal is to predict the value of a continuous variable 
r time-series data. Some decision-tree alg

rone when the number of training examples gets small. The process of growing a 

a
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decision borders that may not correspond well with the actual distribution of points in the 
class space.  
 

 
3.1.1.2. CART 
 

CART (classification and regression tree) [Breiman 1984], is a binary decision tree 
lgorithm, which has exactly two branches at each internal node. The idea of impurity used in a

CART is formalized in the GINI index for the current node c: 
 
 ∑−=

j
jpcGINI 21)(  (3.1) 

 
where pj is the probability of class j in node c. For each possible split the impurity of the 

bgroups is summed and the split with the maximum reduction in impurity is chosen. For 
rdered and numeric attributes, CART considers all possible splits in the sequence. For n 

 are n-1 splits. For categorical attributes CART examines all 
ossible binary splits. For n values of the attribute, there are 2n-1-1 splits. At each node CART 

ttributes one by one. For each attribute it finds the best split. Then it 
ompares the best single splits and selects the best attribute of the best splits. 

odes, during which each node is assigned a 
redict

two iss

.1.1.3

e tree, according to the 
info a
sep
inform
the tree [Quinlan 1986][Mulawka 1996].  

erizes the purity of an 
arbitrar
collect
S relati

i
ii ppy

1
2 )log(  (3.2) 

su
o
values of the attribute, there
p
searches through the a
c

 
CART analysis consists of four basic steps [Lewis 2000]. The first step consists of 

uilding a tree using recursive splitting of nb
p ed class in a way that minimizes the a priori given misclassification costs. The second 
step consists of stopping the tree building process. At this point a maximal tree has been 
produced, which probably greatly overfits the information contained within the learning 
dataset. The third step consists of tree pruning. CART treats pruning as a tradeoff between 

ues: getting the right size of a tree and accurate estimate of the true probabilities of 
misclassification. This process known as minimal cost-complexity pruning results in the 
creation of a sequence of simpler and simpler trees, through gradually cutting off the 
increasingly important nodes. The fourth step consists of optimal tree selection, during which 
the tree that fits the information in the learning dataset, but does not overfit the information, 
is selected from the sequence of pruned trees.  

 
 

3 . ID3 
 

ID3 algorithm selects which attribute to test at each node in th
rm tion gain (entropy). The information gain measures how well a given attribute 

arates the training examples according to their target classification. ID3 uses this 
ation gain measure to select among the candidate attributes at each step while growing 

 
Entropy that measures homogeneity of examples (charact
y collection of examples) is used to define information gain precisely. Given a 

ion S, containing positive and negative examples of some target classes, the entropy of 
ve to the Boolean classification is  

nc

∑
=

−= Entrop
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where pi is the proportion of positive examples in S and nc is the number of classes. In all 
calculations involving entropy we define 0log0 to be 0. The information gain, Gain (S, A) of 
an attribute A, relative to a collection of examples S, is defined as  

 

 )(
||
||

)(),(
)(

v
AValuesv

v SEntropy
S
S

SEntropyASGain ∑
∈

−=  (3.3) 

 
The central focus of the ID3 algorithm is selecting which attribute to test at each node 

in the tree, according to the following procedure: 
1. See how the attribute distributes the instances.  
2. Minimize the average entropy (calculate the average entropy of each test attribute 

training data with missing attribute values, handling attributes with different costs 
nd improving computational efficiency.  

re. In all cases the left side 
(LS  for a given dataset D. 

us (3.4) 

and choose the one with the lowest degree of entropy).  
 

Quinlan [Quinlan 1986] proposed a window-based rule, where only some randomly 
chosen instances (window) are considered at each iteration step and exception from the 
generated rules are searched for in the remaining data. 
 
 
3.1.1.4. C4.5 

 
C4.5 is a an extension of the basic ID3 algorithm designed by Quinlan to address 

issues not dealt with by ID3 [Hamilton 2002][Quinlan 1986], such as: avoiding overfitting 
the data (determining how deeply to grow a decision tree), reduced error pruning, rule post-
pruning, handling continuous attributes, choosing an appropriate attribute selection measure, 

andling h
a

 
 

3.1.1.5.   SSV Tree  
 
The SSV (Separability of Split Value) criterion [Grąbczewski 2003] allows to 

separate objects with different class labels. It can be applied to both continuous and discrete 
features. The best split value is the one that separates the largest number of pairs of objects 
from different classes.  The split value (or cut-off point) is defined differently for continuous 
and discrete features. In the case of continuous features, the split value is a real number, in 
othe ar c ses it is a subset of a set of alternative values of the featu

f feature f can be defined) and right side (RS) of a split value s o
 
LS(s, f, D) = {x ∈ D : f(x) < s}  if f is continuo
LS(s, f, D) = {x ∈ D : f(x)∈ s}   otherwise 
 
RS(s, f, D) = D - LS(s, f, D) (3.5) 
 

|)),,(||,),,(min(||),,(||),,(|2),,( c
Cc

cc
Cc

c DfsRSDfsLSDDfsRSDfsLSDfsSSV ∑∑
∈∈

−−⋅⋅=

 (3.6) 
where C is the set of classes and Dc is the set of data vectors from D which belong to class c. 
According to the SSV criterion the best split value is the one which separates the maximal 
number of pairs of vectors from different classes and among all split values that satisfy this 
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condition – the one which separates the smallest number of pairs of vectors belonging to the 
me class. For every dataset containing vectors, which belong to at least two different 

he SSV criterion easily 
 into a small 

umber of crisp logical rules. The classification trees are built by finding the best split of the 
es a node of the tree) and splitting the data into two parts for further 

 
 -based rule extraction algorithms fall into two categories: black-box 

ecompositional (local) methods.  

In black-box methods, the analysis of all the network outputs is performed for 
rk weights. The network is used to predict the 
 by some other methods, e.g. by decision trees. 

 neuron 
bec
val
con  positive. Rules corresponding to the 

h n k node.  

ext

set of

4. Quality 

prehensibility (readability of rules and size of the rule set) 
complexity. 

sa
classes, for each feature, which has at least two different values, there exists a split value of 
maximal separability. 
 
 The SSV criterion can be used to build decision trees. Since t
finds the best split points, the generated trees can be small, and can be converted
n
dataset (which becom
recursive analysis. 
 
 
 
3.1.2. Neural Networks 
 
3.1.2.1. Introduction 

Neural
) and d

 network
(global
 

different inputs, without analyzing the netwo
class of the instance but the rules are extracted 

 
Decompositional methods analyze fragments of the network, usually single nodes to 

extract rules. Such networks are based either on sigmoidal functions (step function is the 
logi  cal limit) or on localized functions. Using step functions, the output of each

omes logical (binary), and since the transfer functions are monotonic and their output 
ues are zero and one, it is enough to know the sign of the weight to determine whether its 

utrib tion to activation of a given unit is negative or
ole etwork are combined from rules for each networw

 
Andrews [Andrews 1995] introduced the following set of criteria for logical rule 

raction from data using neural networks: 
1. Expressive Power (IF...THEN rules,  fuzzy rules, other rules) 
2. Translucency (degree in which the rule extraction algorithm looks inside the network) 
3. Portability (how well the rule extraction technique covers the  available network 

architectures) 

   - rule accuracy 
   - rule fidelity (how well the rules mimic the NN behavior) 
   - rule consistency (the extend to which equivalent rules are extracted from different 
     networks trained on the same task)  
   - rule com

5. Algorithmic 
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3.1.2.2. Validity Interval Analysis (VIA) 

IA) proposed by Thrun 
[Thrun 1995]. VIA is a generic approach to analyzing the input-output behavior of MLP 
net e of each neuron (or 
a s vals, 
called validity intervals I. VIA checks whether there exists a set of network activations inside 
the validity intervals. It does this by iteratively refining the validity intervals, excluding 
activations a re 
prepositional  intervals for the 
individual input values and the output is a single target category. Rules of this type can be 
written as: 
 
 if (input contains in the hypercube I) then class is C  (or shortly: I → C) 
 

Two types of approaches can be distinguished: specific-to-general and general-to-
specific. In a spe ith rather specific rules that are easy to 
verify and gradually generalize those rules by enlarging the corresponding validity intervals. 

stance already forms a (degenerated) set of validity intervals I. VIA 
pplied to I will confirm the membership in C and hence the single point rule  I → C. Starting 
ith I a sequence of more general rule preconditions can be obtained by gradually enlarging 

i.e. the input intervals I) and verifying if the new rule is still a 
ember of its class. In a general-to-specific approach we start from rules like “everything is 

in class

 

 
 REPAN [Craven 1996a, 1996b] algorithm combines decision trees with neural 
networks. Decision trees are induced on the training data, plus the new data obtained by 
perturbing   
Nodes in the d
node have bee t decision tree 
approaches h deeper branches. The algorithm 
runs as fol

1. Take a trained network and a set of training data as inputs 
2. As output, produce a decision tree 

twork to label the instances 
4. Incrementally add nodes to the decision tree 

The

presentations accurately model the network for those instances. 
 

 
An example of global methods is Validity Interval Analysis (V

works. The key idea in VIA is to attach intervals to the activation rang
ubset of all neurons), such that the network activation must lie within these inter

 th t are probably inconsistent with other intervals. The obtained rules a
if-then rules, where the precondition is given by a set of

cific-to-general approach we start w

Imagine one has a training instance that, without loss of generality falls into class C. The 
input vector of that in
a
w
the precondition of the rule (
m

 C” and then new a rule can be generated by splitting the hypercube spanned by the 
old rule. 
 

3.1.2.3.  TREPAN 

The T

the training data. The additional training data are classified by the neural network.
ecision tree are split only after a large number of vectors that fall in a given 
n analyzed. Therefore, this method is more robust than direc

, w ich suffer from a small number of cases in the 
lows: 

3. Use the ne

 function to evaluate node N is  f(N) = reach(N)·(1 – fidelity(N)), where reach(N) is the 
estimated fraction of instances that reach node N and fidelity(N) is the extend to which the 
extracted re
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3.1.2.4.  RULENEG 

rule system = empty 
r every training example E 

twork for E 
if E is not classified by a rule in a rule system 

 

 if negation of A leads to classification P (classification does not depend on A) 
    remove A from the rule 

endfor 
 
 
3.1

d Input-Output Rule 
Ext
BIO-RE

1. attern of input attributes 

3. Generate boolean functions from the truth table 
 

he search for single strong connections continues until the first one not strong enough to 
y itself is found. If more detailed information is required, the algorithm 
ons of two or more unmarked connections that activate the neuron. 

inally, rule antecedents representing hidden neurons are replaced by the corresponding set 
of inpu

 the following rule is generated:

 
The RULENEG algorithm [Hayward 1996] is black-box algorithm for binary attributes based 
on the idea that a conjunctive rule only holds if all antecedents are true. Thus a systematic 
negation of antecedents in a hypothesized rule can show, which antecedents have to be true to 
make the rule true. The network is used to test the hypothesized rule. 
The algorithm can be described by the following pseudocode [Neumann 1998]: 
 

fo
 find classification P of the ne
 

 initialize a new rule for P and E 
  for every attribute A in E 
  

endif 
endfor 

endif 

.2.5.  BIO-RE, Partial-RE and Full-RE 
 
BIO-RE [Taha 1996] [Neumann 1998] stands for Binarise

raction. It is a black-box algorithm that extracts binary rules from any neural network. 
 consists of the following steps: 

Obtain the output of the network for each possible p
2. Generate a truth table by concatenating each input pattern with its corresponding net 

output 

Partial-RE is a decompositional algorithm that consists of the following steps: 
1. For each hidden and output neuron order incoming connections according to their 

weights 
2. Find individual incoming connections that cause the neuron to fire, if they exist 
3. For a connection between neurons i and j, generate rules IF ji

jc
→ with believe cj that 

is equal of the activation value of the neuron j. Mark the connection as being used in 
the rule 

T
activate the neuron b
looks for combinati
F

t attributes. 
 

Full-RE extracts all possible rules and corresponding certainty factors. For each 
neuron  jxwxwxw

jcjnnjjj →>+++ α]...[ 2211 , where w denotes 

the weight and x the input. 
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3.1 .
 
The

2. 
3. 

ber of input connections is less than an upper bound, then extract 
rules to describe the activation values in terms of the inputs 

se form a subnetwork 
i. set the number of output units equal to the number of discrete 

 
n step 3 and 4. 

A number of decompositional approaches s
994], RULE-OUT [Decloedt 1996] and Destructi

1. Find all combinations p with positive weights to C whose sum
of C 

2. For each p = {p1,...,pi} 

.1.2.8.  M-of-N 

plexity of SUBSET and to further increase the 
compre

ilar weights 
2. 

.2.6   RX 

 RX algorithm [Setiono 1995] [Neumann 1998] runs as follows:  
1. Train and prune the NN 

Discretize the activation values of the hidden units by clustering 
Generate rules that describe the network outputs using the discretized activation 
values 

4. For each hidden unit: 
a. if the num

b. el

activation values. Treat each discrete activation values as a target 
output 

ii. set the number of input units equal to the number of inputs connected 
to the hidden units 

iii. introduce a new hidden layer 
iv. apply RX to this subnetwork 

     5. Generate rules that relate the inputs and the outputs by merging rules generated 
        i  

 
 
3.1.2.7.  Subset Algorithms 
 

uch as SUBSET [Towell 1991], KT [Fu 
ve Learning [Yoon 1994] differ only in 1

some details but share the same technique for the rule extraction process: 
 

or each hidden and output neuron C: F
 exceeds the threshold 

a. find the set Sn of all combinations of negative weights to C, such that the sum 
of the weights of p and the weights of N-n exceeds the threshold of C, where N 
is the set of all negative weights for C and n is an element of Sn 

b. for each element n = {n1,...,nj} create the rule: 
         if p1,...,pi, not n1,..., not nj then C 

 
 
3
 

To overcome the high com
hensibility of a rule system, Towell [Towell 1991] developed the following M-of-N 

algorithm: 
1. or each neuron, cluster the incoming connections into groups with simF

Average the weights within each cluster 
3. Eliminate the clusters without significant effect on the output of the neuron 
4. re-train the network with frozen weights to optimize biases 
5. form a single rule for each neuron 
6. simplify rules to M-of-N form 
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3.1.2.9.  RULEX 
 
 The RULEX [Andrews 1994] algorithm is based on constrained MLP networks with 
pairs of sigmoidal functions combined to form ridges or local bumps. Rules in this case are 
extr e
data
network with step activation functions. The method works with continuous as well as with 
disc

 
.1.2.10. NeuroRule and M-of-N3 

Neurorule and M-of-N3 are two similar decompositional algorithms developed by 
etiono [Setiono 2000a]. They share the common network training and rule extraction 

techniq

 in terms of the discretized hidden unit 

algorith

act d directly from an analysis of the weights and thresholds. Disjoined regions of the 
 are covered by different hidden units. In effect, this method is similar to a localized 

rete inputs 
 

3
 

S
ue: 
 

1. Select and train the network to meet the prespecified accuracy requirement 
2. Remove the redundant connections in the network by pruning while maintaining its 

accuracy. Steps 1 and 2 can be repeated several times if required. 
3. Discretize the hidden unit activation values of the pruned network by agglomerative 

clustering (the neighboring activation values of different input patterns are joined 
together as long as this does not change the network classification) 

4. Extract rules that describe the network outputs
ctivation values (find any combination of hidden neuron signals that causes the a

output neuron to fire, i.e. to produce the positive output signal) 
5. Generate rules that describe the discretized hidden unit activation values in terms of 

network inputs (find any combination of inputs that makes the hidden neuron 
activation within particular discretization interval)  

6. Merge the two sets of rules to obtain a set of rules that relates the inputs and outputs 
of the network 

 
Both the hidden and output neuron use hyperbolic tangent transfer functions. The 

ms require discrete input data. The present value of a given feature is coded as +1 and 
the absent values as –1. The training process starts with an oversized network that is 
successively pruned. In the case of M-of-N3, after the small weights are removed, the 
remaining positive weights are set to +1 and the negative ones to –1. Since the network 
training starts with random weights, different rule sets can be extracted from the same 
dataset, depending on the initial weights distribution. In the discussion with me, Setiono 
admitted that in general he considers Neurorule the best of his rule extraction algorithms. 
 
 
3.1.2.11.  FERNN  
 

Since the repetitive network training and pruning is a time consuming process, 
Setiono proposed an algorithm for ”Fast Extraction of Rules from Neural Networks” 
(FERNN) [Setiono 2000b], which extracts the rules without weight pruning in the following 
way: 
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1. Identification of useful hidden units based on the information contained in these units. 
For this purpose C4.5 is employed. 

2. 

.1.2.12.  FSM 

k 2001] is a constructive neural network that 
estimates probability density of input-output pairs in each class. The architecture of the FSM 

 enerally, there is no restriction upon the type of transfer functions in the FSM 
model,

Identification of relevant connections from the input units to the useful hidden units 
based on magnitudes of their weights. 

 
Thus it can be said that FERNN is a mixed algorithm: it performs the analysis of the 

input-to-hidden weights but uses the black-box approach (by employing C4.5) to hidden-to-
output weights.  
 
 
3
 
 FSM (Feature Space Mapping) [Adamcza

network, which is based on the RBF network architecture, consists of three layers (input, 
hidden and output). The number of nodes in the hidden layer depends on the problem and is 
found automatically during the training phase. There can be only one node in the output 
layer, which estimates the confidence of the classification or there can be one output node per 
class.  
 

G
 however so far only localized functions G, such as gaussian, bicentral, triangular and 

rectangular, were used: 

 
);(),;( , iii

i
i DxGDxG σσ ∏=

 (3.7) 
 
Rectangular functions are especially useful for crisp logical rule extraction, other functions 
lead to fuzzy rules. The FSM network realizes the following function: 
 

))),;(((max)( σDxGclassxFSM i
i

=  (3.8) 

The initial structure of the network includes input and output units and a single layer 
of hidd

 

facilitate extraction of logical rules from an MLP network, one can transform it 
smoothly into a network performing logical operations – a logical network (LN). This 

ansformation is the basis of the MLP2LN algorithm [Adamczak 2001]. One can try to 
extract logical rules from an already trained network. However, starting from a single neuron 
or constructing the LN using training data directly (constructive, or C-MLP2LN algorithm) is 

 
 

en units with parameters determined by a clustering algorithm [Duch 1997]. For on-
line learning, the initialization of additional hidden nodes is performed after a fixed number 
of incoming training vectors. One of the problems with RBF networks is their inability to 
select relevant input features. In FSM feature selection is performed by adding a penalty term 
for small dispersions to the error function.  
 

3.1.2.13.  MLP2LN 
 

The MLP2LN network uses the same structure as the SMLP network (Fig. 3.1), 
however the two networks use quite different training algorithms. 

 
To 

tr
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faster and usual more accurate. Since the interpretation of MLP network activation is not 
sy, a smooth transition from MLP to a logical type of network performing similar functions 

jectives are achieved by 
adding two additional terms to the error function: 

ea
is advocated. This transition is achieved during network training by the following: 

 
1. Increasing gradually the slope of sigmoidal functions to obtain crisp decision regions. 
2. Simplifying the network structure by inducing the weight decay through a penalty 

term. 
3. Enforcing integer weight values –1, 0, 1 interpreted as: 0 = irrelevant input, 

-1 = negative evidence, +1 = positive evidence. These ob
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The first part is the standard MSE measure of matching the network output y with the 

esired output d for all outputd  neurons c corresponding to particular classes and all training 

rs are needed. To achieve these 
bjectives, the first regularization term is used at the beginning of the training to force some 

e sufficiently small to remove them. 

put class. A single hidden neuron per 
class is

rocedure is repeated until all data samples are classified correctly, or until the number of 
erfitting (for example one or more rules per one 

data samples v. The first term scaled by λ1 is used frequently in the weight pruning or 
regularization methods to improve generalization of MLP networks. A naive interpretation of 
why such regularization works is based on the observation that small weights mean that only 
the linear part of the sigmoid is used. Therefore, the decision borders are rather smooth. On 
he other hand, for logical rules, sharp decision bordet

o
weights to becom

 
The second regularization term, scaled by λ2 has a minimum (zero) for weights 

approaching –1, 0 and +1. The first term is switched off and the second increased in the 
second stage of the training. This allows the network to increase the remaining weights and, 
together with increasing slopes of the sigmoidal functions, to provide sharp, hyperrectangular 
decision borders. Thus, the network is transformed into a logical network by increasing the 
slope of sigmoidal functions to infinity, changing them into the step functions. Such a process 
is difficult, since a very steep sigmoidal functions leads to the noncontinuous gradients.  

 
he training can process separately for each outT

 created and trained using a backpropagation procedure with regularization. λ1 and the 
slopes of sigmoidal functions are increased gradually and weights with a magnitude smaller 
than 0.1 are removed. λ2 is then increased until the remaining weights reach –1, 0, 1 +/- 0.05. 
Finally very large slopes (about 1000) and integer weights –1, 0, 1 are set, effectively 
converting neurons into threshold logic functions. The weights of existing neurons are frozen 
and new neurons (one per class) are added and trained in the same way as the first ones. This 
p
obtained rules grows sharply, indicating ov
new vector classified correctly are obtained). 

 
The C-MLP2LN network expands after a neuron is added and then shrinks after 

connections with small weights are removed. A set of rules is found for each class separately. 
The output neuron for a given class is connected to the hidden neurons created for that class. 
In some cases, only one hidden neuron can be sufficient to learn all instances, becoming an 
output neuron rather than a hidden neuron. Output neurons perform summation of the 

coming signals and have either positive weight +1 (adding more rules) or negative weight –in
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1. The last case corresponds to those rules that cancel some of the errors created by the rules 
found previously that were too general. They may be regarded as exceptions to the rules. 
 

The network requires discrete inputs. If the data is continuous it must be discretized 
efore giving it to the network inputs. Domain knowledge that can help to solve the problem 
an be inserted directly into the network structure, defining initial conditions, which could be 
odified further in view of the incoming data. Since the final network structure becomes 

ally correct rules to be refined by the learning process is quite 
raightforward. 

ust, efficient and easily interpretable system where the advantages of both 
odels are kept and their possible disadvantages are removed. 

 
erence system (NFIS) performs multi-input-single output fuzzy 

apping X→Y, where X ∈ Rn and Y ∈ R. The main blocks of the NFIS are: fuzzifier, rule 
base, in

 and conjunction to 
aggregation. Frequently Mamdani-type systems are more suitable to approximation problems, 

hereas logical-type systems may be preferred for classification problems. 

The FLEXNFIS model [Rutkowski 2003] can learn not only the parameters of the 
membe

b
c
m
quite simple, inserting parti
st
 
 
 
3.1.3. Fuzzy and Neuro-Fuzzy Systems 

 
 The fuzzy modeling is based on the premise that human thinking is tolerant to 
imprecision, and the real world is too complicated to be described precisely [Łęski 2002]. A 
neuro-fuzzy system is a fuzzy system trained with some algorithm derived from the neural 
network domain. The integration of neural networks and fuzzy systems aims at the generation 
of a more rob
m

A neuro-fuzzy interf
m

ference and defuzzifier. The fuzzifier performs a mapping from the observed crisp 
input space X ∈ Rn  to the fuzzy sets. The fuzzy rule base consists of a collection of N fuzzy 
if-then rules, aggregated by disjunction or conjunction. The fuzzy inference determines a 
mapping from the fuzzy sets in the input space X to the fuzzy sets in the output space Y. Each 
of N rules determines a fuzzy set B. The defuzzifier performs a mapping from a fuzzy set B to 
a crisp point y in Y ∈ R. The training algorithm is based on backpropagation. 

 
 

3.1.3.1. FLEXNFIS 
 

There are two approaches to NFIS designing: the Mamdani method, where 
conjunction is used for inference and disjunction to aggregate individual rules and the second 
“logical-type” method, where fuzzy implications are applied to inference

w
 

rship functions but also the type of systems (Mamdani or logical). Consequently, the 
structure of the system is determined in the learning process. Several types of FLEXNFIS 
systems can exist. For example, the AND-type FLEXNFIS is characterized by the 
simultaneous appearance of Mamdani-type and logical-rule systems, while the OR-type 
FLEXNFIS depending on a certain parameter exhibits “more Mamdani” or “more logical” 
behavior.  
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3.1.3.2. NEFCLASS  
  
 The NEFCLASS model [Nauck 1999][Hoffmann 2002] is based on a three-layer 
fuzzy perceptron network. It uses fuzzy sets as weights between the input and the hidden 
layer and 0/1 weights between the hidden and the output layer. Input neurons correspond to 
the features, hidden neurons represent the fuzzy rules and output neurons represent different 
classes. A fuzzy if-then rule is generated by a hidden neuron by assembling all its connection 
weights to input layer in the antecedent part and by setting the conclusion part equal to the 
class of the output neuron to which the hidden neuron is connected. 
 
 Prior to the learning process, each feature is equipped with a number of fuzzy sets. 
The sets are associated with linguistic terms, which in turn form the universe of input to 

scription for each 
ature in the antecedent part of the rule. The fuzzy sets can be shifted or their core or support 

can be

The rule induction algorithm consists of three parts: 1 – creation of an initial set of 

riables defuzzification. The number of neurons and connections 
an be dynamically changed by the training algorithm. 

h learning, changing the centers and the widths 
of the triangles. Several training algorithms, such as backpropagation or genetic algorithms 
have be

important features and the classification rules. In the 
bsequent phases, the network is pruned to an “optimal” architecture that represents an 

“optimal” set of rules. The pruned network is further tuned to improve performance.  
 

hidden layer connection weights and thus make up the granularity of de
fe

 expanded or contracted in the learning process, but their connections with the 
linguistic terms remain fixed. 
 
 
rules, 2 – selection of the best rules according to some criterion, 3 – the fine tuning of the 
fuzzy sets that model the linguistic terms. The third step, called fuzzy backpropagation, uses 
a fuzzy heuristic variant of the gradient descent method.   
 
 
3.1.3.3.  FuNN 
 

The FuNN model [Kasabov 1996, 1999, 2003] is based on a five-layer feedforward 
neural network. The first layer of neurons receives the input information. The second layer 
calculates the fuzzy membership degrees to which the input values belong to the predefined 
fuzzy membership functions. The third layer of neurons represents associations between the 
input and the output variables, fuzzy rules. The fourth layer calculates the degrees to which 
output membership functions are matched by the input data. The fifth layer calculates the 
exact values for the output va
c

  
The membership functions used to represent fuzzy values are triangular with the 

centers of triangles being attached as weights to the corresponding connections. The 
membership functions can be modified throug

en developed for FuNN, as well as several rule extraction algorithms. 
 

 
3.1.3.4.  Four-layer Neuro-fuzzy Systems 

 
 An interesting four-layer neuro-fuzzy scheme for designing a rule-based classifier 
along with feature selection was proposed in [Chakraborty 2004], however the authors did 
not name their solution. The network is trained with backpropagation in three phases. In the 
first phase, the network learns the 
su
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es that represent the then part of 
e rules. 

 

 
 

 solutions for some cases of medical diagnosis of 
higher quality than decision trees and some other systems. However, despite their success 
they ha

 explain how a diagnosis was reached. Therefore, 
nother system was used to obtain transparent explanations of the decisions. The SMLP 

networ

3.1.4.1

ral network. The advantage 
of that approach is that the 

to the rule set and the neural network. Each 
divid

rithms.  

tion capability inherent in neural networks, along 
with the obvious com

 instance. As the boosting process progresses, higher weights are given to the data 
instances that have not been successfully classified by previous networks generated for the 
ensemble. The higher the weight, the more influence the data item has on the learning process 

The first layer consists of input nodes, the second one performs fuzzification and 
feature analysis, the third one contains antecedent nodes (each node in this layer represents 
the if part of a rule) and the forth one contain the output nod
th

 
 
3.1.4. Hybrid Systems 

Two hybrid systems in which the neural network is use for the improvement of the 
input data quality and another system is used for rule extraction are presented here. Neural 
networks proved to be capable of providing

d problems with being widely accepted by the medical community due to the lack of 
transparency in the methods they use to reach the diagnosis. A critical factor in medical 
diagnosis is the necessity to be able to
a

k presented in chapter 3.2 aims at joining these two abilities (high accuracy and clear 
explanation).  
 
 

. GEX and GenPar 
 

Methods called GEX and Genoa were proposed in [Markowska 2002] and 
[Markowska 2004]. An MLP network is used to predict the class of a given data instance. 
Then the genetic algorithm-based rule extraction module generates rule not for the original 
class of the actual instance but for the class predicted by the neu

neural network clears the data from noise, thus the rules can be 
more accurate and comprehensive. At the beginning the chromosome is decoded to a rule set. 
Afterwards the training patterns are applied 
in ual is evaluated on the base of accuracy (number of misclassified examples) and 
comprehensibility (number of rules and premises). Then the algorithm searches for the best 
individuals and calculates the global adaptation value for each of them. In the last step 
individuals are drawn to the reproduction and finally by applying genetic operators the new 
population is produced. This method follows the key idea of the TREPAN algorithm, using 
instead of decision trees logical rules optimized with genetic algo

 
 
3.1.4.2. C4.5 Rule-PANE Algorithm 
 

C4.5 Rule-PANE [Pennigton 2003] is a rule-based machine learning technique that 
employs a neural network as a pre-process in the organization of a rule set. This technique is 
believed to provide the strong generaliza

prehensibility of a rule set. The training dataset is used to generate a 
neural network ensemble using bagging or boosting. Thus, each network in the ensemble is 
trained on a slightly different dataset. (Boosting instead of just drawing a succession of 
independent samples from the original dataset as in the bagging approach, maintains a weight 
for each
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of the c

 the original dataset proportionally to the sample weight. Still another 
chnique is multiple boosting [Zhengz 1998] that uses ensemble of ensembles to obtain 

results 

 
 

3.1.5. Other Algorithms Used in Comparison of Experimental Results  
 

parisons of the experimental results in chapter 
.2.12:  

  

le, in which a dramatic gain in computational speed 
can be obtained by reducing the number of vectors that represent each class by clustering. A 
set of r

teration). 

tion and clustering capabilities. The 
utput layer of neurons is a two-dimensional array (map) that is directly used for data 

visuali
pendently, in SOM the winning 

unit interacts with its neighbor, which are also moved toward the data, the more the closer 
they ar

n system that searches for the sets of rules in 
e discrete feature space. It generates rules describing a single class, using training vectors 

from th

N2 [Clark 1989] is a rule induction system, that modifies the basic AQ algorithm in 
such a 

s of a given class and few of other classes. At each step it either adds a new 
conjunctive term or removes a disjunctive one. Having found a good complex, CN2 removes 
those e

 

urrent neural network. In AdaBoost.M1 [Freund 1997] the network error given by the 
instance is multiplied by its weights. The other alternative is to increase the number of that 
instance samples in
te

more accurate than through bagging and more stable than through boosting.) The data 
items are then passed through the neural networks one last time and the new dataset is created 
using the classes assigned to the instances by the network ensemble. An additional dataset is 
then created by randomly generating further data items. The union of the two datasets is used 
as the training data for C4.5 Rule.  

 

Besides some of the algorithms presented above the following classification and/or 
rule extraction algorithms are used in com
3

 LVQ (Learning Vectors Quantizers) [Kohonen 1990] is a supervised classification 
system based on the nearest-neighbor ru

eference vectors, also called codebook vectors, is obtained through an iterative process 
according to the competitive learning rule (only the closest vector, called winning, moves 
toward the presented data at each i
 

SOM (Self-Organizing Map) [Kohonen 1984][Naud 2001] is a particular type of 
neural networks that combines multivariate data visualiza
o

zation. The learning process is unsupervised and self-organized. It is similar to the 
LVQ algorithm, but while in LVQ each unit is updated inde

e to the winning unit. 
 

AQ15 [Michalski 1995] is a rule inductio
th

at class as positive and others as negative examples. For multi-class problems, it is 
enough to repeat the algorithm for each class. 

 
C
way that it is able to deal with noise and other complications in the data. CN2 does not 

automatically remove from its consideration a candidate that includes some negative 
examples. Rather it retains a set of complexes in its search that cover large number of 
example

xamples it covers from the training set and adds the rule “if <complex> then predict 
<class>” to the end of the rule list. The process terminates for each given class when no more 
acceptable complexes can be found. 
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ITRULE [Goodman 1989] is a rule induction system, which uses a maximum entropy 
estimator to rank the hypotheses during decision rule construction. It produces rules in the 
form: “if <all conditions> then <class> with probability 1”. 
 

LERS (LERning from exampleS) [Grzymała-Busse 1999] is based on rough sets and 
uses d

 
AC2 [Statlog 1994] is not a single algorithm, but rather an expert system, which 

allows the user to build graphically a decision tree by placing a considerable emphasis on the 
dialog between the system and the user. 
 

Bayes Tree  [Buntine 1993] is a Bayesian approach to decision trees. It is based on a 
full Bayesian approach: as such it requires the specification of prior class probabilities 
(usually based on empirical class proportions), and a probability model for the decision tree. 
 

CAL5  [Müller 1997] is a decision tree especially designed for continuous and 
ordered discrete attributes, though an added sub-algorithm is able to handle unordered 
discrete attributes as well. CAL5 separates the examples from n dimensions into areas 
represented by subsets of samples, where the class exists with a probability greatest than a 
given decision threshold. Similar to other decision tree methods, only class areas bounded by 
hyperplanes parallel to the axes of the feature space are possible. 

 
CASTLE (CAsual STructures from inductive LEarning) [Acid 1991] is a program 

that implements casual (Bayesian) networks.  
 

DIPOL92 [Statlog 1994] is a learning algorithm, which constructs an optimized 
piecewise linear classifier by a two-step procedure. In the first step the positions of the 
discriminating hyperplanes are determined by pairwise linear regression. Then to optimize 
these positions in relations to misclassified patterns an error criterion function is minimized 
by a gradient descent procedure for each hyperplane separately. 
 

FACT (Fast Algorithm for Classification Trees) [Loh 1988] uses statistics based on 
some assumptions about the probability distribution. It divides continuous features and 
discrete features are converted to continuous ones with special methods. 

 
QUEST (Quick, Unbiased, Efficient, Statistical Tree) [Loh 1997] is the more 

complex version of the FACT algorithm.  
 
FDA (Fisher’s Discriminant Analysis) [Fisher 1936] uses hyperplanes in n-

dimensional feature space to separate the known classes as well as possible by optimizing a 
quadratic cost function. Vectors are classified according to the side of the hyperplane they 
fall on. 

 

iscrete features. LERS searches for a minimal length description for each class 
represented in the training set. It generates two sets of rules: certain and possible, respectively 
for the lower and upper approximation of the set. 

 
1R [Holte 1993] is a decision tree based on single attribute. It allows for discovering 

simple correlations between features and classes, however in tests it is usually not so accurate 
as more complex classification algorithms. 
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LDA (Linea
that separates vecto

r Discriminant Analysis) [Schalkoff 1992] searches for a hypersurface 
rs that belong to two different classes and keeps the maximal distance 

from both classes.  
 

c Linear Discriminant Analysis) [Statlog 1994] operates by choosing 
e two classes as well as possible, where the criterion for a good 

paration is maximization of the conditional likehood. However, in practice, there is often 

climbin

 
N (k-Nearest Neighbors) assigns a given vector to that class to which most of the k 

nearest vectors belongs, using a given distance measure. 

n Tree) [Brodley 1992] uses at each node linear 
scrim

ed by instances. Rules of the First Order Logic are more general than prepositional 
les.   

LogDA  (Logisti
a hyperplane to separat
se
very little difference between LDA and logDA, and the linear discriminants provide good 
starting point for the logistic ones that computationally are much more expensive. 
 

NewID is a decision tree algorithm similar to C4.5. It performs probabilistic 
classification, but unlike C4.5 NewID does not perform windowing  [Statlog 1994]. 

 
OC1 (Oblique Classifier) [Murthy 1997] searches for decision trees using hill 
g and uses a combination of heuristic and non-deterministic methods to find the linear 

combinations of features in the tree nodes. 
 

PVM (Predictive Value Maximization) [Weiss 1990] performs a full search in the 
solution space. It is very efficient for small datasets, however for large datasets it may run 
into combinatorial explosion problems. 

 
QDA (Quadratic Discriminant Analysis) [Statlog 1994]. Quadratic discrimination is 

similar to linear discrimination, but the boundary between two discrimination regions is now 
allowed to be a quadratic surface. 

kN

 
LMDT (Linear Machine Decisio

di inants and tries to reject the least important features.  
 
IncNET (Incremental Network) [Jankowski 1999] is an ontogenic neural network, 

built upon the RBF architecture, which can contract and expand in the learning process 
optimally adjusting its size to the data structure. 
 

MML (Minimum Message Length) [Cichosz 2000] is a decision tree algorithm, 
which searches for the rules in the form that requires the fewest bits, based on entropy 
measure. 

 
FOIL (First Order Inductive Learning) [Cichosz 2000] is an algorithm, which uses 

sequential covering in searches for the rules that are no longer than required to describe the 
ea coverar

ru
 
Naive Bayes classifier [Duda 2001] assumes that all features are conditionally 

independent and instead of the n-dimensional probability density function, the problem is 
reduced to estimation of n one-dimensional probability density functions. 
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SVM (support vector machines) [Vapnik 1995] searches for a hypersurface that 
separates vectors that belong to two different classes and keeps the maximal distance from 
both classes. Contrary to LDA, it separates not the original vectors but their projections in a 
new space. 

 
SMART is a statistical classification and regression method, ALLOC80  [Hermans 

1982] is a discriminant analysis, ASI and ASR and LFC (look-ahead feature constructor) 
[Ster 1996] are decision trees and RBF is a Radial Basis Function network [Hen 2002] .  

 
Many of the methods were used in Statlog, a large-scale European project aimed at 

comparison of various statistical, neural and machine learning systems for classification 
problems [Statlog 1994], where their more detailed descriptions can be found.  
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3.2. SMLP 
 
 
 

to understand by experts in a given domain, and they may expose 
problem

training algorithm is based on search methods 
[Kordo

LP2LN) network 
[Adam ak 2001] (chapter 3.1.2.10). However the networks use quite different training 
algorithm

earch (SMLP-VSS). The algorithms change one weight at a time, or, if 
needed, SMLP-DS changes two weights at a time only in fragments of the network. SMLP-
DS allo

t is usually easier to apply SMLP-VSS for complex 

   

put neuron is used for each discretized feature value. Thus, the number 
of all input neurons equals the sum of all distinct values for all features. The network input 
value is 1 if the feature has the value represented by a given neuron and 0 otherwise.  

3.2.1. Introduction 
 

A good strategy in data mining is to extract simplest crisp logical rules first. They 
provide hyperrectangular decision borders in the feature space. This approximation may not 
be sufficient if complex decision borders are required, but it works quite well if the problem 
has an inherent logical structure. For many datasets crisp logical rules proved to be highly 
accurate, they are easy 

s with the data itself [Duch 2001].  
 
The approach to classification and extraction of logical rules proposed here is based 

on the initial framework presented in [Duch 1999c]. The acronym of this approach, SMLP, 
may be interpreted as either “search-based MLP” or “simplified MLP”. The advantages of 
MLP neural networks are combined with rule based systems, allowing for extraction of 
simple logical rules. Instead of the gradient-based methods that run into problems for 
discontinuous, step-like transfer functions, the 

s 2003a, 2004b]. It leads to simplified network structures, with few connections 
between the hidden and output layer. Various SMLP architectures, training, and rule 
extraction algorithms are considered. Several sets of rules of similar accuracy can be 
generated, offering different advantages to domain experts.  

 
 
 

3.2.2.  SMLP Network Structure  
 
 SMLP network uses the same architecture as MLP2LN (or C-M

cz
s. MLP2LN uses backpropagation with variable sigmoid slopes and two adjustable 

regularization coefficients. SMLP can use two training algorithms: Direct Search (SMLP-DS) 
and Variable Step S

ws for building more diverse sets of rules (chapter 3.2.9) and if the network structure 
is fixed during the training, it can be frequently trained in only one training cycle, what 
together with the use of signal tables (chapter 2.3.2) and the step transfer functions allows for 
very fast training. With SMLP-VSS our control over the form of the extracted rules is not so 
full as in the case of SMLP-DS, but i
datasets.  

The basic version of SMLP network is based on a 3-layer MLP architecture. Neurons 
implement sigmoidal or step output functions with scalar product activation (see chapter 3.2.6 
for comparison). The network requires discrete input data. If the data is continuous, it must be 
discretized prior to the training or at the run-time by an additional network layer. 

 
A separate in
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One hidden neuron per class is initially created. The second hidden neuron per class is 
added, if the results with only one neuron are not satisfactory (the indices of the neurons in 
Fig. 3.1. indicate the order in which the neurons were added to the network). Weights of 
neurons that have already been trained are frozen, minimizing calculation time and leading 
frequently to better results, since it corresponds to incremental learning, decomposing the 
task into learning general rules first and than exceptions to these rules instead of trying to 
modify all rules to fit the data. If the results are still unsatisfactory then the next hidden 
neuron is added. The number of hidden neurons per a given class should equal the number of 
the data clusters within this class, which cannot be joined together without decreasing the 
classification accuracy. Each such cluster is then represented by one disjoined rule generated 
by the neuron. The hidden layer performs M-of-N logic operation, which frequently can be 
reduced to the AND or OR operations. 

 

FC1

FD1.value1

FD1.value2

Class 0

Class 1

N1a

N2a

N1b

N2b

N[0,0]

N[0,1]

N[0,2]

N[0,3]

N[1,0]

N[1,2]

N[1,1]

N[1,3]

N[2,0]

N[2,1]

N3a

N3b

N0

 
Fig. 3.1. SMLP network with a discrete feature FD1 and some pre-processing L-units for the 

1.  

 one output neuron per class that combines the partial rules produced by 
t neurons 

y logical units (L-units). There are two L-units in Fig 3.1. The first one consists 

continuous feature FC
 

 
There is

hidden neurons for a given class (OR operation). The biases and weights of outpu
are constant (bias = ±0.5, weights = ±1). 

 
The SMLP network diagram is shown in Fig. 3.1. Each value of a discrete feature 

(FD1.value1, FD2.value2) is given to a different input neuron. Continuous features (FC1) are 
discretized b
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of neurons N0, N1a, N2a, N3a, and the second one of neurons N0, N1b, N2b, N3b. Signals 
from L-units are given to the input neurons. The L-units are discussed in chapter 3.2.8.2. 

 
 
 

3.2.3. SMLP-DS Training Algorithms 
 
 Three SMLP-DS training methods are discussed: changing one weight at a time, 
changing two weights at a time and changing one weight at a time with a search strategy 
based on the beam search. In SMLP-DS training, the error is expressed by the standard MSE 
function (equation 1.3). 

 
Only weights and biases of the hidden neurons are optimized. The weights can take 

only –1, 0 and +1 values if step transfer functions are used, and any integer values with 
sigmoidal transfer functions. The biases can take the values 0.5, 1.5, 2.5,…. up to the number 
of features minus 0.5. At the beginning of the training all hidden neuron weights have the 
value of zero and biases of 0.5. This gives no signals from the hidden to output neurons and 
consequently all output neuron signals are zero. Thus, at the starting point no vectors are 
assigned to any class.  

 
When the training starts, the value of 1 is added to or subtracted from a single weight. 

If the network error decreases after the change more than the predefined threshold t (chapter 
3.2.9), then the change is kept, otherwise it is rejected. The default setting is that after any 
error decrease the weight change is kept (t=0). Then the value of 1 is added to or subtracted 
from the next weight and again the error is calculated, until the changes of all weights in the 
hidden neuron are examined. In some cases, (e.g. for the Xor problem) changing only one 
parameter at a time may not be sufficient for the algorithm to converge. Thus, modifying two 
or more parameters at a time can be used, though it is more time consum g. Moreover, in 
cases where the strong asymmetry in class distribution occurs, sometimes the training may be 

 
Usually one training cycle of the algorithm is sufficient as well with changing one as 

two we

 a given weight is 
determ ed in a single step. If the properties of the actually used training subset differ too 
much f

orks, when the 
weight values are determined in many steps and therefore the semi-batch or even on-line 
training

 

in

easier and better results may be achieved using the balanced error function. 

ights at a time. More training cycles may be required if the threshold value t is being 
gradually changed. 

 
The desired signal of each output neuron is 1 if the actual vector belongs to the class 

represented by this neuron, and 0 otherwise. A vector is considered to be classified correctly 
if the signal of the output neuron corresponding to its class is higher than signals from all 
other output neurons and higher than 0.5. In the case of step transfer functions, the output 
signals can be obviously only 0 and 1.  
  

While determining each weight change, the error should be calculated on the whole 
training set. The reason for this is that in SMLP network the proper value of

in
rom the entire training set properties, then a wrong decision about the weight value 

may be taken. The problem is significantly easier in standard MLP netw

 works well. 
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START

NE+t<OE

w(i)=0, for i=1,...,n
bias=0.5, i=1, pw=0, OE=NE

OE=NE

Y

Y

N

NE+t<OE

w(i)=-1

w(i)=1

w(i)=0

N

i=n

pw=1

STOP

N

i=i+1

Y

f(i)<>f(i-1)
& pw=1

bias=bias+x
pw=0

Y

N

 
 
Fig. 3.2. One training cycle of SMLP-DS algorithm with changing one weight at a time. 
 
 
Explanation of symbols used in Figs 3.2 and 3.3: 

ber of weights in the hidden neuron 

d 
E – Old Error, the lowest error value obtained (with the accepted weight change) as so far 
 the training  

given weight change is accepted if it decreases the error at least by t 
f(i) – fe

 least one weight in the last group of weights connecting values of the same feature 
i) to the network is set to +1,  pw is set to 1 and the bias can be left unchanged (x=0) or can 

ented (x=1),  (chapter 3.2.9.2). When two weights are m
e 0, 1 or 2 

 
n – num
i,j – the actually modified weight 
w(i) – the i-th weight 
NE – New Error, after the weight w(i) is change
O
in
t – threshold, a 

ature connected to the network with the weight w(i) 
x – after at
f(
be increm odified at a time, then x can 
b
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START

w(i)=0, for i=1,...,n
bias=1.5,  i=0,  j=1, pw=0, OE=NE

f(i)=f(j)
Y

N

OE=NE
pw=1

j=j+1
i=0

N

w(i)=0
w(j)=0

N

Y

i=j
Y

j=n

STOP

i=i+1

NE+t<OE

w(i)=1
w(j)=1

N

Y

f(j)<>f(j-1)
& pw=1

bias=bias+x
pw=0

Y
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F e of  with changing two weights at a tim
 
 

hile changing two weights at a time, there is no need to examine all possible 

 bias=1.5. The weight combinations (-1,+1) and (+1,-1) can be 
hecked only with bias=0.5 (assuming that other weight values are zero). However the lack of 

one fea ivalent to e lly 
enoug 1,+1) w . The influence of negative weights (-1,-1) 
can be easily exam the “n hen b s assign a given 
class and only the exceptions must be found. That can be s s simpler. Also these two 
ap d in ork. However, in the majo the 
po e and tural .   

 
ig. 3.3. One training cycl  SMLP-DS algorithm e. 

W
combinations of the weight values (-1,0,+1), since all combinations with 0 on any position 
have already been tested while changing one weight at a time. Only the weight combination 
(+1,+1) is checked with
c

ture value is equ
h to check the (+

 the prese
eight combination
egative logic”, w

nce of some other values and th

y default all data i

refore it is usua

ined in ed to 
ometime

proaches can be combine  one  netw
 better reflects na

SMLP rity ses  of ca
sitive logic is easier to us human reasoning

 
While changing one weight at a time, C1 operations are required to examine all the 

possible weight changes (-1 and +1) for all N weights of the hidden neuron: 
 
 C1=2N (3.12) 
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 The cost of changing two weights at a time is significantly higher. While changing 
two weights at a time, only the weight combination (+1,+1) is checked. Thus, only  

operations are required, where f is the number of features and α is a factor depending on the 
number of features and their values. α expresses the fact that we do not try to change 
simultaneously two weights of the same feature. If we assume, that different features have 

lues, then approximately  α≈((f-1)/f)2.  

is method is shown in Fig. 3.4. The rules 
obtaine

plest 
SMLP-DS method with changing one weight at a time). Each weight (or feature) can be a 
“parent node” or “child node” to each other weight (or feature). For that reason particular 
nodes can be visited several times during the network training. 
 

 
 

 
 C2=0.5·α·N·(N-1), where α≈((f-1)/f)2 (3.13) 
 

similar number of possible va
 

Also a search strategy based on the beam search can be used. Beam search is a 
method based on the breadth first search (chapter 2.2) and thus the method based on beam 
search usually allows for obtaining very short rules without the need to search through the 
entire solution space. The search strategy in th

d with this method frequently do not have higher accuracy on the training set than 
rules obtained with other SMLP-DS training algorithms. Instead, they can have the simplest 
form with a given accuracy. That in turn allows for achieving the highest accuracy on the test 
set. The method can be used either at the weight level or at the feature level. Therefore, each 
node in Fig. 3.4. can represent as well a single weight as a single feature (a group of weights 
corresponding to all the values of a given feature that are determined using the sim

2 3

24 5 6

4 51

3

5 6 2

3 5

4 4 5

6

62

2

START

 
 

 

 

Fig. 3.4. A search strategy based on the beam search method with beam width B=2. The 
solution contains nodes number 1, 3 and 5. Each node can represent either a network weight 
or a feature, depending on the approach used.  
 
 
  

The total number of possible rules CT using R out of N nodes is given be the following 
equation: 

!
)1)...(1(

R
RNNN

R
N +−−⎞⎛CT =⎟⎟

⎠
⎜⎜
⎝

=  (3.14) 
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The number of times a combination of nodes is calculated by the method based on the beam 
search CBS is given by the following equation: 
 

 ∑∑
= =

 VSS (chapter 2.3.2). The 
effectiveness of the signal table used with SMLP is even higher than with NG and VSS, 
especia

 standard MLP network), and the effectiveness of the signal 
table grows with the number of weights. 

 
 

Table 3.1. Number of operations with and without a signal table required for one training 
cycle of SMLP-DS with changing one weight at a time. Ni, Nh, No – number of input, hidden 
and output neurons respectively. 
 

without signal table 

−−+=
R

r

B

b
BS rbNNC

0 1

)(  (3.15) 

 
where B is the beam width. Let N  be 100, R be 5 and B be 5 then CT=7.5·107 and CBS=2·103. 
Let N be 100, R be 13 and B be 13 then CT=7.5·1013 and CBS=1.5·104. Thus, although this 
method requires much search, it is still a small fraction of the entire search space. 
 

A good method to increase training speed is to use the signal table that has identical 
construction and functionality as the signal table used with NG and

lly when step transfer functions are used. There are two reasons for that: first, only a 
single layer of weights is optimized and second, the SMLP networks operating on discretized 
features have more inputs than the standard MLP network (one input per each feature value, 
versus one input per feature in the

type of operation training the entire 
 network at once 

training the network  
neuron by neuron 

with signal table

adding incoming signals 2[Nh(Ni+1)]2 + Nh2 2Nh(Ni+1)2 2Nh(Ni+1) 
calculating neuron signals 2Nh(Nh+No)(Ni+1) 2Nh(Ni+1) 2Nh(Ni+1) 

total number of operations 2{[Nh(Ni+1)]2 +Nh2 

+Nh(Nh+No)(Ni+1)} 2Nh[Ni2+3Ni+2] 4Nh(Ni+1) 

 
 

Table 3.2. Number of operations with and without a signal table required for one training 
cycle of SMLP-DS with changing one weight at a time for the network structure 125-8-2 
(Ni=125, Nh=8, No=2). 
 

without signal table 
type of operation training the entire 

 network at once 
training the network  

neuron by neuron 
with signal table

adding incoming signals 2032192 254016 2016 
calculating neuron signals 20160 2016 2016 
total number of operations 2052352  (100%) 256032  (12.5%) 4032  (0.20%) 

 
With step tra ing signal requires 

the same calculation time as calculating one neuron signal and therefore the operations in 
Table 3.1 and 3.2 are summed together. The values in Table 3.1 and 3.2 are given for one 
training vector with step transfer functions used by SMLP-DS algorithm. If the weights are 
determined using more vectors in the training set, and usually they are, the values must be 
multiplied by the number of training vectors. SMLP-VSS algorithm uses sigmoidal transfer 

nsfer functions, we can assume that adding one incom
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functions and in this case the efficiency of signal tables decreases about 8-25% (greater 
ecrease for smaller networks).  

S with changing one or two weights at a time will be 

 
 

lgorith

curs in any vector, than it is always represented by the input signal, 
hich e

d
 
Several other aspects of SMLP-D

successively discussed in later chapters. 
  

 3.2.4. Rule Extraction  
 

Rules are extracted after the network is trained. Therefore, the rule extraction process 
is exactly the same for SMLP networks trained with SMLP-DS and with SMLP-VSS 
a m. 

 
If a given value oc

w quals one. For all values, which do not exist in a given vector, the incoming signals 
are zero. If a presence of a given value contributes to a given class (odor=A,L,N), the hidden 
neuron weight will be positive. If the absence (color=R) - then the weight will be negative. If 
the value is irrelevant to this class (color=B, odor=F) then the weight should be zero. 

 
 

odor=A
odor=A

1
1

odor=L odor=L 11
1
1

odor=N odor=N1

color=R

color=R 1

-1

-1
=0.5

b=0.5

b=0.5

B

D edible

odor=F

odor=F

0

0

A edible

b=0.5 bC

0
color=B

color=B
0

 

 In general, the hidden neurons generate M-of-N rules (if M assumptions out of N are 
satisfie

ule is generated. Either the M-of-N rules 
r the AND/OR rules may describe a given problem more adequately and may be preferred in 

a given
n 

the M-of-N operation can be reduced to an AND operation. However, in practice it cannot be 
done without considering the meaning of particular weights. An example is shown in Fig. 3.5. 
The rule generated by the network is: 

 
if (odor=A or odor=L or odor=N) and (not color=R) then edible 
 

 
Fig. 3.5. Rules produced by hidden neurons.  

 
 

d then the condition is true). If the sum of all N inputs of a hidden neuron exceeds its 
bias, which has the value of M-0.5, then a logical r
o

 situation. When at least one of the N assumptions must be satisfied then the M-of-N 
operation can be reduced to an OR operation. When all N assumptions must be satisfied the
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The rule is represented by the three neurons in Fig. 3.5-right. When the sum of the 
signals incoming to neuron D (we assume that all neurons have step transfer functions) 
exceeds its bias, then the rule is satisfied. However, a single feature can take only one value 
for a given vector (for exam tan ke the  and L) and 
therefore ne  gener  imagine that every tim
values of th  hidden neuron, first the values are grouped    
together in ” neurons (B, C  connected  hid only via 
single weights. The left side of Fig. 3.5. shows a diagram
C, D is represented by a single neuron A. The simplified diagram is ented in 
the SMLP network. The simplified version can be used because only one value of a given 
feature can occur simultaneously. Values within one feature are first joined with OR 
operations and then the resultant feature values with M-of-N operations (which we try to 
reduce to OR or AND operations whenever it simplifies the rules). 

 
The output layer performs always OR operations, 

rules. This structure leads to very straightforward and comprehensive crisp logical rules that 
are extracted from the data by the analysis of the weights in the trained network, as shown in 
Fig. 3.6. using the Xor example. 

ple odor cannot simul
ates the OR rule. One can

eously ta value A
uron B
e same feature are connected to one

e when several 

the “OR ), that are  to the den neuron (D) 
 in which the network of neurons B, 

 in fact implem

combining rule conditions into final 
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Fig. 3.6. SMLP network trained on the Xor problem. 
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Partial rules given by the hidden layer: 
 
N[1,0]:   if  x=0 and y=0 then class 0          
N[1,2]:   if  x=1 and y=1 then class 0   
N[1,1]:

 
 
Final rules given by the output layer: 
 

-0.5, then without any incoming signals, the signal of the neuron equals one. 
Thus, 

Rules o

9< etal-length and 1.7<petal-width then Iris-Versicolor  
 
Rules obtained with output neuron biases = -0.5: 
if   not petal-length>2.5 and not petal-length>4.9 then Iris-Setosa 
if   not petal-length<2.5 and not petal-length>4.9 and not petal-width>1.7 then Iris-Virginica  
if   not petal-length<2.5 and not 2.5<petal-length<4.9 and petal-width>1.7 then Iris-
Versico
 

   if  x=0 and y=1 then class 1          
N[1,3]:   if  x=1 and y=0 then class 1    

N[2,0]:  if N[1,0] or N[1,2] then class 0  <=>  if  (x=0 and y=0) or (x=1 and y=1) then class 0     
N[2,1]:  if N[1,1] or N[1,3] then class 1  <=>  if  (x=0 and y=1) or (x=1 and y=0) then class 1    
 
 All zero weights in Fig. 3.6 could also take the value of –1, which in this case results 
in exactly the same rules. 
 

The biases of output neurons can be either -0.5 or +0.5. If the output neuron bias is 
0.5, then without any incoming signals, the signal of the neuron equals zero. Thus, no data is 
by default assigned to the class represented by the neuron. In this situation, the rules tend to 
be built mostly in the positive form, because some conditions must occur to activate the 
neuron. This configuration will be typically used in SMLP networks. However, if the output 
neuron ias is b

all data is by default assigned to the class represented by this neuron. In such a 
situation, the rules tend to be built mostly in the negative form, because some conditions must 
not occur to deactivate the neuron. 

  
Examples of rules extracted from the discretized (chapter 3.2.8) Iris dataset:  
 
btained with output neuron biases = 0.5: 

if   petal-length<2.5 then Iris-Setosa 
if   2.5<petal-length<4.9 and not 1.7<petal-width then Iris-Virginica  
if   4. p

lor 

Both sets of rules classify correctly 98% of instances. To simplify the set of rules, the 
rules for one of the classes can be given by “else”.  
 

Positive conditions lead usually to simpler rules, therefore the search strategy should 
be arranged in such a way that negative weights in output neurons do not occur frequently.  
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Table 3.3. Number and accuracy of rules for the Iris dataset obtained with various rule 
extraction algorithms. 

 

method number of 
rules/prepositions/features 

accuracy source 

FuNN 9/26/4 95.7 [Kasabov 1996] 
FuNN 14/28/4 95.7 [Kasabov 1996] 

NefClass 7/28/4 96.7 [Nauck 1996] 
NefClass 3/2/6 96.7 [Nauck 1996] 
FuNe-I 7/-/3 96.0 [Halgamuge 1994] 

C-MLP2LN 2/2/2 96.0 [UMK-KMK]  
C-MLP2LN 2/3/2 98.0 [UMK-KMK]  

SSV 2/3/2 98.0 [UMK-KMK]  
SMLP 2/2/1 95.7 this work 
SMLP 2/3/2 98.0 this work 

 
 
 

3.2.5.   SMLP-VSS Training Algorithm 
 
 Sigmoidal transfer functions allow the network to use continuous error measures and 
therefore eliminate the need for more complex search techniques (chapter 3.2.9 and 3.2.10). 
The SMLP network can be modified so that it could use sigmoidal transfer functions and 

SS as the training algorithm. VSS (Variable Step Search AlgV orithm) was introduced and 
l in chapter 2.4.2 as a training method for standard MLP networks. V

s to
mpirically 

the parameters explanation).  

parameter default values for 
standard MLP 

default values for 
SMLP network 

described in detai SS can 
 adjust be easily adapted to SMLP networks training by modifying the default parameter

hem to smaller weight values. The values presented in table 3.4. were et
determined on several datasets including those presented in chapter 3.2.12. 

 
 

Table 3.4. Default VSS parameters with sigmoid slope=1 for standard MLP and SMLP 
etworks (see chapter 2.4.2 for n

 

d0 0.2 0.1 
d1 0.03 0.01 
c1 0.33 0.22 
c2 2.0 1.5 

max_n 4 4 
c3 0.3 0 

max_w - 1.5 
 

 
The SMLP network trained with VSS algorithm uses sigmoidal transfer functions as 

well in the hidden as in output layer. At the beginning there is only one hidden neuron per 
class, more hidden neurons will be added if it is required. Only the weights of the hidden 
layer are optimized. At the beginning all the weights have the same values as at the beginning 
of SMLP-DS training. The weights of the hidden neurons are zero and biases are 0.5, the first 
weight of the output neuron is +1 and its bias is +0.5. If the further hidden neurons are added, 
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the weights connecting them to the output neurons will be either +1 (to classify the 
unclassified actual class vectors) or –1 (to classify the exceptions, i.e. vectors from other 
classes that were wrongly classified by the first hidden neuron as the actual class instances). 

The standard MSE function is used, however with an additional penalty term to 
r +1. 

  

iiivv w |)1)(1  (3.16) 

nstant c can be used to regularize the complexity of the rules. With greater c 
fewer 

The regularization term is not added to the bias. This ensures that the bias can freely 
ing cycle (for many datasets four training cycles 
 to that added to weights, is added to the bias to 

orce it to move to the nearest  n-0.5 value, where n is any integer from one to the number 
of featu

if  n-1<bias<=n then bias=n-0.5,  for n=1 to number of  features 

moid slopes and with the step transfer functions and then to decide which 

 

enforce all the weights w of the hidden neurons to take the values –1, 0 o

 ∑∑ +−=
NwNv

wwcdesiredoutE 2 (|)( +−
== iv 01

 
where c is a constant, usually c=0.02÷0.08·Nv/Nw is an optimal value (Nv is the number of 
training vectors Nw is the number of weights of the hidden neuron). The VSS algorithm starts 
with the first guess of every weight change dw=0.1 and then it runs according to the diagram 
shown in Fig. 2.22. At the beginning all the weights are in the basin of attraction w=0 of the 
penalty term. If changing a given weight does not decrease the error than the weight stays at 
zero. T e coh

weights leave the zero basin of attraction. Changing the weights value above +1 or 
below -1 does not cause such significant error reduction as changing it from zero to one, first 
because the regularization term is stronger in these areas and second, because the sigmoid is 
not so steep as it is close to zero. In practice, the weights very rarely leave the +1 or –1 basin 
of attraction.  

 

take an optimal value. Only in the last train
are sufficient) a regularization term, similar
enf

res. 
 
After the last training cycle the weights have usually the values –1±0.05, 0±0.05 and 

+1±0.05 and bias has the value n-0.5±0.05. Then the weights are transformed in the following 
way 

 
if  w<-0.5 then w=-1  (3.17) 
if  w>0.5 then w=+1 
else w=0 
 

 
While using the network on the test set, either the original sigmoidal neural transfer 

functions can be used, or the sigmoid slopes can be increased, or the transfer functions can be 
transposed to step functions thus converting the network to the SMLP-DS form. It can be 
sometimes observed that after changing the transfer functions from sigmoids to step-like, the 
number of misclassified vectors slightly changes. There is no clear rule if leaving the 
sigmoidal transfer functions leads to better generalization on the test set. Sometimes it is so, 
probably because the decision borders with sigmoidal transfer functions do not have to be 
hyperrectangular and can better fit the data. But on the other hand sometimes just the 
hyperrectangular decision borders may be required. They can also reduce the noise in data. 
The best solution is to perform crossvalidation tests with the actual sigmoid sloped, with the 
increased sig
functions will lead to the best results. 
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The rules are extracted from the weight values, as discussed in chapter 3.2.4. 
However, if the transfer functions are not transposed to step functions than the rules extracted 
from the network will only approximately fit the mapping that the network performs. (Fuzzy 
rules with sigmoidal membership functions may be more faithful to the original network 
mapping.) 

 
VSS performs better for SMLP networks than gradient-based algorithms for two 

reasons. First, because it does not change all the weights at once, but weight by weight and if 
hanging the previous weight already significantly reduces the error, than the next weight is 

hich allows the weights to take optimal values very 
uickly. 

ter adding the second neuron, 
s weights may take the same values as the first neuron weights. (In SMLP trained with step 

transfer functions the risk does not exist.) The vectors of the actual class that were correctly
classified by the first hidden neuron can be removed from further training only in this case
when the first neuron did not classify any other classes vectors as the actual

o (3.18) 

ber of hidden neurons per given class, v is 
e vector number, Error(v, n) is the MSE error generated

etwork with n hidden neurons. This ensures that the next n
functions as the previous one.  

.2.6.   Step Versus Sigmoidal Transfer Function

 comparable accuracy. Step 
nctions give only the information that is necessary to classify a vector. With step functions 
hen a vector is classified correctly the error already equals zero a

conditions can decrease it, so the conditions do not come into the final rule.  
 

ded for classification, provide 
lso information about other feature values, specific to a given class but not required by the 

rocess. With sigmoidal functions (without weight regularization), adding more 
onditions to a rule may still decrease the network error, since the output signal is always 

lower than 1 and always can be increased. Moreover, the number of additional conditions of 
the rule may be regulated by the required output accuracy, assuming that output values above 

c
not able to leave the zero basin of attraction. Thus, the network and the rules are kept simple. 
The complexity of the rules can be tuned by the regularization constant c. And second, VSS 
uses individual steps for each weight, w
q

 
 The possible risk of SMLP training with VSS is that af
it

 
, 

 class vectors 
(chapter 3.2.9.2). The regularization term in the error function cannot be increased to prevent 
redundant neuron roles, because in this case it would also prevent other weights from leaving 
the zero basin of attraction. Thus, the first term of the error function must be modified in such 
a way that if a given vector is already classified correctly by the first neuron than the correct 
classification of it by the next neuron will not change the error:  
 

or n=2 to N d f
        if Accuracy(v, n-1)=100%  than  Error(v, n)=max(Error(v, n-1), Error(v, n)) 
 

here n is the current hidden neuron, N is the numw
th  in response to vector v by the 
n euron will not perform the same 

 
 
 
 

s 3
 

In most cases step transfer functions are used with SMLP-DS training. In comparison 
ith sigmoidal functions, they produce simpler rules usually ofw

fu
w nd no additional input 

Sigmoidal functions, in addition to the information nee
a
classification p
c
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some threshold (e.g. 0.98) are considered as 1. For example, the rule for one class of the Iris 
ataset obtained using step transfer functions is: 

 
The rul

if  p

inform
functio
additio
data. M  has many features a single rule condition may 

ork well due to accidental distribution of training data, so it may be better to use additional 
onditions. 

 
termine a hypersurface that separates vectors that belong 
e maximal distance (maximal margin) from both classes. 

he po

  

racted rules 
depend

urposes can be assessed by 
feature ranking and feature selection. In feature ranking, the predictive abilities (the 
classifi

e information as the first one. 
Then the space of the two features gives the same classification accuracy as the first feature 
lone. At the same time, a feature that has a further, e.g. fourth, position in the ranking can be 

a useful source of information, efficiently completing the information contained in the first 
feature. Thus, the first and fourth feature may be the best choice and not the first and the 
second one. 
 

d
 

 if petal-length<2.5 then Iris-Setosa 

e obtained with sigmoidal transfer functions has two conditions: 
 

etal-length<2.5 and petal-width<0.8 Iris-Setosa  
 

The second condition is not necessary for classification, but provides additional 
ation about the data properties. The network can also be trained using step transfer 
ns to extract logical rules, then the functions can be changed to sigmoids, and an 
nal SMLP-DS training cycle can be run to provide some extra information about the 
oreover, if the dataset is small and

w
c

The optimal cut-off points de
o two different classes and keeps tht

T ints are in this case about 2.5 for petal-length and about 0.8 for petal-width (Fig. 1.14-
left-top). That ensures the highest test accuracy and stability of the classifier. 

 
 

 
3.2.7. Feature Selection                   
   

In datasets that contain many attributes, usually only some of them provide useful 
information. Using all the attributes for the training of SMLP networks causes two problems. 
First, the training time is unnecessarily long. Second, while changing one or two parameters 
at a time with SMLP-DS, the order in which the weights are examined plays a role. If 
uncontr lled, this effect can adversely influence the training, because the exto

 on the training process in an unforeseen way. On the other hand if the order is 
controlled it can provide us with various sets of rules, thus enhancing our knowledge about 
the dataset more than a single best optimized set of rules. However, with many attributes, it 
gets difficult to extract the proper rules. This problem is dealt with using feature selection 
based on the information included either in the single feature, or in a set of features.  
 
 The usefulness of various features for classification p

cation accuracy obtained by using only this single feature) of each feature are assessed 
and then the features are decreasingly ordered according to that assessment. Ranking is the 
simplest method, however it does not always work well, because the independent assessment 
of each feature is not always related to the assessment of the group of features. For example, 
the second feature in the ranking may carry practically the sam

a
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 Feature selection methods assess various combinations of features, usually using some 
iterative algorithms. Feature selection is computationally more costly than feature ranking but 
can bri

 o assess the mutual information between the values of a given feature and the class 
of insta

mportance of the feature: 
 

 (3.19) 
where p(Ci,X=x), i=1...K is the joint probability of finding the feature value X=x for vectors 
X that belong to some class Ck (for discretized continuous features X=x means that the value 
of feature X is in the interval x) and p(X=x) is the probability of finding vectors with the 
feature value X=x, or within the interval x∈X. Low values I(C,X) indicate that vectors from a 
single class dominate in some intervals, making the feature more valuable for prediction 
[Duch 2003].  
 
 Joint information may also be calculated for each discrete value of X or each interval 
and weighted by the p(X=x) probability: 
 

 
Inform

ng better results. Generally, the feature selectors can be divided into filters and 
wrappers. Filters assess the usefulness of particular features independently of the 
classification algorithm that will be used with the selected features. Wrappers cooperate with 
particular classifiers and usually require multiply runs of the classification algorithm. Thus, 
wrappers may be very costly and for that reasons frequently the results obtained with filters 
are more effective. 
 

T
nces, the feature must be discrete. If the feature is continuous, it must be discretized 

(chapter 3.2.8) prior to using the filter.  
 
 Information contained in the joint distribution of classes and features, summed over 
all classes, gives an estimation of an i
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 ∑ ==−= xXCIxXpXCWI ),()(),(  (3.20) 
x

ation contained in the p(X=x) probability distribution plus the p(C) class distribution 
minus the joint information I(C,X) is called “mutual information” or “information gain” 
 
 ),()()(),( XCIXICIXCM I −+=  (3.21) 
 
Mutual information is equal to the expected value of the ratio of the joint to the product 
probability distribution, known as Kullback-Leibler divergence: 
 

 ( )( , )( , ) ( , ) || ( ) ( )
( ) ( )I KL
p C XM C X E D p C X p C p X

p C p X
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 (3.22) 

 
A feature is more important if its mutual information is larger. 
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Several approaches to feature selections can be used with SMLP networks: 
 

• use the information provided by some external filters 

• first perform the feature ranking, based on the information contained in a single 
feature and then add the features in the order in which they appear in the ranking  

• add gradually features to the rule using a method based on the beam search  

threshold value, the feature is 
not added at this moment. However, the threshold is being gradually decreased during 
the training, so the feature will have a chance to be included further in more specific 

tances. 

 

3.2.8. Feature Discretization 
 

values 
val
 
 
3.2.8.1
 

into int
wid
were m

frequen als can 
be e
1R qua
because it considers also interaction between various features. However, frequently it is 
ben

to cont
led him asets with more than 50 instances and three for smaller 
datasets. Each interval is assigned to the class to which the majority of its vectors belong. 

hen adjacent intervals assigned to the same class are joined.  
 

 

 

 
• use all the features with the threshold t added to the error function. If including a 

given feature does not decrease the error more than the 

rules, which cover fewer ins
 

 

There are two objectives while discretizing continuous data: to have a few discrete 
in order to obtain a simple network and simple rules, and to have enough discrete 
fues or accurate rules and reliable classification results.  

.  Prior to Training Discretization  

There are many discretization methods [Liu 2002], which divide the continuous data 
ervals basing on various criteria for setting the split points. However, so far only equal 

th and equal frequency discretization was used with SMLP. Then the adjacent intervals 
erged and the split points of the most important features were fine-tuned. 
  
Initially each continuous feature space is divided into n equal width or equal 
cy intervals (n=10 is sufficient in most cases). The merging of adjacent interv

don  in two ways: on-line during the training and before the training basing on the idea of 
ntization method [Holte 1993]. The on-line method is in general more accurate, 

eficial to reduce the number of intervals before the training. 
 
Holte avoids large number of intervals by requiring all intervals (except the rightmost) 
ain more than a predefined number of examples in the same class. Empirical evidence 
 to a value of six for dat

T
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3.2.8.2.  Run-time L-unit Based Discretization  
 

The initial interval boundaries obtained from the prior-to-training discretization may 
be tuned with L-units (logical units) using search techniques. An interval cut-off point in the 
most significant feature is shifted and the training is performed. If the error decreases then the 

ift was in a proper direction, otherwise it was in the wrong direction. The procedure may be 
repeat are useless for 
discrim s not influence training results) 
are au

values re 
neede ince discretization and 
learni  training set, not just on 
the sin

sh
ed with each interval cut-off point for all features. Features that 

ination of a given class (shifting the cut-off points doe
tomatically removed. 

 
Continuous features are given to the inputs of L-units. Each L-unit passes only these 

, which are within its discretization window, thus as many L-units per feature a
d as the required number of that feature discrete values. S

d on the wholeng are done in the same network, results depen
gle feature being discretized.  
 

N1

N2

N0 N3 N[0,x]

w01
b1 w13

FC
FD.v1

b3w23
w02

b2  
 

.7. L-unit (neurons N1,N2,N3) with the feature input (N0) and the SMLP networFig. 3 k input 
neuro

and is u

13 1 23 2 3

d 
2
lize 

 

n (N[0,x]). 
 

he continuous feature FC given to the neuron N0 (which has linear transfer function T
sed only to distribute the feature value to further neurons) is connected with weights 

w01 and w02 to the neurons N1 and N2. A single N0 neuron is used by all L-units assigned to 
the same continuous feature. The weights w01 and w02 have constant values set to +1. The 
weights are not modified during the learning process. Neurons N1, N2 and N3 have step 
transfer functions. The output signals of N1 and N2 can take values -1 or 1. The output signal 
of N3 can take values 0 or +1 and it is passed to the corresponding input neuron of the SMLP 
network (neuron N[0,x]). The L-unit realizes the following function: 

 
                   FD.v1=0.5+0.5·sign(w ·sign(FC-b )+w ·sign(FC-b )-b )  (3.23) 

 
Neuron N1 is activated if FC>b1. Neuron N2 is activated if FC>b2. If neurons N1 an

N2 are activated then their output signal is +1 otherwise it is –1. The biases b1 and b  are 
modified during network learning to optimally tune the cut-off points. Neuron N3 can rea
any superposition of the signals from neurons N1 and N2, depending on the weights w13 and
w23, which can take the values –1 or +1 and on the bias b3 value, as shown in Fig. 3.8. 

 

 148



 
Fig. 3.8. Functions realized by L-units. 

 
 
 
 
 
 
 
 
 
3.2.9. Advanced SMLP-DS Training Methodology  

.2.9.1. The Training Algorithm  

The SMLP-DS and SMLP-VSS algorithms are the basis of the SMLP training 
rocess

 
 
3
 

p . The SMLP-DS algorithm will be used in the following training methodology: 
 

1. Discretize continuous features. 
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2. Sort features according to feature ranking or feature filter. While building the feature 
ranking it may be required to tune precisely the discretization cut-off points using L-
units. Frequently low-ranking features can be rejected. 

3. Build the network with one hidden neuron for a given class. If the class distribution is 
highly asymmetric or there are more than two classes then it may be required to 
assign appropriate weights to the classification errors made on different class 

stances (to use the balanced accuracy). 
4. 

weights at a time does not work (and the network is still far from overfitting), three 
eights can be changed, SMLP-VSS or genetic algorithms used, but it is most likely 
at there is a problem with the consistency and reliability of the dataset itself. 

6. If the error no longer decreases or the number of rule prepositions grows rapidly then 
freeze the weights of this neuron, add the next hidden neuron and repeat points 4 and 
5. If  adding the next neuron does not change the situation then go to point 7. 

7. If there are only two classes, then stop the training; the rules for the second class will 
be given by “else”. If there are three classes, repeat steps 3-6 with the second class, 
the rules for the third class will be given by “else”. If there are more than three 
classes, then repeat steps 3-6 with every class, the “else” rule may be too difficult for 
interpretation in this case. 

 
 
 
3.2.9.2. Sample SMLP Training on the Mushrooms Dataset  
 

The methodology will be discussed on the Mushrooms dataset example. The dataset 
was constructed basing on mushroom records drawn from “The Audubon Society Field 
Guide to North American Mushrooms” by G. H. Lincoff.  This dataset includes descriptions 
of samples corresponding to 23 species of mushrooms. Each species is identified as edible or 
poisonous one. The guide clearly states that there is no simple rule for determining the 
edibility of a mushroom. The dataset contains 8124 vectors, 4208 (51.8%) of them in the first 
“edible” class and 3916 (48.2%) in the second “poisonous” class. The dataset contains the 
following values of the 22 discrete features: 
 

f1: cap-shape (bell=B, conical=C, convex=X, flat=F, knobbed=K, sunken=S) 
f2: cap-surface (fibrous=F, grooves=G, scaly=Y, smooth=S) 
f3: cap-color (brown=N, buff=B, cinnamon=C, gray=G, green=R, pink=P, purple=U, red=E, 

white=W, yellow=Y) 
f4: bruises (bruises=T, no=F) 
f5: odor (almond=A, anise=L, creosote=C, fishy=Y, foul=F, musty=M, none=N, pungent=P, 

spicy=S) 
f6: gill-attachment (attached=A, descending=D, free=F, notched=N) 
f7: gill-spacing (close=C, crowded=W, distant=D) 
f8: gill-size (broad=B, narrow=N) 
f9: gill-color (black=K, brown=N, buff=B, chocolate=H, gray=G, green=R, orange=O, pink=P, 

purple=U, red=E, white=W, yellow=Y) 
f10: stalk-shape (enlarging=E, tapering=T) 
f11: stalk-root (bulbous=B, club=C, cup=U, equal=E, rhizomorphs=Z, rooted=R, missing=?) 

in
Train the neuron changing one weight at a time starting from changing the weights of 
the most important feature in the ranking. Tune precisely the discretization cut-off 
points using L-units if necessary. 

5. If the error does not decrease significantly then change two weights at a time. Tune 
precisely the discretization cut-off points using L-units if necessary. If changing two 

w
th
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f1
f13: stalk-surface-below-ring: (fibrous=F, scaly=Y, silky=K, smooth=S) 
f14: stalk-color-above-ring: (brown=N, buff=B, C , pink=P, 

red=E, white=W, yellow=Y) 
f15: stalk-color-below-ring: (brown=N, buff=B, c =B, gray ge=O,   pink=P, 

red=E, whi
f16: veil-type: (partial=P, universal=U) 
f17: veil-color: range=O, white=W, y Y) 
f18: ring-numb
f19: ring-type:  flaring=F, large=L, none=N, pendant=P, 

sheathing=
f20: spore-print-color: (lack=K, brown=N, buff=B, chocolate=H, green=R, orange=O, 

purple=U, white=W, yellow=Y) 
f21: population: (abundant=A, clustered=C, numerous=N, scattered=S, several=V, solitary=Y) 
f22: habitat: (gr s=M, paths=P, urban=U, waste=W, woods=D) 
 
The features can take together 125 different values. Thus, the SMLP network must 

have 125 inputs. The SMLP network can be trained for each class separately, since specific 
hidden neurons are dedicated to particular classe Mushroo taset contains two 
classes: edible and p his case, it is suf to train th ork for one class, 
the rules for the other class will be given by the negation of the rules obtained for the trained 
class. The network will be trained for the class pois Examining all features in the order 
in which they appear in the original vectors and changing one weight at a time while training 
the network with one hidden neuron gave the follow ation tha  be satisfied for the 
poisonous class: 
 
if 0.5 < cap_shape(C G) + cap_sur  + cap_color(B) - cap_color(G)  
+ cap_color(P) - ca F) – odor( or(L) +odor(C) + odor(F)  
+ odor(M) - odor(N) + odor(P) - gill_attachment(A) + gill_spacing(C) - gill_spacing(W) 
 - gill_color(K) + gill_color(R) - gill_color(O) - gill_color(E) - gill_color(Y) - stalk_root(C) 
 - stalk

_above_ring(O) 

  then  poisonous 

s as edible, two edible 
s poisonous, 3900 poisonous as poisonous and 16 poisonous as edible. This can be written in 
e confusion matrix (chapter 3.2.12

E   4206      2 

hich feature values positively contribute to that class (sign +) and which negatively 
ign -), but it is very difficult to say what condition must exactly be satisfied to obtain the 

sum of

2: stalk-surface-above-ring: (fibrous=F, scaly=Y, silky=K, smooth=S) 

 cinnamon= , gray=G, orange=O

innamon =G, oran
te=W, yellow=Y) 

 (brown=N, o ellow=
er: (none=N, one=O, two=T) 
(cobwebby=C, evanescent=E,
S, zone=Z) 

asses=G, leaves=L, meadow

s. The ms da
oisonous. It t ficient e netw

onous. 

ing equ t must

) + cap_surface( face(S)
p_color(Y) + bruises( A) - od

_root(R) - stalk_surface_above_ring(Y) + stalk_surface_above_ring(K) 
 - stalk_surface_below_ring(K) + stalk_color_above_ring(C) - stalk_color
 - stalk_color_above_ring(E) - stalk_color_below_ring(E) + stalk_color_below_ring(Y)  
+ ring_type(E) - ring_type(F) +  spore_print_color(R) + population(C) - population(N) 
 - population(Y) - habitat(W)
 
which gives 99.78% accuracy and classifies 4206 of edible mushroom
a
th .1) form: 
 
        E          P 
 
 P     16      3900 
 

The main problem is that it is not easy to draw any conclusions from this rule. We can 
only see w
(s

 incoming signals multiplied by their weights greater than 0.5. Because the rule is so 
complex, it would not be a good idea to add the second neuron to further improve the training 
accuracy (and complicate the rule even more). 
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Weights that belong to the same feature and have the same sign are called “group of 
weights”. If there are many negative and many positive groups of weights and the bias value 
is lower then the number of positive weight groups minus 0.5, as in the rule above, then the 
rule int

s of the same feature. In order to 
obtain the “and” interpretation, the bias must take a higher value, equal to the number of 
positiv les can be clearly 
formulated according to the guidance above and frequently it is the case. If they cannot be, 
then ups 

ould be used or the functionality of the neuron should be split among more neurons (what 

simplest rules 
re usually obtained when the search through feature values is ordered according to the 

 of 
re are so many attributes, 

ost of them are useless for classification. It is easiest to assess the information contained in 

if odor=(C or Y or F or M or P or S) then poisonous 

with the following confusion matrix: 

       E        P 

6 

Searching first through values of a single feature is advantageous because it usually 

ain and the last 10 features in the ranking were discarded. This 
ecision was based on the observation, that in datasets with many features, frequently most of 

the features (the low . However, in more 
omplex cases, rather a feature filter assessing the mutual feature information in connection 

Together with, or alternative to sorting the features, the threshold t can be used to 
keep the rules simple. The threshold is especially useful if the features are not sorted 
according to a feature filter that includes correlations among features and this is the case in 
the actual training, since only a simple feature ranking was used. At the beginning of the 
training, the network has one hidden neuron with the error threshold t being arbitrary set to 
20. 

 
 

erpretation may be ambiguous. In general, when the bias value is M-0.5, the positive 
weight groups are interpreted as M-of-N rules, where N is the number of groups of positive 
weights. Any negative weight is interpreted as “and not”. Negative weights of some feature 
values can be replaced by the positive weights of other value

e weight groups minus 0.5. The desired situation is when the ru

either the interpretation “and not” for negative and “M-of-N” for positive weight gro
sh
will be discussed later). 

 
In general, the rules should be kept as clear and simple as possible. The 

a
decreasing mutual information of the features. A good approach is to use some form
feature selection. This dataset has 22 attributes and usually if the
m
each single feature. Training the network on each feature separately gave the accuracies 
shown in Table 3.5. Thus, automatically a very simple rule, which gives 98.52% accuracy, 
was obtained: 
 

 

 
 
 E   4208    0 
 P    120    379
 

leads to the simplest and most comprehensive rules. Than the features were sorted according 
to the decreasing information g
d

-ranking ones) are irrelevant for classification
c
with other features than a simple feature ranking is preferred. If the decision proved wrong in 
a given case then the training would have to be repeated including all the features. 
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Table 3.5. Information contained in single features of the Mushrooms dataset. 
 

accura
 

acy-default 
[%] 

feature cy accur
[%]

odor 98.52 46.72 
spore_print_color 86.80 35.00 
gill_color 80.50 28.70 
ring_type 77.54 25.74 
stalk_surface_above_ring 77.45 25.65 
stalk_surface_below_ring 76.61 24.81 
gill_size 75.62 23.82 
bruises 74.40 22.60 
population 72.18 20.38 
stalk_color_above_ring 71.64 19.84 
stalk_color_below_ring 71.44 19.64 
habitat 69.03 17.23 
stalk_root 63.81 12.01 
gill_spacing 61.59 9.79 
cap_surface 59.52 7.72 
cap_color 59.29 7.47 
cap_shape 58.05 6.25 
stalk_shape 55.29 3.49 
ring_number 53.81 2.01 
veil_color 51.89 0.09 
gill_attachment 51.80 0 
veil_type 51.80 0 

 
 
After one epoch of training, changing one weight at a time some weights of the hidden 

neuron took non-zero values and the neuron generated the following rule: 
 
if odor=(C or Y or F or M or P or S) or spore_print_color=R or stalk_color_below_ring=Y 
then poisonous 
 
The rule gives 99.51% accuracy and the following confusion matrix: 

E   4208    0 
P     24    3892 

ay 

 
        E        P 
 
 
 
 The accuracy is a bit lower than previously (99.78%) but the rule is clear. Now we 
must add the second hidden neuron for that class that will classify the vectors that were not 
classified by the first neuron. Thus, the weights of the first neuron will no longer by 
modified. 
 

The vectors of the poisonous class that have already been correctly classified can be 
removed from the further training. That is because hidden neurons work in parallel and these 
vectors have already found their path through the first neuron, which they will use, no matter 
what the weights of the second neuron will be. However, the correctly classified instances of 
the edible class cannot be removed from the further training, because in this case it m
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happen, that the weights of the second neuron could take such values that would let the edible 
class vectors pass through.  

 
The training of the second neuron starts with bias=0.5 and changes one weight at a 

time. However, since it did not work here, two weights had to be changed at a time. It does 
not necessarily mean that results of similar quality could not be achieved changing only one 
weight at a time, examining the weights in a different order. 

 
After the training, the second neuron generated the following rule: 
 

if 2 of ( gill_size=N,  stalk_surface_above_ring=K, population=C) then poisonous 
 
Although the neuron classifies the data correctly, giving 100% accuracy together with the 
first neuron, it generated the M-of-N (2-of-3) rule instead of the AND rule, as it was 
expected. The rule is equivalent to the following disjunctive normal form rule: 
 
if (gill_size=N and population=C) or (gill_size=N and stalk_surface_above_ring=K) or  
(population=C and stalk_surface_above_ring=K) then poisonous 
 
The rule can be decomposed into a minimal number of AND rules, by performing the training 
in the f llowing way: first all pairs of weights are checked with the weights being set again to 

 case, the rule is: 

if  gill_size=N and stalk_surface_above_ring=K then poisonous 

if gill_size=N and population=C then poisonous 

ered the remaining 8 vectors, achieving 100% accuracy on the training set. That 
means that the third AND rule (population=C and stalk_surface_above_ring=K then 
poison

o
zero before the next pair is examined. Then the best pair of weights is selected and it gives 
the first AND rule. In this
 

 
The rule gives 99.90% accuracy and the following confusion matrix: 
 
        E        P 
 E   4208    0 
 P     8      3908 
 
Then the third hidden neuron was added and trained changing two weights at a time. It 
generated the following rule:  
 

 
The rule cov

ous) covers either only the instances contained in the other rules or an empty set. 
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Finally the following rules were obtained: 
 
if odor=(C or Y or F or M or P or S)  
or spore_print_color=R or  stalk_color_below_ring=Y ) 
or (gill_size=N and stalk_ ( %) 
or (gill_size=N and population=C) us ( ) 
else edible  
 
The rules c  written in the sh rm: 
 
if no  spore_pr r=R or  or  color   
or  2 surface_a g=K,  popul =C) then poisonous else 
edible  ) 
 
 
 

 

surface_above_ring=K) 

(98.52%)
(99.41%
99.90
100% then poisono

an also be orter fo

t odor=(A or L or N) or int_colo stalk_ _below_ring=Y
 of (gill_size=N, stalk_ bove_rin ation

(100%

poisonous

gill_size=N

odor=F

odor=M

odor=P

odor=S

1
1

1

re_print_color=R

odor=Y
odor=C

1 1

spo

1

1

b=1.5

population=C
1

1
b=1.5

1
1

stalk_color_below_ring=Y

1 0.5

stalk_surf_above_ring=K

b=

b=0.5

gill_size=N

1

1

wo hidden neurons, it seems that with three 
hidden neurons their form is more convenient. When at least four of these rules are used, than 
the thi

, the computational cost of 
such an approach is significantly higher. For datasets with relatively simply structure it is 
usually sufficient to change one weight at a time.  

1

 
 

Fig. 3.9. SMLP network obtained for the poisonous class of the Mushrooms dataset. Only 
non-zero weights are shown. 
 
 

Though the rules could be obtained with t

rd one is redundant, however it may be a compromise between the accuracy of the 
fourth rule and the simplicity of the second one. The redundancy was not detected by the 
training algorithm. It would have been detected, if the threshold t of the first neuron had been 
set to a higher value. Then, the second neuron would have been added earlier and trained 
changing two weights simultaneously. Changing two weights at a time sometimes allows for 
extracting more accurate and simpler rules, but on the other hand
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edible

gill_size=N b=1.5

1

1

population=C

1

1

b=1.5

odor=N 1

spore_print_color=R

odor=L

odor=A

1 1
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stalk_color_below_ring=Y

-1
b=0.5

N

b=0.5above_ring=Kstalk_surf_

gill_size=

1

-1

-1

 netw r the edible class of -
zero weights are shown. 

 the training performed on the Mushrooms dataset, already the first rule was not 
satisfied by any edible mushrooms. But if the first neuron classified also some edible 
mushrooms as poisonous, then the next hidden neuron should be added with a negative 
weight

 odor

t neuron, but also the second and the 
third n

 

 the Mushrooms dataset. Only non
 

Fig. 3.10. SMLP ork obtained fo

 
 

In

 (-1) to the output neuron. Then during the training, the neuron would learn to 
recognize the edible mushrooms misclassified by the first one as poisonous. Thus, the first 
neuron would provide a general rule and the second one an exception from that rule. There 
can be several hidden neurons with –1 weight to the output neuron to classify exceptions, as 
well as several hidden neurons with +1 weight to the output neuron to classify smaller 
clusters of the actual class instances. For example, if the training of the Mushrooms dataset 
starts from the edible class, than the first neuron generates the rule: 

 
if =(A or L or N) and (not spore_print_color=R) and (not stalk_color_below_ring=Y) 
then edible 

 
However, the rule covers also 24 poisonous instances. Thus, the second neuron with –

1 weight to the output neuron must be added to generate the rule for the poisonous 
mushrooms and if it does not cover all poisonous mushrooms covered by the first neuron – 
than also the third neuron with –1 weight to the output neuron must be added (Fig. 3.10). 
Thus, the poisonous class vectors will activate the firs

euron. That will result in no activation of the output neuron and thus in correct 
classification. 
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Table 3.6. Number and accuracy of rules for the Mushrooms dataset obtained with various 
rule extraction algorithms. 

 

method number of 
rules/prepositions/features 

accuracy source 

RULENEG 300/8087/- 91.0 [Sestito 1994] 
REAL 155/6603/- 98.0 [Craven 1996b] 

DEDEC 26/26/- 99.8 [Tickle 1994] 
RULEX 1/3/1 98.5 [Andrews 1994] 

Successive Regulariz. 1/4/2 99.4 [Duch 1997b] 
Successive Regulariz. 2/22/4 99.9 [Duch 1997b] 
Successive Regulariz. 3/24/6 100 [Duch 1997b] 

C-MLP2LN, SSV 1/3/1 98.5 [UMK-KMK] 
C-MLP2LN, SSV 2/4/2 99.4 [UMK-KMK] 
C-MLP2LN, SSV 3/7/4 99.9 [UMK-KMK] 

SSV 4/9/5 100 [UMK-KMK] 
C-MLP2LN 4/9/6 100 [UMK-KMK] 

SMLP 1/3/1 98.5 this work 
SMLP 2/4/2 99.4 this work 
SMLP 3/5/3 99.7 this work 
SMLP 3/7/4 99.9 this work 
SMLP 4/12/6 100 this work 
SMLP 4/9/5 100 this work 
SMLP 3/8/5 100 this work 

 
 
 
3.2.10.  Comparison of SMLP and Standard MLP Networks 

e with SMLP-DS is required if there is no smooth 
ansition between two areas in the data and the error does not decrease until both weights are 

nal data space with no smooth transitions, there 
t once, but the need to change more than two weights has 

 networks the problem is solved by 
functions. If the training 

moves in the proper direction, then even if the number of correctly classified vectors does not 
actuall

discretized SMLP-DS network does not provide this possibility.  

 
Let’s assume that the data has two features F1 and F2. The rule can be “class 1 if F1 

and F2”. However, it is likely that in the areas, described by “F1 and not F2” or “not F1 and 
F2” there will be more class 1 instances than in the area described by “not F1 and not F2”. 
Thus, looking at the error surface for this problem there exist a smooth transition, or an 
addition stair, that can be traversed changing only one weight at a time (additionally the bias 
can be incremented form 0.5 to 1.5, but this does not require significant computational 
effort). Changing two weights at a tim
tr
changed at once. Theoretically, in n-dimensio
may be a need to change n weights a
not been observed so far on real-world datasets.  

 
In SMLP trained with VSS and in standard MLP

using a continuous error measure with continuous neural transfer 

y grow, the error decreases. That allows for an easy training of MLP and SMLP 
networks with VSS algorithms, which changes only one weight at a time. The fully 
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Table 3.7. Comparison of MLP and SMLP networks.  
 

 MLP SMLP 

decision borders  
of a single neuron any hypersurface hyperrectangle with sides parallel to 

feature axes 

desicion borders  
of the network 

any hypersurface combination with 
a tendency for edge smoothing 

any combination of hyperrectangles 
with sides parallel to feature axes 

required number  
of hidden neurons 

depending on decision borders, the number can be higher either in MLP 
or in SMLP network  

generalization abilities depending on decision borders, either in MLP or in SMLP network  
can generalize better 

information storing globally (difficult to say what 
a single weight is responsible for) 

locally (each weight is explicitely 
assigned a specific role) 

rule extraction complex and difficult simple and easy 
constructive algorithm possible embeded in the model 

required number  
of training cycles at least several 

one training cycle is frequently 
enough, though more cycles can lead 
to more efficiant rule sets 

weight pruning possible unneeded (excessive connections  
are not created) 

 
 
 
The decision borders of SMLP network are hyperrectangular in the discretized search 

space. Nevertheless, they do not have to be hyperrectangular in the original continuous search 
space. For example, a new feature that is the sum or product of the some most important 
continuous features can be created and its value first calculated in the original continuous 
space and then discretized. Pao examined networks with additional inputs (called by him 
functional link nets) [Pao 1989] of several kinds and found that the combination of some 
inputs were frequently very useful. 
 

Another method leading to decision borders, which are not parallel to the feature axes 
in the original continuous space is PCA (Principal Component Analysis). PCA produces new 
features that are weighted sums of the original features and that can be used in the feature 
space in the same way, as PCA directions were used in the MLP weight space (chapter 
1.2.3.2). Additional functional inputs or PCA can make the network training easier and 
generalization better, but on the other hand the rules extracted from such networks may be 
more difficult to understand and to draw conclusions.   

 
The possibility of obtaining the rules enhances the value of a classifier, because the 

user is provided not only with the final decision but also with the explanation how the 
ecision was reached. The value of the classifier can be still more enhanced, when additional 
formation about the probability of the decision being correct could be provided. In MLP 

networks, th  considered 
roportional to this class output neuron signal (chapter 1.5-1.7).  

d
in

e probability of a given vector being assigned to each class can be
p
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In SMLP networks the output signals are either 0 or 1 and the probability cannot be 

btained directly. However, some additional information can be provided, such as the 
ified by the same rule as the actual test vector, or 

ass boundaries if the original features were 

 coded into chromosomes and a standard genetic optimization can be 
perform

 
3.2.11  SMLP Architectu
 
 the standard disjunctive normal 
form o d too long rules. Then a better 
solution m any neurons in a 
single 

The standard SMLP structure cannot perform this operation if (A, B) and (C, D) belong to 
ifferent features, because it has not enough layers. T

which cannot be changed to AND operations by changing the bias of the neuron, because this 
would not allow for adding any more partial rules joined with the OR operator. The solution 
is to add locally one neuron in the layer between the hidden and output layer. Theoretically, 
the dat

: 
Layer[0]    - provide feature values  
Layer[1]    - groups the values of the same feature together  

ayer[3]    - combines partial rules with AND operatio
Layer[4]    - combines partial rules with OR operation into classes   

he standard SMLP-DS and SMLP-VSS procedures can be used to train such a 
network. It is a constructive solution and additional neurons are added only locally as needed.  

 
e experiments with a v rk, which changes the number of 

layers dynamically, adjusting its structure to the data, were performed. The network structure 

o
crossvalidation accuracy for vectors class

e distance from the test vector to the clth
continuous.  

 
 Theoretically it may happen that changing two weights at a time will not be sufficient 
for SMLP-DS convergence. Then the natural solution is to use SMLP-VSS, nevertheless 
some other training methods can also be considered. Changing three weights at time is very 
costly - O(w3), and frequently genetic algorithms (chapter 2.1.2.4) may be able to find the 
solution in fewer steps then changing three weights at a time through all the possible weight 
triples (excluding obviously the same feature weights from a simultaneous change). The 
network weights can be

ed. However, genetic algorithms change all the weights at once, therefore the signal 
table cannot be used. Therefore, genetic algorithms will not necessarily be quicker than 
changing three weights at a time, in spite of fewer steps.  

 
 

. re Complex Rules   for 

It is not always the best idea to use the M-of-N or 
f rules, since sometimes it may lead to too complex an

aybe to add a single neuron in an additional network layer than m
hidden layer. This problem may appear if the partial rules generated by particular 

hidden neurons must joined with the AND operator, for example: 
 

(A or B) and (C or D) 
 

d he output layer performs OR operations, 

a could be described by rules that could require n layers of neurons – then this 
approach can be extended to n layers.  
 
The layers perform the following operations

Layer[2]    - generates partial rules 
L n 

 
T

Som ersion of SMLP netwo
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is shown in a five-layer layout in Fig. 3.11. The zero layer is derived from the first one, like 
in Fig. 

such data as Mushrooms). If proper rules still cannot 
be generated within the actual network structure, even with many hidden neurons, then 
Layer[2

. Another choice is to bribe the examiner. Thus, the 
rule will be:  if   ( (A=1)   AND   (2 of (B,C,D,E) = 1) )  OR  (bribe=1)   then  pass) 

 
 

3.5-right, in order to make it clear how the operations are performed. The network has 
initially three layers (Layer 0, 1 and 4), what is sufficient for such data as Iris. As long as one 
hidden neuron is sufficient per given class, the hidden neuron performs the functions of both 
the hidden and output neuron in the standard SMLP network. If proper rules cannot be 
generated within the actual network structure, than Layer[3] with initially two neurons is 
added for the actual class (required for 

] with initially two neurons is added for the actual hidden (Layer[3]) neuron (For 
example, a dataset that requires this layer may describe a student taking an exam. The exam 
consists of 5 questions. In order to pass the exam, the student must answer question A and at 
least two of the remaining four questions

 
 

Layer[0] Layer[1] Layer[2] Layer[3] Layer[4]
F0.v0

F1.v0

ss 1

 
 

F0.v1

F1.v1

F1.v2

class 0

F2.v0

F2.v1

F2.v2

cla
F3.v0

F3.v0

 
Fig. 3.11. A generalized SMLP network structure for complex data. 
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3.2.12.   Experimental Results and Rules Extracted from Data 
 
 
3.2.12.1.  Criteria of Classifier Quality 
 

The first criterion, which as sesses the classifier quality, is the classification accuracy. 
ther parameters include the complexity of the algorithm, convergence properties 

m converges), stability measured by a change of results when 
 located close to decision boundaries occurs, sensitivity, 

specifi

 100 3 2 3

O
(percentage of runs the algorith
small perturbation of vectors

city, variance of results, comprehensibility of the rules, training times, memory 
requirements and additional information that the classifiers give besides the predicted class 
membership. All the above except for sensitivity and specificity were discussed in various 
chapters of this thesis.  

 
A confusion matrix C is a square matrix that describes the errors made by a classifier. 

Each row i corresponds to a class the instances belong to and each column j to a class the 
instances were classified to. Thus, the element cij indicates the number of instances belonging 
to class Ci that were recognized as instances of class Cj.  An example of a confusion matrix: 

 
 i\j C1 C2 C3 C4

C1 
 C2 2 80 0 4
 C3 0 2 60 2
 C4 0 6 2 70 
 
Sensitivity describes the ability of a classifier F to detect a given class instances in the 

dataset X. Sensitivity Se(Ci,F,X) is a conditional probability of an instance x∈X being 
classified to class Ci by the classifier F, given that it really belongs to class Ci. and it can be 
obtained from the confusion matrix: 

 

 ∑
=

ij

ii
i c

cXFCSe ),,(  (3.24) 

j

 
Specificity describes the ability of a classifier F to reject the instances from other 

classes. Specificity Sp(Ck,,F,X) is a conditional probability of an instance x∈X not being 
classified to class Ck by the classifier F, given that it really does not belong to class Ck and it 
can be obtained from the confusion matrix: 

 

 ∑∑
∑∑

≠ki j

 
 

≠ ≠= ki kj
ij

k c

c
XFCSp ),,(  

ij
(3.25) 
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Fig. 3.12. ROC Curve. 
 
 

 the classifier performance and especially for the comparison of several 
lassifiers [Mertz 1978]. Each point on the ROC curve corresponds to the mean sensitivity 

and specificity of the classifier for all the classes. The sensitivity (Se) is on the vertical axis 
nd 1-specificity (1-Sp) is on the horizontal axis. Bi

indicate higher quality of the classifier. 
 

atrix: 
 

Ċ1 0 3 2 3
 Ċ2 2 0 5 4
 Ċ3 2 2 0 2
 Ċ4 2 6 2 0 

 
i

The ROC curves (Receiver Operator Characteristic) can be used for the visual 
assessment of
c

a gger the areas under the ROC curve 

In cases, where there are different costs of misclassifying different class instances, the 
costs may be defined in the cost matrix Ċ. For example the cost of classifying a poisonous 
mushroom as edible may be higher then the cost of misclassifying an edible mushroom as 
poisonous. An example of a cost m

 i\j Ċ1 Ċ2 Ċ3 Ċ4
 

where  is the original cla
minimize to total misclassification cost E expressed by sum of products of the appropriate 
entries in the confusion matrix and in the cost matrix: 

ss and j is the predicted class. The task in the N-class problem is to 

 

 ∑∑
= =

=
N

i

N

j
ijijccE

1 1

&  (3.26) 

 
A comparison of all the parameters for so many algorithms would be very difficult, 

especially that such parameters are only rarely available in the literature. Such a detailed 
comparison was even not contained in Statlog, a large-scale European project comparing 
classification algorithms [Statlog 1994], though much additional information can be found 
there.  
 

For the datasets on which the algorithms were compared in the Statlog project, usually 
the longest training times were required by MLPs trained with backpropagation (MLP BP), 
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SOM, ALLOC80, SMART, AC2 and cascade correlation networks. As it can be concluded 
from the presented results (and as it is known from the experience with the Ghostminer 
program [Ghostminer], where the incNet network is implemented), the training times of the 
incNet network, which performed well in some cases, are several ranks of orders longer than 

at of VSS, NG and SMLP. FSM performs best when it is used as a committee of networks, 
hich makes the complexity of the model higher. PVM performs a complete search through 

ore for bigger dataset it is a very costly method. 
 
In cases where the user must understand decisions of the classifier, the 
h ven a more important factor than a very high accuracy on 

NG and VSS are not self-standing classifiers but only training algorithms for MLP 
ith the underlying architecture, because their 

rma LP network. NG and VSS should be rather 
are have been in chapter 2.4.5. It should 

e the only 
ore 

s frequently 
eded ta discretization, which removed much noise from the 

 
Results obtained with NG, VSS and SMLP are compared to the best classification 

ethods that can be found in the literature. The classification algorithms compared here were 
ortly introduced in chapter 3.1. Datasets selected for this comparison have been analyzed 

by many methods and crossvalidation or test accuracies obtained with the methods are 
available in the literature. Only the methods for which the results were available in the 
appropriate form are included in comparison. For example, several authors tested their 
methods on the original dataset divided into a separate training set and test set. In this case, 
the results strongly depend on the method (which was usually not reported) of dividing the 
dataset into the training and test set. Thus, because of different testing conditions the results 
cannot be compared with other methods, where crossvalidation was used and therefore they 
are not included in comparisons. 

 
One should remember that the testing procedure is frequently not performed correctly. 

“The next point is that a real test set is a dataset that the classifier has never seen before. A 
frequent practice is however, to train the classifier on one set and then check its performance 
on another set (called by us “test set”). If the results are not satisfactory, then we change 
something in the algorithm and once again train it one the first set and test it on the second 
set. And so on. By such modifications we adjust the algorithm to the only test set we have. So 
the “test set” is really no longer a test set, but rather the second training set. Then we boast 
that our algorithm achieved 100% accuracy on the test set. In this context, it is rather 
advocated to use crossvalidation. Since with crossvalidation we have 10 different training and 
test sets, moreover they are different at each run of the algorithm, thus the algorithm is less 
prone to adjusting to a given test set.” (Norbert Jankowski at Bioinformatics Workshop, 
Toruń, 03 July 2004).  

 

th
w
the solution space and theref

compre ensibility of rules can be e
the test set (chapter 3.1.4). 

 

networks and must be evaluated together w
perfo nce is bound by the limitation of M
comp d with other MLP training algorithms, and they 
be also pointed out that the MLP trainings were performed on raw data, wher
preprocessing was standardization of continuous features. Many other classifiers used m
sophisticated data preparation techniques. For example, the classification wa
prec  by feature selection and da
data and reduced the search space. 
 
 
3.2.12.2.  Testing Procedure  

m
sh
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If the data preprocessing is performed on the entire set, the crossvalidation results will 
e overestimated. On the one hand, this would allow assessing the performance on the 

classifi

 the 
parame This allows for testing the entire model and 
all the presented in this thesis were conducted in this way. 

sonable that for dataset with unequal class distribution rather the balanced 
accuracy should be maximized. (Also the accuracy given by the misclassification cost matrix 
can be ) However, in the methods available for comparison, always the standard 
accurac ized and reported. Therefore, to ensure the proper comparison with other 

sults also the standard accuracy was maximized in my tests. The balanced accuracies 
present

curacies that allowed for the highest 
test accuracies (chapter 2.6.1 – Fig. 2.48-right) and not the highest accuracies possible to 
obtain on the training set. It is almost always possible to obtain 100% accuracy on the 
training set (exc nt classes), but 

atically.  
 
 The 10-fold crossvalidation wa n 10 ti  (together 100 trainings and 100 tests). If 
the test set was used, the training and test w rform ly ecause 
SMLP is a deterministic method and 10 times for NG and VSS starting from different 
rand ghts.  
 

 standard deviation of th t ac y wi  si was 
calculated as  
 

 

b
er alone, but on the other hand, the classifier will never be used alone in cases, where 

the data must be preprocessed. Thus, in crossvalidation tests, all the preprocessing of data, 
such as normalization, discretization or feature selection should be performed only on the 
training partition of the set. Then the validation partition should be transformed using

ters determined on the training partition. 
experiments 
 
It seems rea

maximized.
y was maxim

re
ed in the tables were calculated using the equation (1.25).   

 
 The rules extracted from SMLP networks were always obtained on the entire training 
set. The accuracy of rules on the training and on the test set (if test set is available) is given. 
Moreover, the stability of rules and accuracy in crossvalidation tests are discussed. The 
accuracies on training dataset (or on the training partition of the dataset for crossvalidation) 
given in the tables for SMLP, NG and VSS are those ac

luding the cases, where two identical vectors belong to differe
such networks generalize poor and the test accuracy falls down dram

s ru mes
as pe ed on once for SMLP, b

om wei

The e tes curac thin a ngle crossvalidation 

( )∑
=

=
2

10
1

iaccstdS  (3.27) 

 
where the crossvalidation accuracy  th  of ly ors in the 
valid  to the n r of v tors in alid

− acc
100

10 i

acc is e tiora  tcorrec  classified vect
ation part of the dataset umbe ec  the v ation part and acc  is the 

quotient of the total num  of corre lass ector he 
num  the dataset. 
 

we e m curacies of the whole crossvalidations  
was 
 

ber ct  cly ified v s  tin experiment to the 10-fold 
ber of vectors in

The standard deviation bet
calculated as 

en th ean ac
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 ( )∑
=

−=
i

accacvstdCv  (3.28)

  
where the crossvalidation accuracy acv is the ratio of correctly classified vectors in the single 
10-fold crossv tio e nu  of ve in the ng set
 

The standard deviation provides not only infor n abou r stability but 
perhaps even m inistic 
method and for the same training and test sets always gives the sam
the standard deviations for SMLP are some s as hi 10%.  there are 100 
vectors in the training set and the classifier classifies 75% of y and always 
classifies th e wron no ma hat is the division between the training and 
test set. In the best case, the vectors can be distributed in this way, that in half of the 
crossvalidation sets 7 of them are classified correctly and in the o en the within 
rossvalidation standard deviation stdS will be 5.27% and there is no way to decrease it. But 
is does not tell us anything about the classifier stability. The between crossvalidation 

standard deviation stdCv also will never be zero even for a deterministic classifier, because 
there a

n 
f the whole crossvalidations 

10 21
1

i10

alida n to th mber ctors  traini .  

matio t the classifie
ore information about the dataset properties. SMLP is a fully determ

e results. Nevertheless, 
time gh as  For example,

them correctl
e same v ctors gly tter w

ther half 8. Th
c
th

re different vectors in particular training and test crossvalidation partitions, however 
this value can be used to assess how much a particular result can differ from the mean value 
and in this aim it is provided in the tables. The standard deviation can be used as an absolute 
classifier stability measure only if all the trainings and tests are carried out on the same two 
sets. 
 
 
Symbols used in the tables: 
 
TS  – separate test set  
10CV – 10-fold crossvalidation  
5CV – 5-fold crossvalidation 
12CV  – 12-fold crossvalidation 
L1O  – leave one out 
1ch  – one weight was changed at a time  
2
B

ch  – two weights were changed at a time 
S  – method based on beam search at feature level 

sdtS  – standard deviation of each test accuracy within a single crossvalidatio
StdCv  – standard deviation between the mean accuracies o
x-x-x – structure of the network (number of neurons in the successive layers) 
tc  – number of training cycles 
CN – number of networks in a committee 
r  – value of a regularization term in the error function ∑∑∑ +−=

i
i

v c
cvcv wrsdE 22

,, )(  

FG, FR , FT ,R – gaussian, rectangular, triangular and rotation of transfer functions 
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3.2.12.

: MBAP  
: MBAA  

f6: HNEP  

 
Logical rules were obtained with 1 hidden neuron per class. With more hidden 

neurons per class more detailed rules are obtained, covering correctly more training vectors, 
however they already overfit the data  (using t ore complex rules leads to lower accuracy 
in crossvalidation tests), thus it is not advocated to use them. Although the best result quoted 
in Table 3.8 was found by the IncNet neural n

e accuracy was higher in the test than on training set 
us the best stable solution in this case is that of PVM. 

3.  Appendicitis 
 

The dataset was donated by prof. Shalom Weiss from Rutgers University. The 
purpose of the analysis is to predict whether the patient suffers from appendicitis. There are 
106 vectors, 21 (19.8%) in the first (no-appendicitis) class and 85 (80.2%) in the second 
(appendicitis) class. The dataset contains 7 continuous features, values of medical tests: 

f1: WBC1  
f2: MNEP  
f3: MNEA  
f4
f5

f7: HNEA  

he m

etwork with 30 neurons, this was obtained with 
a high crossvalidation variance and th
th

 
 

Table 3.8. Classification results for the Appendicitis dataset. 
 

method training
% 

test 
% 

test 
method source 

in
30

.1 90.9 10CV [Jankowski 2003] cNet (1100 epochs,  90
 neurons) 

PVM 91.5 89.6 L1O [UMK-KMK] 
SS .3 88.7 L1O [Grąbczewski 2003] V – beam search 94
SSV 94.3 88.7 L1O [Grąbczewski 2003] 
6-NN - 88.0 10CV [UMK-KMK] 
FS - 87.6 10CV [Adamczak 2001] M (FG+R+CN=20) 
FS - 86.2 10CV [Adamczak 2001] M (FG+R) 
M - 83.9 10CV [UMK-KMK] LP BP 
CART 90.6 84.9 L1O [UMK-KMK] 
Naive Bayes 88.7 83.0 10CV [UMK-KMK] 
C-MLP2LN, 1 neuron 91.5 - L1O [UMK-KMK] 
C-MLP2LN, 2 neurons 94.3 - L1O [UMK-KMK] 
default  80.2   
NG (7-1, 10tc) 89.6 87.5 10CV this work 
VSS (7-1, 5tc, r=0.2) 89.8  88.0 10CV this work 
SMLP-DS (35-1-1, 1ch, 5ed) 92.2 88.2 10CV this work 
SMLP-VSS (35-1-1, 5ed) 90.8 87.3 10CV this work 
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Table 3.9. Additional para eters o pp s  

method %test %stdCv 
 

%stdS %test 
bala

m
co ix 

m f the A endiciti dataset training.
 

nced 
ean values in 
nfusion matr

NG 87.5 0.6 11.1 77 .3 12.7       8.3 
5.0       80.0 

VSS 88.0 0.7 8.7 76.8 
1 

 12.2       8.8 
3.9       81.

SMLP 88.2 
DS 

1.1 9.6 74 .1 
 

 .5 10.9       9
2.4       82.6

SMLP 
VSS 

87.3 1.2 10.8 73.6 
3.2       81.8 
10.7       10.3 

 
 

 
Before each crossvalidation run, the cut- f po  d ing each 

feature into 5 equal width intervals. Thus, in particular crossvalidation runs they could 
slightly differ from the values presented in the rules. There was no f ation of the 
cut-off point  opti ion ttemp but it not i sults). The 
weights were changed one at a time or two at a time with SMLP-DS or SMLP-VSS was used; 
all the meth uce ilar cy. D nding which weight was changed as first, 
different rule btai
 
Rule 1:  if  h 0 th -app itis el pendi
(accuracy: 88.7%, sensitivity: 61.9%, specificity: 95.5%)   
 

ule 2:  if  mnea<6670 then no-appendicitis else appendicitis 
(accura

 
  

ule 5:  if (wbc1<8500 or mnep<66) and mbap<12.1 then no-appendicitis else appendicitis  
.8%)  

e of the data and depending on

ber of instances. Combining 
these rules, additional inform

itis     (accuracy 89.2%) 
              if (hnea>5570 and mnea>6670) then appendicitis 
              if (hnea<5570 xor  mnea<6670) then P(no-appendicitis) = P(appendicitis)=0.5  

of ints were etermined by divid

urther optimiz
s (The mizat was a ted  did mprove the re

ods prod
s e o

d sim
ned: 

accura epe
wer

nea<557 en no endic se ap citis 

R
cy: 87.7%, sensitivity: 71.4%, specificity: 91.8%)   

 
Rule 3:  if  wbc1<8500 then no-appendicitis else appendicitis 
(accuracy: 87.7%, sensitivity: 57.1%, specificity: 94.1%)  
 
Rule 4:  if  mnea<6670 and mbap<12.1 then no-appendicitis else appendicitis
(accuracy: 91.58%, sensitivity: 61.9%, specificity: 98.8%)
 
R
(accuracy: 92.5%, sensitivity: 66.7%, specificity: 98
 
The, rules represent alternative ways to understand the structur  
the costs of medical tests experts may prefer one rule to the others. In crossvalidation tests, 
one of the above rules or another rule combining two features was generated. 

 
Three different rules (1,2,3) cover almost the same num

ation can be obtained: 
 

Rule 6:  if (hnea<5570 and  mnea<6670) then no-appendic
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Although the total accuracy of rule 6 is slightly lower than that of rule 4 and 5, it 
probably better describes the properties of this dataset, providing more information about the 
structure of the data, as can be seen in Fig. 3.13. A forest of SMLP networks trained with 
different order of weight examination and feature selection methods can be created to provide 
sets of equivalent rules, so that more information about the data can be obtained or the form 
of rules that experts find more interesting can
areas where crisp rules overlap. The value of the membership function of such a point can be 
proportional either to the probability density for a given class in this area or to the distance 
from that point to the decision border.  

 
 

 be chosen. Fuzzy rules can describe points in 

 
Fig. 3.13.  The Appendicitis dataset with decision borders. Projection into two-feature space. 

 
 
 

in Breast Cancer 

 

  l Size       
  f Cell Shape     
  
  
  
  tin                
               

  

 
 
 

3.2.12.4.   Wiscons
 

This dataset was obtained from the University of Wisconsin Hospitals, Madison from 
Dr. William H. Wolberg and is publicly available at UCI [Mertz 1998]. The purpose of the 
analysis is to predict whether the patient suffers from a benign or malignant breast cancer. 
There are 699 vectors, 458 (65.5%) in the first class (benign) and 241 (34.5%) in the second 
class (malignant). The first feature is a record label, the remaining 9 features have been 
discretized into 10 bins: 

f1: Sample code number            
f2: Clump Thickness                

  f3: Uniformity of Cel
  f4: Uniformity o
  f5: Marginal Adhesion           
  f6: Single Epithelial Cell Size    
  f7: Bare Nuclei                    
  f8: Bland Chroma
  f9: Normal Nucleoli   
  f10: Mitoses   
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Table 3.10. Classification results for the Wisconsin Breast Cancer dataset. 

m test 
% 

test 
method source 

 

ethod training 
% 

IncNet (3000 epochs, 40 
n

97.6 97.1 10CV [Jankowski 1999] 
eurons) 

3 97.1 10CV [UMK-KMK] -NN, Manhattan - 
2 - 96.9 10CV [UMK-KMK] 0-NN, Euclides 
FDA - 96.7 10CV [Ster 1996] 
M - 96.7 10CV [Ster 1996] LP BP 
F - 96.6 10CV [Adamczak 2001] SM (FG+R+CN=30) 
LVQ - 96.6 10CV [Ster 1996] 
Naive Bayes - 96.4 10CV [UMK-KMK] 
SSV ski 2003] - 96.3 10CV [Grąbczew
LDA - 96.0 ter 1996] 10CV [S
QUEST - 95.9 10CV [Lim 2000] 
FSM (FR) 10 [A- 95.4 CV damczak 2001] 
C4.5 - 94.7 10CV [Zarndt 1995] 
CART - 93.5 10CV [Zarndt 1995] 
default  65.5   
NG (10-2-1, 6tc, r=0.5)  10 th97.2 96.9 CV is work  
VSS (10-2-1, 4tc, r=0.5)  10 th97.2 96.8 CV is work 
SMLP-DS (97-1-1, 1ch-BS) .9 10 th97 97.1 CV is work   
SMLP-VSS  10 th97.8 97.1 CV is work    

 
 

ional parame of the nsin B t Can  
 

t %stdCv %stdS %test 
balanced

m
co

Table 3.11. Addit t  ers  Wisco reas cer dataset training.

method %tes
 

ean values in 
nfusion matrix 

NG 96.9 960.69 1.9 .6 446.7     11.3 
10.5     230.5 

VSS 96.8 96
 

0.20 1.7 .6 445.3     12.7 
9.7       231.3

SMLP 97.1 0.23 96  
 12.3      228.7 DS 

2.0 .6 449.9      8.1

SMLP 97.1
VSS 8.1      232.9  

 97 6 
 

0.58 2.0 .0 445.4     12.

 
All rules were found using one hidden neuron and changing one weight at a time with 

SMLP-DS. The single zero weights surrounded by two +1 or two –1 weights of the same 
feature were autom lly replaced by +1 or –1 weights respectively to remove the 
discontinuity. The third rule was found using beam search at feature level with changing one 
weight at a time.  
 
if  f3 <3.5 then benign else malignant   
(accuracy: 92.7%,  ity: 96.9%, specificity: 84.7%)
 

atica

sensitiv  
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if  f2<6.5 and f3<3 b l ig  
(accuracy: 95.1%, se vity: 96.7%, specificity: 92.1%) 
 
if  f2<6.5 and f7<3.5 and f9<2.5 then benign else malignant     
(accuracy: 98.0%, sensitivity: 98.9%, specificity: 96.3%) This rule is very stable, it is 
generat

.5 then enign e se mal nant    
nsiti  

ed in almost every crossvalidation run giving on average 97.9% accuracy on the 
training partition and 97.1% on the test partition of the dataset. 

 
It is worthwhile to note that the rules found here are both simpler and more accurate 

than those found by CART, C4.5 and SSV decision trees.  
 

In the coordinate system of sum S and normalized product NP of all the features 
except the first one (which is the sample code number), two clusters of data corresponding to 
classes are clearly visible (Fig. 3.14). The visible separation in the space between the two 
lasses leaves 20 vectors on the wrong side, which gives 97.14% accuracy. The best c

classifiers are asymptotically approaching this level.  
 

  
Fig. 3.14. Projection of the Wisconsin Breast Cancer dataset into the normalized product NP 
and sum S coordinate system. (NP=const·(f2·...·f10)1/9 , 1/9 is used in the power exponent, because there 
are 9 features, const is a normalization factor, to make the mean value of NP equal to the mean value of S.) 
 
 
 
3.2.12.5. Thyroid 
 

The dataset is publicly available at UCI [Mertz 1998]. The purpose of the analysis is 
to predict whether the patient suffers from primary hypothyroid, compensated hypothyroid or 
is healthy (no hypothyroid) given the results of various medical tests carried out on the 
patient. The training set contains 3772 vectors: 93 (2.5%) in the first class (primary 
hypothyroid) and 191 (5.1%) in the second class (compensated hypothyroid) and 3488 
(92.4%) in the third class (no hypothyroid). The test set contains 3428 vectors: 73 (2.1%) in 
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the first class and 177 (5.2%) in the second class and 3178 (92.7%) vectors in the third class. 
he dataset contains 21 features, 6 continuous and 15 binary: 

 

ary) 
 id-surgery (binary) 
 h iodine 131- (binary) 
 othyroid (binary) 
 yroid (binary) 
 with lithium (binary) 
 
 
 ry (binary) 
 ical symptoms (binary) 

f17: TSH level (continuous) 
f18: T3 level (continuous) 

 f19

 FTI level (continu

Table 3.12. C icatio lts for roi
 

d ining st thod e 

T
f1: age (continuous) 

 f2: sex (binary) 
 f3: treatment with thyroxine (binary) 
 f4: previous treatment with thyroxine (binary) 
 f5: treatment with antithyroid (binary) 
 f6: sick (binary) 
 f7: pregnant (bin

f8: thyro
f9: treatment wit
f10: test for hyp
f11: test for hyperth
f12: treatment 
f13: goiltre (binary) 
f14: tumor (binary) 
f15: hypopituita
f16: psycholog

 
 

: TT4 level (continuous) 
 f20: T4U level (continuous) 

f21: ous)  
 

lassif n resu  the Thy d dataset. 

metho tra te test me sourc
PVM 99.79 .33   99 TS [Weiss 1990]
SSV 99.79 .33  ] 99 TS [Grąbczewski 2003
incNet (200 000 epochs, 9.68 .24  999] 
9 neurons) 

9 99 TS [Jankowski 1

C4.5 - .2  ] 99 TS [Zarndt 1995
FSM (FR+CN=20) - .1  001] 99 TS [Adamczak 2
QUEST - .1  99 TS [Lim 2000] 
CART - .1  ] 99 TS [Zarndt 1995
C-MLP2LN 9.86 .07 TS [UMK-KMK] 9 99
FSM (FR) - .0  ak 2001] 99 TS [Adamcz
ID3 - .7  95] 98 TS [Zarndt 19
cascade correlation 100 .48  ann 1993] 98 TS [Schiffm
MLP + BP + genetic opt. .4 .4  ann 1993] 99 98 TS [Schiffm
1-NN, Euclides 98.4 97.7 TS [UMK-KMK] 
3-NN, Euclides 98.7 97.9 TS [UMK-KMK] 
MLP + BP 99.1 97.6 TS [Schiffmann 1993] 
Naive Bayes 97.03 96.06 TS [UMK-KMK] 
LDA - 93.81 TS [Lim 2000] 
CAL5 - 92.74 TS [Lim 2000] 
default  92.40   
VSS    (21-6-3, 40tc) 99.68 98.95 TS this work 
SMLP-DS   2x(x-1-1, 1ch) 99.79 99.33 TS this work  
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   Table 3.13. Additional parameters of the Thyroid dataset training. 
 

method %test %std %test m
test balanced

ean values in 
confusion matrix  

VSS 98.95 0.12 97.84 68        1      4 
test 0       175    2 

   28  1    3149 

SMLP 
D

trai

99.79 0.00 99.23 
      19
       3

S 
ning 

91       0        2 
0 
3 

1       0 
     3482 

SM
D
test 

99. .00 88         0
      17

10     11     3157 

LP 
S 

33 0 98. 71
0 

          2 
7       0 

 
 
First the continuous features were discretized. Then instead of a simple feature 

ranking, a f ilter based on SSV criterion [Gr
determined the following feature order according to decreasing m ation: TSH,  
th-surgery, FTI, on-thyroxine, TT4, pregnant I131_treatment, query-hyperthyroid, lithium, 
tumor and other features on further positions. The network training was performed on the two 
first classes separately using initially the balanced error and adjusting the cut-off points after 
each training cycles. Afterwards the error was changed to the standard error (that mainly 

ifted the cut-off point value for the TSH feature). The following rules were found changing 
ne weight at a time with one hidden neuron per class: 

  TSH>0.0061 and FTI<0.0647 and th-surgery=no then primary hypothyroid  
raining: sensitivity: 97.85%, specificity: 99.92%, test: sensitivity: 97.26%, specificity: 99.70 %) 
  TSH>0.0061 and FTI>0.0647 and TT4<0.15  and on-thyroxine=no  and th-surgery=no  

raining: sensitivity: 100%, specificity: 99.92%, test: sensitivity: 100%, specificity: 99.66%) 

  are almost ideally hyperrectangular and therefore the SMLP 
network can obtain very high accuracy with only one hidden neuron per class. The standard 
MLP n s with sigmoidal transfer functions to 
approx acy.  
 
 
 
 
 

eature f ąbczewski 2003] was used. The filter 
utual inform

, 

sh
o
 
if
(t
if
then compensated hypothyroid 
(t
else no hypothyroid    
(training: sensitivity: 99.83%, specificity: 99.30%, test: sensitivity: 99.34%, specificity: 99.20%) 
 

(training accuracy: 99.79%, test accuracy: 99.33%) 
 

The decision borders

etwork requires much more hidden neuron
imate the decision borders with comparable accur
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3.2.12.6. 

om the University Medical Center, Institute of 
Oncology, Ljubljana, Yugoslavia was donated by M. Zwitter and M. Soklic and is publicly 
available at UCI [Mertz 1998]. The purpose of the analysis is to predict whether the patient 
suffer nt or no-recurre  breas er. T  2  (70.2%) in 
the fir ss and 8 (29.8% the s (re  dataset 
contains 9 discrete features, some of them were originally continuous but are available only 
in the discretized f : 

nopause  
mor-size 

ed-nodes 
e-caps 

gree-malignant 
east 
east-quad 
radiation 

 
  

able 3.14. Classification sults f Ljub ea aset. 
 

me trainin te test  

Ljubljana Breast Cancer 
 

This breast cancer database fr

s from recurre nt t canc here are 86 vectors, 201
st (no-recurrent) cla 5 ) in econd current) class. The

orm
f1: age  
f2: me
f3: tu
f4: involv
f5: nod
f6: de
f7: br
f8: br
f9: ir

T  re or the ljana Br st Cancer dat

thod g st  method source 
C-MLP2LN 78.0 77.4 10CV [UMK-KMK] 
PV 77.4 77.1 10CV M [Weiss 1990] 
MM - 75 10CV 95] L  .3 [Zarndt 19
C4 - 73 10CV 95] .5  .9 [Zarndt 19
ML - 73 1 95] P BP  .5 0CV [Zarndt 19
SS - 72 10CV ski 2003] V  .7 [Grąbczew
AQ15 - 72.0 10CV [Statlog 1994] 
FSM (FG+R) - 71.6 10CV [Adamczak 2001]  
CART - 71.4 10CV [Zarndt 1995] 
CN2 - 70.7 10CV [Zarndt 1995] 
Naive B  ayes - 69.3 10CV [Zarndt 1995] 
ID3 66.2 - 10CV [Zarndt 1995] 
default  70.2   
NG (51-2-1, 6tc, r=0.35) 7  78.0 5.9 10CV this work 
VSS (51-2-1, 3tc, r=0.5) 78.8 76.0 10CV this work   
SMLP-DS , 2 7   (51-1 ch) 78.0 6.0 10CV this work 
SMLP-VSS (51-1) 78.9 75.7 10CV this work 

 
 

The rules for the Ljubljana Breast Cancer dataset were obtained with one hidden 
neuron per c n ne w  at a with S DS a -VSS.  
 
if degree-malignant<3 than no-recurrent else recurrent  
(accuracy: 72.0%, sensitivity: 80.1%, specificity: 52.9%)  
 
if node

ity: 30.6%)  

lass, cha ging o eight time MLP- nd with SMLP

-caps=no and degree-malignant=2 than no-recurrent else recurrent        
(accuracy: 75.5%, sensitivity: 94.5%,  specific
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if involved-nodes>2 and degree-malignant>2 than recurrent else no-recurrent        
(accuracy: 76.2%, sensitivity: 31.8%,  specificity: 95.0%)  

 
 

Table 3.15. Additional parameters of the Ljubljana Breast Cancer dataset training. 
 

method %test %stdCv 
 

%stdS %test 
balanced 

mean values in 
confusion matrix 

NG 75.9 0.28 7.2 61.1 20.8      64.2 
4.6      196.4 

VSS 76.0 0.25 6.3 60.2 18.0     67.0 
1.7      199.3 

SMLP 76.0 0.45 8.0 61.4 21.8    63.2 
DS 5.6      195.4  

SMLP 75.7 0.92 8.3 60.5 19.6      6
VSS 

5.4 
4.0      197.0  

 
 
 
 

 

 
sure (continuous) 

phic results (3 discrete values)  
ieved (continuous) 

ngina (binary) 
duced by exercise relative to rest (continuous) 

 peak exercise ST segment (discrete)  
f12: ca - number of major vessels colored by fluoroscopy (3 discrete values)  
f13: thal (discrete)  

 

 
 
 
 

 
3.2.12.7.  Cleveland Heart Disease 
 
 This dataset comes from the Cleveland Clinic Foundation and is publicly available 
form the machine learning database repository at UCI [Mertz 1998]. The purpose of the 
analysis is to predict the presence or absence of the heart disease given the results of various 
medical tests carried out on a patient. There are 303 vectors, 165 (54.5%) in the first class 
(healthy) and 138 (45.5%) in the second class (sick). The dataset contains 13 features: 

f1: age (continuous) 
f2: sex  (binary)  
f3: CP- chest pain type  (4 discrete values) 
f4: restbps - resting blood pres
f5: chol - serum cholesterol in mg/dl (continuous) 
f6: fbs - fasting blood sugar > 120 mg/dl (binary) 
f7: restecg -  resting electrocardiogra
f8: thalach - maximum heart rate ach
f9: exang - exercise induced a
f10: oldpeak - ST depression in
f11: slope of the
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Table 3.16. Classification results for the Cleveland Heart Disease dataset. 
d g t 

 so
 

metho trainin
% 

tes
%

test 
 method urce 

LDA - 5  84. 10CV [Ster 1996] 
FDA - 2  84. 10CV [Ster 1996] 
Naive Bayes - 83.4 10CV [UMK-KMK] 
FSM (FT+CN=20) - 2  1] 83. 10CV [Adamczak 200
LVQ - 9  82. 10CV [Ster 1996] 
FSM (FG+R) - 5  1] 82. 10CV [Adamczak 200
SVM - 5 81. 5CV [Bennet 1997] 
kNN - 5  81. 10CV [Ster 1996] 
MLP BP - 3  81. 10CV [Ster 1996] 
CART - 8  80. 10CV [Ster 1996] 
SSV - 7  ] 79. 10CV [Grąbczewski 2003
RBF - 1  79. 10CV [UMK-KMK] 
ASR - 4  78. 10CV [Ster 1996] 
C4.5 - 8 77. 5CV [Bennet 1997] 
QDA - 4  75. 10CV [Ster 1996] 
LFC - 1  75. 10CV [Ster 1996] 
ASI - 4  74. 10CV [Ster 1996] 
OC1 - 7 71. 5CV [Bennet 1997] 
1R - 0  71. 10CV [UMK-KMK]  
FOIL - 4  66. 10CV [UMK-KMK]  
default  3 54.1   
NG (24-2-1, 8tc, r=0.5) 0  86.9 85. 10CV this work 
VSS (24-2-1, 3tc, r=0.7) 1  87.7 86. 10CV this work 
SMLP-DS (28-1-1, 1ch) 5  84.5 81. 10CV this work 
SMLP-VSS (28-1-1) 5  87.2 85. 10CV this work 

 
 

Table 3.17. Additional pa rs of levelan t Di et training. 
 

 %stdCv %stdS %test 
ba

m  in 
co trix 

ramete  the C d Hear sease datas

method %test
 lanced 

ean values
nfusion ma

NG 85.0 0.44 5.5 84.6 145.8      19.2 
26.4     111.6 

 

VSS 86.1 0.30 5.1 85.7 149.2      15.8 
26.4      111.6 

SMLP 81.5 1.6 7.4 
DS 

81.1 142.2     22.8 
33.2     104.8  

SMLP 85.5 0.57 6.0 85.0 
VSS 

149.8     15.2 
28.8     109.2 

 
 
Seven of the vectors originally contained one missing feature value, which was 

replaced by the average value for their class. 
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First the SMLP network was trained on each feature separately to build feature 
ranking. Various discretization methods gave various information gain of the continuous 
features, however the differences were not enough big to change any feature position in the 

nking. The first seven features were: thal (76.90%), cp  (75.91%), ca  (74.92%),  exang  
.64%), slope (69.31%). Then the features were 

g to the ranking. One hidden neuron was used in all trainings. The 
llowing rules were obtained with SMLP-DS changing one weight at time as well as with 

  thal<>2  then healthy else sick   
ccuracy: 76.9%, sensitivity: 79.4%,  specificity: 73.9%)  This rule is very stable, it is 

enerated in each crossvalidation run giving on average 75.3% accuracy on the test part of 
e dataset. 

d ca=0 then healthy else sick  
ccura

 

em posed here is to predict whether a patient would test positive for diabetes given 
 num

 the first class (no diabetes) and 268 (34.9%) in the second class 
(diabetes). The dataset is rather difficult to classify. The class value is really a binarised form 
of another attribute, which is itself highly indicative of certain types of diabetes but does not 
have a one-to one correspondence with the medical condition of being diabetic. The feature 
f1 is discrete, the other 7 features are continuous:  

f1: number of times pregnant 
f2: plasma glucose concentration in an oral glucose tolerance test 
f3: diastolic blood pressure (mm/Hg) 
f4: triceps skin fold thickness (mm) 
f5: 2-hour serum insulin (mu U/ml) 
f6: body mass index (kg/m2) 
f7: diabetes pedigree function 
f8: age (years) 

ra
(71.95%), oldpeak (70.30%), thalach (69
reordered accordin
fo
SMLP-VSS: 
 
if
(a
g
th
 
f  thal<>2 and cp<>2 ani

(a cy: 85.5%, sensitivity: 89.7%, specificity: 80.4%) This rule is relatively stable, it is 
generated (sometimes slightly modified) in most of crossvalidation runs.  
 
 
 
 
 

 
 
3.2.12.8.  Pima Indians Diabetes 
 

This dataset was constructed by a selection from a larger database held by the 
National Institute of Diabetes and Digestive and Kidney Diseases. It is publicly available 
from the machine learning database repository at UCI [Mertz 1998]. The patients represented 
in this dataset are females at least 21 years old of Pima Indian heritage living near Phoenix. 

he problT
a ber of physiological measurements and medical test results. This as a two-class 
problem with class value 1 being interpreted as “tested positive for diabetes”. The dataset has 
768 vectors, 500 (65.1%) in
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Tab
 

le 3.18. Classification results for the Diabetes dataset. 

method training test test method source 
logDA - 77.7 12CV [Statlog 1994] 
DIPOL92 - 77.6 12CV [Statlog 1994] 
incNet (5000 epochs, 
100 neurons)  

77.2 77.6 10CV [Jankowski 1999] 

LDA - 77.5 12CV [Statlog 1994] 
SMART - 76.8 12CV [Statlog 1994] 
QUEST - 76.7 12CV [Lim 2000] 
RBF - 75.7 12CV [Statlog 1994] 
FSM (FT+CN=20) - 75.6 10CV [Adamczak 2001] 
ITRULE - 75.5 12CV [Statlog 1994] 
MML - 75.5 10CV [Zarndt 1995] 
FSM (FT) - 75.2 10CV [Adamczak 2001] 
MLP BP - 75.2 12CV [Statlog 1994] 
CAL5 - 75.0 12CV [Statlog 1994] 
SSV - 74.8 12CV [Grąbczewski 2003] 
CART - 74.7 10CV [Zarndt 1995] 
CASTLE - 74.2 12CV [Statlog 1994] 
Naive Bayes - 73.8 12CV [Statlog 1994] 
QDA - 73.8 12CV [Statlog 1994] 
C4.5 - 73.0 12CV [Zarndt 1995] 
LVQ - 72.8 12CV [Statlog 1994] 
SOM - 72.7 12CV [Statlog 1994] 
AC2 - 72.4 12CV [Statlog 1994] 
NewID - 71.1 12CV [Statlog 1994] 
CN2 - 71.1 12CV [Statlog 1994] 
ALLOC80 - 69.9 12CV [Statlog 1994] 
kNN - 67.6 12CV [Statlog 1994] 
default  65.1   
NG (8-2-1, 5tc, r=0.5) 77.8 77.0 10CV this work 
VSS (8-2-1, 3tc, r=0.5) 78.2 77.3 10CV this work 
SMLP-VSS (40-1, 3tc, 
r=0.5) 

78.6 76.8 10CV this work 

 
 

Table 3.19. Additional parameters of the Diabetes dataset training. 
 

method %test %stdCv %stdS %test mean values in 
  balanced confusion matrix

NG 77.0 0.40 4.2 72.6 155.6    112.4 
64.0     436.0 

VSS 77.3 0.26 4.8 72.9 156.0    112.0 
62.2      437.8 

SMLP 
VSS 

76.8 0.30 4.1 72.0 151.0    117.0 
61.6     438.4 
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The first four features in the fe
 (66.3%). The following rules were

ature ranking are: f2 (75.0%), f1 (67.8%), f8 (66.9%), 
 obtained with one hidden neuron changing one weight 

 a time with SMLP-DS: 

if  f2
(accu

(accu
 

 

been
oss es in a comprehensive way. The training algorithms are 
uch simpler than the gradient-based algorithms. Due to the perceptron properties, the rules 

is usually preferred, M-of-N rules are reduced to AND + OR operations whenever possible.  
 

sets the algorithms are 
mple and computationally efficient. It cannot be said that the only criterion of the rule 

Som which better reflect the data structure may be 
referred, although their accuracy is lower. It is possible to obtain several sets of rules by the 
odification of network parameters and training process. A forest of SMLP networks can be 
ilt to give users the possibility of choosing sets of rules that are most suitable for their 
rpose. 

It seems that the search-based approach to logical rule extractions has a large potential 
worth further investigation.

f6
at
 

>157 then no-diabetes else diabetes   
racy: 75.0%) 

 
if  f1>6.85 and  f2<157 and f6>42 and 49<f8<70 then no-diabetes else diabetes   

racy: 80.6%) 

 
 

3.2.13.  Conclusions 
 

A neural network approach to classification and rule extraction, called SMLP has 
 proposed. The model combines the advantages of MLP neural networks with the 
ibility of extracting simple rulp

m
given by hidden neurons are in the M-of-N form. Since the prepositional form of logical rules 

As the experiments showed, the accuracy of results on the popular benchmark data 
is comparable with the best results obtained from other methods, while 

si
quality is the classification accuracy either using crossvalidation or a separate test set. 

etimes rules which are simpler or 
p
m
bu
pu
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4.  Summary 
 

Several properties of MLP networks were examined, including the properties of MLP 
error surfaces, learning trajectories, trends of weight changes and neuron signals. The PCA-

their p ced search 

directio

ing algorithms were 

algorith
which in particular do not have to be differentiable. The algorithms were tested on many 

present  ability of finding 

stabilit
improving network generalization were discussed. 

gical rule extraction from MLP network with quantized 

SMLP 
the dir odified version of variable step search algorithms. Several 

applied  from data using MLP 

optimiz

 
5.  F

• Se

• Find a m

by

• I have no plans concerning rule extraction systems, since the above-mentioned topics 

ex
 

based visualizations of many MLP error surfaces were presented and the factors influencing 
roperties were discussed. The possibility of training network in the redu

space was discussed. The properties of error surface sections in different layer weight 
ns and in different phases of training were examined. 

 
Basing on the conclusions from this research, two new MLP learn

developed: numerical gradient (NG) and variable step search algorithm (VSS). The 
ms do not impose any restrictions on network structure and neural transfer functions, 

datasets and a comparison including many factors with other MLP learning algorithm was 
ed on several datasets. Especially VSS algorithm proved to have the

good solutions, with very low network error at a low computational effort and with high 
y of the achieved results. Several methods of reducing the computational costs and 

 
A search-based approach to lo

parameters was presented. The logical rules are extracted from data by the analysis of the 
network weights. Two search-based algorithms from SMLP networks were proposed: 
ect search method and a m

additional aspects of these algorithms were discussed and possible solutions were proposed.  
 
It should finally be concluded that the search-based algorithms can be successfully 
 for multilayer perceptron training and for logical rule extraction

networks. The proposed solutions in many aspects performed better than gradient-based 
ation algorithms.  
 

 

uture Work 
 

arch for other interesting projections of MLP error surface that will reveal more error 
surface properties, maybe some kinds of kernel PCA or other non-linear projections. 

 
• Apply VSS also to MLP trained for regression problems. 
 

ore effective sequence of examining the weight changes in VSS.  
 
• Analyze MLP decision borders and the ways to influence them more precisely than only 

 minimizing the global error measure. 
 

seem more interesting to me and moreover very many people work nowadays on rule 
traction systems. So I leave this topic for them and wish them good luck. 
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