

Search-based Algorithms
for Multilayer Perceptrons

by

Mirosław Kordos

www.phys.uni.torun.pl/~kordos

 A dissertation submitted for the degree
of Doctor of Philosophy

Supervisor: prof. Włodzisław Duch

The Silesian University of Technology
Faculty of Automatic Control, Electronics and Computer Science

Institute of Computer Science

Gliwice 2005

Thesis

Algorithms based on systematic search techniques can be successfully applied for
multilayer perceptron (MLP) training and for logical rule extraction from data using MLP
networks. The proposed solutions are easier to implement and frequently outperform
gradient-based optimization algorithms.

Abstract

Search-based techniques, popular in artificial intelligence and almost completely
neglected in neural networks can be the basis for MLP network training algorithms. There are
plenty of well-known search algorithms, however since they are not suitable for MLP
training, new algorithms dedicated to this task must be developed. Search algorithms applied
to MLP networks change network parameters (weights and biases) and check the influence of
the changes on the error function. MLP networks considered in this thesis are used for data
classification and logical rule-based understanding of the data. The proposed solutions in
many cases outperform gradient-based backpropagation algorithms. The thesis is organized
in three parts.

The first part of the thesis concentrates on better understanding of MLP properties.
That includes PCA-based projections of error surfaces and learning trajectories, trends and
statistics of weight changes and visualization of hidden and output neuron activities. Since
the network training is in fact realized by searching for a minimum on the error surface, the
knowledge obtained from the error surface analysis can be incorporated in learning
algorithms, thus making network training more efficient. Learning trajectories are placed on
the error surface. Observing them can also suggest some improvements to the existing
learning algorithms or can help with designing new ones. Visualization of the hidden and
output neuron activities can suggest possible ways of clustering or removing some training
data. Analysis of trends and statistics of weight changes provides more information that can
be used to tune the training parameters. Several conclusions drawn from this research are
used for designing and optimizing MLP learning algorithms in the second part of the thesis.

The second part of the thesis introduces two search-based MLP learning algorithms:
numerical gradient and variable step search algorithm. In contrast to the training algorithms
that use analytical gradients, they impose no restrictions on transfer functions, error functions
or neural connection structures. In particular computationally cheap, non-differentiable
transfer functions can be used. Spurious local minima are a typical problem of algorithms that
back-propagate the error to hidden layers. Because the influence of hidden layer weights on
the network error is directly checked in search-based algorithms, the direction towards the
minimum can be determined in each learning step more precisely. The advantages of search-
based methods include fast and reliable convergence, low variance of results obtained with
different starting points, low memory requirements and simple implementation of the
algorithms because complicated derivatives of the error function are not required. Although
local optimization methods, including search-based ones, do not guarantee finding a global
minimum for every problem, for the prevailing number of real-world problems the proposed

 2

methods are sufficient. Only in rare cases the use of global optimization methods that require
much higher computational effort may be required, giving a greater chance to find optimal
solutions for complex problems.

The third part of the thesis presents a search-based approach to logical rule extraction

from data using MLP networks with quantized parameters. The network training is quite fast,
frequently one training cycle is sufficient and the final network function is converted to
logical rules using a simple analysis of the network weights. If needed, the network structure
is dynamically adjusted to the dataset properties. Feature selection and data discretization are
also automatically performed by the network. Various modifications of the method are
presented, each generating a specific form of rules. Depending on the desired information one
of the methods can be chosen.

Acknowledgements

First, I want to thank my supervisor prof. Włodzisław Duch for his time, guidance,
successful cooperation and many interesting ideas, then prof. Tadeusz Czachórski for his help
with organizing my PhD studies, dr Krzysztof Grąbczewski for explanations of some detailed
topics, Marek Pyś for his help with Delphi programming issues, Marcus Gallagher whose
PhD thesis on MLP error surfaces was a significant inspiration for my research, and all the
authors of numerous computer programs and publications that proved useful with my PhD
thesis. Last but not least I am grateful to my wife Magdalena and my sons Witold and
Szczepan for good conditions for my work.

Original Contribution

 The original contribution of this thesis comprises: the detailed analysis of factors
influencing MLP error surface supported by PCA-based error surface visualization, the
analysis of directions in MLP weight space and two MLP training algorithms based on the
above analysis: numerical gradient (NG) and variable step search algorithm (VSS).
Additionally, two search-based training methods for special structure MLP networks (SMLP)
used for logical rule extraction from data were developed: direct search method and a method
based on the modified VSS algorithm.

 3

Contents

1. Properties of Multilayer Perceptrons 8
1.1. Introduction 8

1.1.1. Neuron Model 8
1.1.2. Multilayer Perceptron Model 10
1.1.3. Data Classification with Multilayer Perceptrons 11
1.1.4. Applications of Multilayer Perceptrons 14
1.1.5. Further Development of Multilayer Perceptrons 14

1.2. Visualization and Properties of MLP Error Surface 15
1.2.1. The Purpose of MLP Learning Visualization 15
1.2.2. MLP Error Surface 16
1.2.3. Research Methodology 17

1.2.3.1. Overview of Research Methodology 17
1.2.3.2. Principal Component Analysis 18
1.2.3.3. Plot Construction 20
1.2.3.4. Independent Component Analysis 23
1.2.3.5. Two-weight Coordinate System 25

1.2.4. Network Structure Influence on Error Surface 25
1.2.5. Training Dataset Influence on Error Surface 27

1.2.5.1. Description of the datasets used in experiments 27
1.2.5.2. Experimental Results 28

1.2.6. Transfer Function Influence on Error Surface 30
1.2.6.1. Monotone Transfer Functions 30
1.2.6.2. Non-monotone Transfer Functions 32

1.2.7. Local Minima 32
1.2.8. Error Function Influence on Error Surface 34

1.2.8.1. Different Exponents in Error Function 34
1.2.8.2. Weight Regularization 35
1.2.8.3. Cross-Entropy Error Function 36

1.2.9. Weight Changes on Error Surface 36
1.2.10. Reducing the Number of Effective Parameters 37

1.2.10.1 Directions in the Weight Space 37
1.2.10.2. PCA-based Parameters Reduction. A Case Study 39

1.2.11. Sections of MLP Error Surface 40
1.2.12. Conclusions 41

1.3. Visualization and Properties of MLP Learning Trajectories 42
1.3.1. Error Surface and Learning Trajectory 42
1.3.2. Learning Trajectory Extrapolation 44
1.3.3. Learning Trajectories of Various Training Algorithms 46

1.4. Weight Changes during MLP Training 48
1.5. Neural Activity and Data Spaces 49
1.6. Standard and Balanced Classification Accuracy 52
1.7. Decision Borders 54

2. Search-based algorithms for MLP training 56
2.1. Review of MLP training algorithms 56

 4

2.1.1. Analytical Gradient-based Algorithms 56
2.1.1.1. Backpropagation 56
2.1.1.2. RPROP 57
2.1.1.3. Quickprop 57
2.1.1.4. Scaled Conjugate Gradient 58
2.1.1.5. Quasi-Newton 59
2.1.1.6. Levenberg-Marquardt Algorithm 60
2.1.1.7. RLS 61

2.1.2. Global Optimization Algorithms 62
2.1.2.1. Simulated Annealing 62
2.1.2.2. Alopex 62
2.1.2.3. Novel 63
2.1.2.4. Genetic Algorithms 64

2.2. Basis of Search Algorithms 65
2.2.1. Depth-First Search 65
2.2.2. Breadth-First Search 66
2.2.3. Hill Climbing Search 67
2.2.4. Beam Search 67
2.2.5. Best-First Search 68
2.2.6. Search Algorithms for MLP Training 69

2.3. Numerical Gradient 70
2.3.1. Overview of Numerical Gradient Algorithm 70
2.3.2. Signal Table 71
2.3.3. Analytically and Numerically Determined Gradient Directions 72
2.3.4. Continuous and Discrete Search Space 74
2.3.5. Gradient Direction and Optimal Next Step Direction 76
2.3.6. Error Surface Curvature and Second Derivative 81
2.3.7. Numerical Gradient with Momentum 82
2.3.8. Experimental Comparison of various NG Methods 84
2.3.9. Conclusion 89

2.4. Variable Step Search Algorithm 90
2.4.1. In-place versus Progressive Search 90
2.4.2. Determining Weight Values 91
2.4.3. Analysis of Weight Changes 94
2.4.4. Learning Trajectories 97
2.4.5. Experimental Comparison of VSS, NG, LM and SCG 100
2.4.6. N-bit Parity Problems 102
2.4.7. Conclusions 104

2.5. Decreasing Training Time 104
2.5.1. Border Vectors 104
2.5.2. Batch Versus Online Training 106

2.6. Improving Generalization 109
2.6.1. Introduction 109
2.6.2. Early Stopping 110
2.6.3. Weight Regularization 111
2.6.4. Stretched Sigmoids and Desired Output Signals 0.1 and 0.9 112
2.6.5. ε-insensitive Learning 112
2.6.6. Optimal Brain Damage (OBD) and Optimal Brain Surgeon (OBS) 113
2.6.7. Statistical Weight Analysis 114
2.6.8. Growing Networks 114

 5

3. Logical Rule Extraction from MLP Networks 115
3.1. Review of Rule Extraction Algorithms 115

3.1.1. Decision Trees 115
3.1.1.1. Introduction 115
3.1.1.2. CART 116
3.1.1.3. ID3 116
3.1.1.4. C45 117
3.1.1.5. SSV Tree 117

3.1.2. Neural Networks 118
3.1.2.1. Introduction 118
3.1.2.2. Validity Interval Analysis (VIA) 118
3.1.2.3. TREPAN 119
3.1.2.4. RULENEG 120
3.1.2.5. BIO-RE, Partial-RE and 120
3.1.2.6. RX 121
3.1.2.7. Subset Algorithms 121
3.1.2.8. M-of-N 121
3.1.2.9. RULEX 122
3.1.2.10. Neurorule and M-of-N3 122
3.1.2.11. FERRN 122
3.1.2.12. FSM 123
3.1.2.13. MLP2LN 123

3.1.3. Fuzzy and Neuro-Fuzzy Systems 125
3.1.3.1. FLEXNFIS 125
3.1.3.2. NEFCLASS 126
3.1.3.3. FuNN 126
3.1.3.4. Four-layer Neuro-fuzzy Systems 126

3.1.4. Hybrid Systems 127
3.1.4.1. GEX and GenPar 127
3.1.4.2. C4.5 Rule-PANE Algorithm 127

3.1.5. Other Algorithms Used in Comparison of Experimental Results 128
3.2. SMLP 132

3.2.1. Introduction 132
3.2.2. SMLP Network Structure 132
3.2.3. SMLP-DS Training Algorithms 134
3.2.4. Rule Extraction 139
3.2.5. SMLP-VSS Training Algorithm 142
3.2.6. Step Versus Sigmoidal Transfer Function 144
3.2.7. Feature Selection 145
3.2.8. Feature Discretization 147

3.2.8.1. Prior to Training Discretization 147
3.2.8.2. Run-time L-unit Based Discretization 148

3.2.9. Advanced Training Methodology 149
3.2.9.1. The Training Algorithm 149
3.2.9.2. Sample SMLP Training on the Mushrooms Dataset 150

3.2.10. Comparison of SMLP Standard MLP Networks 157
3.2.11. SMLP Architecture for Complex Rules 159
3.2.12. Experimental Results and Rules Extracted from Data 161

3.2.12.1. Criteria of Classifier Quality 161
3.2.12.2. Testing Procedure 163

 6

3.2.12.3. Appendicitis 166
3.2.12.4. Wisconsin Breast Cancer 168
3.2.12.5. Thyroid 170
3.2.12.6. Ljubljana Breast Cancer 173
3.2.12.7. Cleveland Heart Disease 174
3.2.12.8. Pima Indians Diabetes 176

3.2.13. Conclusions 178

4. Summary 179

5. Future Work 179

6. List of Publications 180

7. References 181

 7

Part 1

Properties of Multilayer Perceptrons

1.1. Introduction

An artificial neural network is a general mathematical computing paradigm that
models the operations of biological neural systems [Hen 2002]. Research on artificial neural
networks was originated in 1943 by McCulloch and Pitts [McCulloch 1943] who proposed
the first mathematical model of a neuron. In 1958 Rosenblatt [Rosenblatt 1958] introduced
the first neural network known as perceptron. All neural network models that have been
proposed over the years, share a common building block known as a neuron and a networked
interconnection structure. The most widely used neuron model is based on McCulloch and
Pitts’ neuron and the most widely used neural network called multilayer perceptron is based
on several sequentially connected layers of perceptrons.

 In general, neural networks can be divided into feed-forward and recurrent networks.
In recurrent networks, the output signals of neurons are by feedback also given as their input
signals. In feed-forward networks, an output signal of a neuron has no more influence on its
input – the signals are propagated only forward. Multilayer perceptron considered in this
thesis belongs to the feed-forward networks.

1.1.1. Neuron Model

x1

x2

x3

1

w1

w2

w3

w0

YY=f(X,W)

Fig. 1.1. Neuron model.

A neuron consists of two parts: the net function and the activation function. The

activation function is also known as transfer function. The net function determines how the
input signals are combined inside the neuron.

 8

The most commonly used net function and the only one considered in this thesis is
given by the following formula:

 (1.1) i

N

i
iwxu ∑

=

=
0

The parameters w are called weights. The weight w0 is called bias or threshold and its
corresponding input signal x0 always equals 1 and does not form a connection between two
neurons as other weights do. In the first and second part of the thesis the term “weight” is
used as well for any weight connecting two neurons as for bias.

Table 1.1. Commonly used neural transfer functions.

transfer function formula comments
hyperbolic tangent Y=(1-exp(-βu))/(1+exp(-βu))
logistic sigmoid Y=1/(1+exp(-βu))
threshold Y=a for u≤0, Y=b for u>0 usually a=-1 or 0, b=1
linear saturated Y=a for u≤u1, Y=βu for u1<u<u2,

Y=b for u≥u2
usually a=-1 or 0, b=1

linear Y=βu used only in the output network layer
for function approximation tasks, not
used for data classification

staircase not suitable for analytical gradient-
based learning algorithms, usually b=1,
a=-1 or 0

Fig. 1.2. Commonly used neural transfer functions: a – hyperbolic tangent, b – logistic
sigmoid, c – threshold, d – linear saturated (semi-linear), f – linear, d – staircase.

 9

The output of a neuron denoted by Y is related to the output of the net function u by a
transformation called activation (or transfer) function. Virtually any continuous non-linear
and monotone function can be used as neural transfer function [Duch 1999b]. Moreover, if
analytical gradient-based methods are used for network training, the functions must be
differentiable. The transfer functions most commonly used for multilayer perceptron are
summarized in Table 1.1. and their characteristics are shown in Fig.1.2.

1.1.2. Multilayer Perceptron Model

A single layer perceptron is able to classify only linearly separable data. For example,
it is not able to solve the Xor problem. This fact was noticed by Minsky and Papert [Minsky
1969] in their famous book “Perceptrons” in 1969. The book contributed to stagnation in
research on neural networks for certain time. It was known that multilayer perceptron would
solve linearly nonseparable problems, however efficient algorithms for training of MLPs
were not known at that time. The first successful algorithm, called backpropagation, was
developed several years later [Werbos 1974][Rumelhart 1986] and since that time the field of
neural networks has been rapidly developing.

A multilayer perceptron (MLP) is a network that consists of usually two or three
layers of neurons and of an additional input layer. The input layer is counted by some authors
as a separate network layer while by others it is not. In this thesis a three-layer network refers
to a network of two layers of neurons based on the McCulloch and Pitts’ model and one
additional input layer of neurons that only distribute the input signals, as shown in Fig.1.3.

Fig. 1.3. Three-layer fully connected MLP network. Vertical arrows symbolize biases.

 In practical implementations there is one input and one output layer and the number
of hidden layers can be zero, one or two. During the training process the weights of the
output layer and of all hidden layers are optimized. Two successive layers may but do not
have to be fully connected. In addition, some weights that prove useless can be removed
during or after the network learning process. An MLP network is said to be fully connected if
every node in a given layer is connected to every node in the following layer. In some
network architectures additional, so called “crossover” connections may be used that directly
connect the input layer with the output layer (Fig.1.4).

 10

Fig. 1.4. Three-layer MLP network with crossover connections.

1.1.3. Data Classification with Multilayer Perceptrons

Classification is one of the most frequently encountered decision making tasks of
human activity. A classification problem occurs when an object needs to be assigned into a
predefined class (group) based on a number of observed features (attributes). [Zhang 2000].
Neural networks have emerged as an important tool for classification.

The datasets used by neural networks can be organized in the form of two-

dimensional matrices. Each raw of the data matrix contains values of all features that describe
a single point in the feature space, called a vector. Each vector is labeled with class
information. Thus, the rows of the data matrix contain vectors and the columns contain
features. A sample dataset organized in the matrix form is shown in Fig.1.5

 Feature 1 Feature 2 Class

 0 0 0
 0 1 1
 1 0 1
 1 1 0

Fig. 1.5. Representation of a sample dataset with class labels.

The features can take numerical continuous, numerical discrete or symbolic values
(e.g. red, yellow, green). Since MLP networks require numerical inputs, symbolic features
must be represented by their numerical counterparts. There are two possible representations.
In the first one, each symbolic value is assigned a numeric value and only one input neuron is
used for a symbolic feature. In the second one, used in this work, each symbolic feature is
represented by a vector of zeros and ones. The length of that vector equals the number of
values that the feature can take. All positions in that vector are filled with zeros, except the
position corresponding to the actual value of the feature, which takes the value of one. One

 11

input neuron is created for each possible value of the feature, as shown in Fig.1.6. To reduce
the number of inputs, one feature value can be considered as default. The default value does
not require a corresponding input neuron – if it occurs in the data vector, than no signal is
given to any input neuron. Using default values is especially convenient if there are only two
discrete or symbolic values in a given feature.

The data classification process consists of two phases. In the training phase the
network learns to recognize which data vectors belong to given classes. In the test phase the
network is required to classify correctly vectors that have not been used in the training phase.

Each output neuron is assigned a priori to one class. Only the output neuron assigned

to the same class as the actual data vector should be activated and its signal should equal one.
The signals of all other output neurons should be zero. Nevertheless, it is usually sufficient if
the appropriate output neuron signal is higher than 0.5 and higher than the signals of all other
output neurons. If this condition is satisfied, than we consider a given vector to be classified
correctly.

continuous
feature 1

symbolic
feature 2,
value 1

symbolic
feature 2,
value 1

Fig. 1.6. Each value of a symbolic or discrete feature is assigned to a separate input neuron.

Usually before the training phase begins, all weights in the network are assigned a

small random values, e.g. within the range (-1;1). Then the training dataset is given to the
network inputs vector by vector and the signals propagate through the network. In an ideal
situation, only the output neuron assigned to the same class as the actual data vector v is
activated and its signal is one, the signals of all other output neurons are zero and the network
gives zero error for this vector. In general, the error for a single vector is a function of the
differences between the desired and actual signals of all output neurons. The total network
error E is the sum of all single vector errors:

)(,,∑∑ −=

v c
cvcv sdfE (1.2)

where d is the desired output signal and s is the observed output signal of the output layer
neuron c in response to the training vector v. Many error functions f exist. The most
frequently used error function is based on the mean squared error (MSE):

 12

 2
,,)(∑∑ −=

v c
cvcv sdE (1.3)

There is some ambiguity in the literature regarding MSE. According to some

publications the formula (1.3) represents MSE, while according to other authors the error
represented by (1.3) is called sum squared error (SSE) and the average error per single vector
in a single output neuron is called MSE (1.4).

 SSE
NN

MSE
cv

1
= (1.4)

where Nv is the number of vectors in the training set and Nc is the number of output

neurons (which usually equals the number of classes, unless there is a default class that does
not have a corresponding neuron. No output neuron should be activated in response to the
default class vector). However, since MSE is the rescaled SSE, the errors always change
proportionally and the mentioned ambiguity practically does not cause any problems.

The aim of the network training is to maximize the classification accuracy as well for

the training dataset as for the test dataset. In order to achieve this, the training algorithm
minimizes the value of the error function by adjusting values of network parameters. The
network error is a function of many parameters, such as the training dataset, network
connection structure and weight values. However, if we assume that the training data and
network structure is not being changed during the training, the weight values are the only
parameters of the error function. The network error function can be imagined as a
multidimensional surface, with each weight defining one dimension. Thus, the training
algorithms search for a minimum on the error surface.

Except for very simple cases the training algorithms change the weight values

iteratively many times. The training set is given to the network inputs vector by vector, the
network error is calculated and the weights are adjusted in order to minimize the error. The
process of propagating once the entire training set through the network is usually called an
“epoch”. The process of performing one iteration of the training algorithm is called a
“training cycle” (however sometimes it may also be called an “epoch”). Depending on the
training algorithm one training cycle can contain a single epoch, several epochs or only a
fraction of an epoch.

In supervised learning the network is explicitly told to which class a given vector

belongs. By contrast, in unsupervised learning, the network uses unlabeled data (without
class information) and has to deduce the classes from data. MLP training algorithms belong
to supervised learning methods.

MLP training algorithms can be divided into several categories, such as analytical

gradient-based, global optimization or search-based methods. Analytical-gradient based
algorithms calculate the derivative of error function with respects to every weight and than
change the weights in order to minimize the network error (by moving downwards on the
error surface). Global optimization algorithms do not change the weights basing on the
gradient direction but search for the minimum in much broader areas. Many methods belong
to that group. Search-based methods proposed in this work belong to local methods that
instead of analytical gradients use variants of search algorithms. Detailed discussion of MLP
training algorithms is presented in the second part of this thesis.

 13

An MLP network used for classification performs a mapping from the input (feature)

space to the output (class) space. The aim of the network training is to obtain such weights
(and such network structure if it is also modified by the training algorithm) that the mapping
reflects the structure of the data and not the single data points. This is known as
generalization. The training data frequently contains some noise and the noise should not be
reflected in the mapping. If a network generalizes well then it achieves similar classification
accuracy on a training set and on a test set. A test contains vectors, which belong to the same
data distribution, but which have never been used in the training process.

Often the availability of data is limited and using a part of it as a test set is not

practical. An alternative is to use the procedure of crossvalidation. In k-fold crossvalidation
the training set is randomly divided into k subsets, the network is trained using k-1 subsets
and tested on the remaining subset [Bullinaria 2002]. Typically k=10 is considered
reasonable. The process of training and testing is then repeated k times, using each one a
different subset as a test set. The average classification accuracy on the k test subsets gives
the estimate of the network performance.

1.1.4. Applications of Multilayer Perceptrons

The advantages of neural networks over conventional programming lies in their
ability to solve problems that do not have an algorithmic solution or the existing solution is
too complex to be found. Problems that were unsolvable using logical systems are now being
tackled using an artificial neural network approach [Pennington 2003].

Multilayer perceptron is the most widely used type of neural networks and thousands

of applications of MLP networks are known. These problems are in areas as diverse as
medical diagnosis [Sordo 2002][Adamczak 2001][Jankowski 1999], medical image
recognition [Pincho 1993][Kabarowski 1999][Pennington 2003], time series prediction
[Osowski 1996], data compression [Gabriel 2003][Verma 1999], defect detections in
materials [Karras 2001], bankruptcy prediction [Altman 1994][Raghupathi 1996], music
classification [Maihero 2004], solar collectors sensitivity analysis [Zarate 2004], handwriting
recognition [Garris 1998][Lee 1993],viruses and internet worms detection [Bielecki 2004],
and many others. The applications found for neural networks continue to grow at a rapid rate.

1.1.5. Further Development of Multilayer Perceptrons

Using neural networks problems can be solved without the need to understand how a
solution is achieved. As long as there are a finite number of attributes to the problem and an
expected result, neural networks can find a solution to the problem. This makes them a useful
tool for anyone working on pattern recognition problems. Nevertheless, many people do not
trust neural networks because they do not explain how they have reached the solution.
Especially in medicine, where the knowledge of how the result has been obtained is
important, many doctors do not want to use neural networks, in spite they have higher
diagnosis accuracy than other systems [Sordo 2002]. Although some attempts were made to
extract logical rules from trained neural networks, many people still consider them as black
boxes [Duch 2001, 2004c].

 14

The aim of this thesis is not only to propose new algorithms for MLP training and

logical rule extraction but also to explain, as far as possible, how the networks work. Thus, a
great emphasis is placed on the understanding of neural learning processes. Frequently plots
are used to show many interesting aspects, including visualization of high-dimensional MLP
weight spaces. A better understanding of how the networks work also allows us to develop
better algorithms for the network training and logical rule extraction.

1.2. Visualization and Properties of MLP Error Surface

1.2.1. The Purpose of MLP Learning Visualization

Visualization of learning processes in neural networks shows the dynamics of
learning, allows for comparison of different network structures and different learning
algorithms, displays training vectors around which potential problems may arise, shows
differences due to regularization and optimization procedures, investigates stability of
network classification under perturbation of original vectors, and allows for estimation of
confidence in classification of a given sample.

There are many known methods of high dimensional data visualization [Atkosoft

1997][Naud 2001], however most of them are not suitable for visualization of learning
processes in neural networks. Thus, several methods especially dedicated to MLP learning
have been proposed in the literature. In a Hinton diagram [Hinton 1986] each weight value in
the network is represented by a box. The size of the box gives the magnitude of the weight,
whereas the color (e.g. white or black) indicates whether the weight is positive or negative.
The Bond diagram [Wejchert 1991] visualizes the weights on the topology of the network.
Units are represented as simple points, with “bonds” of varying length (weight magnitude)
and color (weight sign) emanating from unit outputs towards other units. Wejchert and
Tesauro [Wejchert 1991] also consider a trajectory diagram, which emphasizes the
visualization of the learning process itself by representing the multidimensional coordinate
system in a two-dimensional plane by a star-like projection. The projection allows weight
vectors to be plotted radially component by component, but it is practically limited to about
six weights in the network. The plots of two different weight values against the error
function, which produce a two-dimensional slice of the n-dimensional error surface, have also
been used in the literature [Gallagher 2000].

PCA (Principal Component Analysis) was used for three-dimensional visualization of

backpropagation learning trajectories [Gallagher 2000, 2003], for visualization of learning
trajectories of several training algorithms [Kordos 2004b, 2004c, 2005] and for visualization
of MLP error surfaces [Kordos 2004a, 2004c]. Visualization of each layer neuron signals was
considered in [Duch 2004a]. The dependencies between the gradient components and the
error surface sections in particular directions [Kordos 2004d, 2005] and the changes of
weight values can also provide information that can be practically used to tune some training
methods.

 15

The most interesting visualization methods together with several statistics from
network trainings are presented in the following chapters. The purpose of that visualization is
to enhance the understanding of neural network processes and to give some hints for training
algorithms design and optimization. The practical conclusions from the study allow for
shortening training times and increasing the stability and accuracy of network learning
processes. In this part of the thesis, as well by “epoch” as by “training cycle” we will
understand one iteration of the training algorithm, after which all the weights change their
values.

1.2.2. MLP Error Surface

The error surface (ES) E(W)=∑X||Y-M(X;W)|| of a neural network is defined in the

weight space W (including biases as W0 weights) for a given set of training vectors X, desired
output vector Y and a vector mapping M(X;W) provided by the neural network. Only the
multilayer perceptron (MLP) networks are considered here. Probably it would be possible to
use similar techniques to investigate other types of feedforward networks, however it has not
been attempted yet. An MLP training process can be defined as a search for a global
minimum on the hyper-surface E(W), where it creates a learning trajectory.

Fig. 1.7. MLP error surface sections of Iris (4-4-3) in gradient directions obtained using
numerical gradient training cycles 1÷5.

One way to understand better the learning dynamics of MLPs is to visualize both the

ES and the learning trajectory using projections of the original space into a two- or three-
dimensional subspace. The projection directions should preserve most information about the
original surface. In two-dimensional visualizations, the error value is displayed on the vertical
axis, and one direction in the weight space on the horizontal axis. A good choice is either the
local gradient direction or the first principal component direction that is calculated in the
weight space.

 16

A sample plot showing the change of the mean squared error (MSE) in the gradient
direction is shown in Fig.1.7. The training of an MLP with a single hidden layer composed of
four nodes has been done on the Iris data, frequently used for illustrations (chapter 1.2.5.1).
The numbers of neurons in successive layers are given in brackets after the dataset name. For
example (6-4-3-2) means that the network has 6 inputs, 4 neurons in the first hidden layer, 3
neurons in the second hidden layer and 2 neurons in the output layer. The lines in Fig.1.7.
were created by changing the length of the weight vector W in the gradient direction h. The
starting point (h=0) for each line is in the minimum found along the previous training cycle
gradient direction. The first curve has a narrow and deep minimum, indicating that a rather
narrow funnel is traversed on the error surface. The second and the subsequent curves reach
lower error levels and are broader, indicating that a broad plateau has been reached. This
should be expected in all problems where separation of different categories is relatively easy
and the error surface should be insensitive to weight changes corresponding to rotations and
shifting of decision borders that do not affect the separation.

It seems worthwhile to investigate the error surfaces not only in two, but also in three-
dimensional spaces. PCA (Principal Component Analysis) is a natural choice for visualizing
the weight space because it provides components from which the original weight space may
be reconstructed with the highest accuracy.

Fig.1.8-left shows the error surface projection into two principal components c1 and

c2, which has been obtained using weights from the same network training, as the error
surface sections shown in Fig. 1.7. The learning trajectory lies on the bottom of one of the
ravines. Beginning the training from another starting point could result with the trajectory
lying on the bottom of another ravine. Learning trajectories will be discussed in chapters 1.3,
2.3.9 and 2.4.4.

1.2.3. Research Methodology

1.2.3.1. Overview of Research Methodology

In order to visualize the error surface the following procedure is used:

1. A network is trained using either standard backpropagation [Rumelhart 1986][Hen
2002][Bullinaria 2002], Levenberg-Marquardt second-order algorithm [Ranganathan
2004][Marquardt 1963], scaled conjugate gradient [Moller 1993], numerical gradient
[Kordos 2003b], the simplest search-based method that changes one weight at a time
[Kordos 2003a] or its modified version with variable step search [Kordos 2004b]. It is
worth to remark now that the experimental results do not depend significantly on the
training algorithm.

2. Weight vectors W(t) after each training cycle t are collected into the weight matrix WM.
3. PCA (Principal Component Analysis) is performed on the weight covariance matrix (the

covariance matrix of the weight matrix).
4. Three-dimensional error surface projections are plotted. The horizontal axes correspond

to the first and second PCA direction and the vertical axis shows the network error value.

 17

1.2.3.2. Principal Component Analysis

Principal Component Analysis (PCA) is a technique that reduces the data
dimensionality while preserving as much of the high dimensional space properties as
possible. PCA is performed by a rotation of the original high dimensional coordinate system
and then discarding the axes along which the data has the smallest variance. The rotation is
done in such a way that the variances along the successive axes decrease as quickly as
possible.

Each weight vector W(t)=[w1t,…,wnt] is defined by a single point in the weight space.

The training produces a set of points, on which PCA can be performed. Weight vectors after
each training cycle t are collected into the weight matrix WM:

 (1.5)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

nTT

n

ww

ww

T ...

...

)(

)0(

1

010

MOMM

W

W
WM

where T is the number of training cycles. PCA can be performed either directly on the weight
matrix WM or on the weight covariance matrix CM:

 (1.6)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

nnn

n

cc

cc

...

...

1

111

MOMCM

The covariance matrix is a symmetric matrix, its entries cij are calculated as

 ()()∑
=

−−=
T

t
jjtiitij wwww

T
c

0

1
 (1.7)

and they represent the covariance between the weight wi and wj, where T is the number of
training cycles, n is the number of network weights and the mean weight value is calculated
as

∑

=+
=

T

t
iti w

T
w

01
1

 (1.8)

The eigenvectors vi and their corresponding eigenenvalues λi of the weight covariance matrix
are the solution of the characteristic equation:

 iii vv ⋅=⋅ λCM , for i=1,…,n (1.9)

If the weight vector has n components, the characteristic equation becomes of order n.
This is easy to solve only if n is small. Solving eigenvalues and corresponding eigenvectors is
a non-trivial task, and many methods exist. One way to solve the eigenvalue problem is to use
a procedure called singular value decomposition (SVD) [Kalman 2001]. The SVD procedure
presented in “Numerical Recipes in C” [Press 1992] was used in the calculations. By ordering

 18

the eigenvectors in the order of descending eigenvalues (largest first), we can create an
ordered orthogonal basis with the first eigenvector having the direction of largest variance of
the data [Hollmen 1996]. The data variance in a given eigenvector direction is proportional to
the eigenvalue corresponding to the eigenvector. In this way, the directions in which the data
has the most significant information can be found. Let V be a matrix consisting of
eigenvectors of the covariance matrix as the row vectors. By transforming the weight vector
W(t), we get

 ()WWVY −⋅=)(t (1.10)

which is a point in the orthogonal coordinate system defined by the eigenvectors. Thus, the
axes of the new coordinate system are in the eigenvector directions. Components of Y can be
seen as the coordinates in the orthogonal basis. We can reconstruct the original weight vector
W(t) from Y by

 WYVW +⋅= Tt)((1.11)

using the property of an orthogonal matrix V-1 = VT. The data variance in each eigenvector
direction, which will be further called simply the first, second and so on PCA direction is
proportional to its corresponding eigenvalue. Only some directions with the greatest variance
are preserved and all remaining directions are discarded.

SVD can be calculated either on the weight matrix or on the weight covariance
matrix. The resulting plots are of similar nature, although the eigenvalue distribution is
different. A weight matrix gives a smaller first to second eigenvalue ratio and bigger the least
significant eigenvalues, but in both cases the first and second PCA directions typically
contain about 95÷97% of the total variance. Nevertheless, SVD on the covariance matrix has
a significant advantage: the error surface projections obtained in the experiments differ less
from training to training (are less influenced by the random initial distribution of weights).
For this reason all plots presented here are based on SVD on the covariance matrix, except
for the two sample ES presented in Fig.1.11.

 19

1.2.3.3. Plot Construction

Vertical axis in the plots shows the relative error E=E(W)/NVNC, where NV is the
number of vectors and NC is the number of classes in the training set. For all error functions
based on Minkovsky's metric ||⋅|| the error function is bounded from above by NVNC, thus the
relative error E is bounded by 1. Horizontal axes show distances in the weight space in c1 and
c2 PCA directions corresponding to the first and second eigenvector of the weight covariance
matrix. Thus in a given point (c1,c2) of the plot the network weight vector W(c1,c2) is
determined by the following equation:

 2211021),(νν cccc ++= WW (1.12)

where v1 is the first and v2 is the second eigenvector of the weight covariance matrix, c1 and c2
are the distance along the horizontal axes and W0 is the vector of constant weights. In most of
the plots W0 consists of zero weights for the simplicity reason because W0 containing the
mean weight values during the training produces plots that look very similar and that are only
horizontally shifted. The aim here is to find the most interesting projection directions. The
equation (1.11) refers to the data from the weight matrix. When the plot is drawn it uses only
the PCA-based directions, but particular points on the error surface are not present in the
weight matrix, thus the equation (1.12) as the generalized version of (1.11) is used for error
surfaces. However, the equation (1.11) always applies to the visualization of learning
trajectories in the PCA-based directions. Non-zero W0 vectors are considered in chapters
1.2.10.2 and 1.3.

The character of ES is determined by the dataset and network structure. In the

experiments MLP networks were trained for data classification for as many training cycles as
were required to bring them close to convergence. There was not a strict stopping criterion,
since the results were very little sensitive to the stopping point, but in most cases the trainings
were stopped when the error decrease reached about 95% of the possible error decrease.
Sometimes the stopping point was intentionally determined in another way in order to show
some phenomena, but this will be mentioned explicitly. The number of epochs varied
depending on a training algorithm and a dataset. At the final training stage weights of output
neurons tend to grow quicker then those of hidden neurons, but since the training was stopped
before convergence, weights of each layer had still comparable contributions in determining
PCA directions. The training was repeated several times for a given method with various
random initial weights.

Neither the random weight distribution nor the training method has significant

influence on the shape of ES presented in the space of the two main PCA components. The
projection of error surface for a given dataset and network structure may differ a bit - it may
rotate from one plot to another, its elements may be a bit higher or lower, but the overall
structure is well preserved.

To obtain the most reliable ES projections, PCA should be calculated using the weight

matrix containing data from the training cycles ranging from the initial weights (from the
starting point) to that point when the error begins to change very slowly. Otherwise,
especially if the initial training cycles with rapid error changes are omitted, some distortion
described in later chapters will appear.

 20

In most of the plots presented here logistic sigmoids are used as neural transfer
functions but ES projections obtained with hyperbolic tangent do not differ significantly.
Also some examples of ES obtained with other types of transfer functions will be presented.

Over 20 datasets were used in the experiments, about half of them comes from the

UCI machine learning database repository [Mertz 1998]. To be concise only one ES typical
for a given situation will be shown; the others are qualitatively similar.

Fig. 1.8. Left: MLP error surface of Iris (4-4-3) displayed in two PCA directions, the plot was
made using the same data as in Fig.1.7. Right: MLP error surface of Iris (4-4-3) showing
more faithfully how the ES might look like.

Although PCA projections seem to be very good for ES visualization they do not

reveal certain aspects of the original ES. The detailed reasons for this will be discussed in
later chapters. At this stage three major differences between the original ES and their PCA
projections are worth pointing out:

• The ravines in which the training trajectories lie are curved, not straight as shown in

the PCA projections.
• The original ravines tend to be steeper (starting higher and ending lower) than those

shown in PCA projections.
• Sometimes shallow local minima close to the ES center are visible in PCA

projections, although they do not exist in the original ES.

Fig. 1.8-right is a modified version of fig.1.8-left that shows how the real ES might
look like, addressing the points mentioned above. It can be only imagined or visualized if the
projection directions are different in different fragments of the plot, however the detailed
approaches to such a visualization model have not been attempted yet.

Typically the first and second PCA directions contain together about 95% of the total

variance and therefore, despite of the three shortcomings mentioned above, the plots reflect
ES properties quite well. There is a strong correlation between the growth of a given weight

 21

during the training growth(w) and its corresponding entry in the first principal component
”1st PC(W)” (in the first eigenvector of the weight covariance matrix) (Fig. 1.9-left). The
entries in the further principal component vectors seem to be uncorrelated with value of
growth of their correspondent weights (Fig. 1.9-right).

Table 1.1. Eigenvalues and variance captured by the PC-th PCA component for the same
training as in Fig.1.7 and 1.8.

PC 1 2 3 4 5 6 7 8 9 10
eigenvalue 33.204 1.4550 0.5969 0.2554 0.1578 0.0679 0.0547 0.0324 0.0265 0.0191
% current
variance 0.9245 0.0405 0.0166 0.0071 0.0044 0.0019 0.0015 0.0009 0.0007 0.0005

% total
variance 0.9245 0.9651 0.9817 0.9888 0.9932 0.9951 0.9966 0.9975 0.9982 0.9988

Fig. 1.9. Left: Correlation between a given weight entry in the first eigenvector of the weight
covariance matrix 1st PC(W) and the weight growth during the training growth(w) of Iris (4-
4-3). Right: Correlation of the 2nd PC(W) and growth(w) for the same training as in Fig. 1.7
and 1.8.

ES plots are based on weight matrices containing the weights from network trainings,
which minimize the network error. Thus, the trajectories traverse rather the parts of the
weight space with lower error values than the parts with higher error values. As a result, we
can see the projected ES rather in the bottom than in the top part of the cube. It is not
recommended to try to traverse and display a more diverse area of the weight space by
combining the weights from several trainings into one weight matrix because the average
value of each weight in such a matrix tends to zero as the number of trainings grow, as a
result the ES projection approaches a horizontal plane.

 22

1.2.3.4. Independent Component Analysis

Fig. 1.10. The data in this figure is clearly divided into two clusters. However, the principal
component, i.e. the direction of maximum variance, would be vertical, providing no
separation between the clusters. In contrast, the strongly nongaussian independent component
direction is horizontal, providing optimal separation of the clusters. (the figure comes from
www.cis.hut.fi/aapo/papers/NCS99web/node8.html)

PCA projections are in the directions of maximum variance, thus even if the data is
clearly divided into two clusters, PCA may not reveal this structure. ICA (Independent
Component Analysis) projections are in the maximally nongaussian directions, providing
usually good separation of clusters, though not necessarily the directions of maximum
variance [Leino 2004]. So the ICA-based approach may show some additional ES properties,
not visible in PCA projections, and produce generally more complex ES projections with
more details.

ICA starts with a vector of observations x (frequently PCA is used as data

preprocessing for ICA and x is then the original vector projected into the PCA directions):

),...,(1 nxx=x (1.13)

The basic assumption here is that each of these observations can be derived from a set of n
independent components:

 ninii sasa ++= ...11x (1.14)

or, using a matrix notation, x=As. Here s=(s1,...,sn) is a random vector – the latent variables,
or independent components, and A is a m x n mixing matrix. The task of ICA is to find both s
and A. However, the matrix W=A-1 is directly searched for, so that the sources s=Wx can be
estimated from vector x of the observed signals by optimizing a statistical independence
criterion. The basic assumption of ICA is that the components si are independent of each
other, that is P(si,sj)=P(si)P(sj).

 The entropy H of a random vector x of density px(u) is defined as

 23

 (1.15) duupuppH xxx)(log)()(∫−=

H(px) is maximal for a gaussian random vector x. The negentropy J is defined by the
difference of entropy between x and a gaussian random vector xg of the same covariance
matrix as x:

)()()(xxg pHpHxJ −= (1.16)

The FastICA algorithm [Hyvarinen 1999, 2001] uses the following estimation of negentropy:

 (1.17) 2)]}([)]([{)(gxgExgExJ −=

where g is any non-quadratic function. The maximization of the measure of negentropy is
done by an iteration scheme, which for one independent component w is:
1. choose an initial (e.g.) random weight vector w
2. w+ ← E{x g(wTx)} - E{g’(wTx)}w, with g(u) = tanh(u), or g(u) = u exp(-u2/2)
3. w ← w+ / ||w+ ||
4. if not converged (i.e. if old and new w point in different directions), go to 2

The algorithm can be run for each independent component i. To prevent different vectors wx
from converging in the same direction, the vectors are decorrelated after every iteration,
using for example the decorrelation of matrix W:

 W = (W WT)-1/2 W (1.18)

 The FastICA algorithm was used in the calculations, resulting in very similar
projections to those obtained with PCA on the covariance matrix. The global character of
both projections is the same, only some more details are visible in ICA projections, mainly as
the folded ridges (Fig.1.11-left).

Fig. 1.11. A comparison of Iris (4-4-3) error surface projection in ICA directions (left) and
PCA directions calculated by SVD on the weight matrix (right) for the same training as in
Fig.1.7 and 1.8.

 24

The first ICA direction is almost parallel to the first PCA direction with the cosine
between them about 0.99, but the second directions seem uncorrelated with the cosine
between them usually below 0.3. Change of various FastICA algorithm parameters (e.g. the
function g) did not noticeably change the plots. Generally, the hopes to see much more details
that would reveal some more ES aspects using ICA-based projections were disappointed.
Thus, only one plot obtained with an ICA-based projection is presented in this thesis for
comparison (Fig. 1.11-left) and all further plots are shown in PCA-based projections.

1.2.3.5. Two-weight Coordinate System

Coordinate systems based on any two-weight directions do not provide so much
information as PCA systems. A large number of error surface projections of networks with
more than 10÷20 weights are composed of four horizontal planes, which are sometimes
reduced to two or even a single plane. The surfaces have similar characters for many datasets
and network architectures and resemble the ES projection shown in Fig. 1.12-left. More
complex shapes of ES projection in two-weight systems are rare for medium to large
networks.

In networks with significantly more hidden neurons then the number required to learn

the task, the neurons perform highly redundant roles. In that case changing any two weights
of the trained network does not change the error because then signals propagate through the
redundant paths and ES in a two-weight system creates only one horizontal plane.

1.2.4. Network Structure Influence on Error Surface

Networks without hidden layers have very simple ES consisting only of some
horizontal or slightly inclined half-planes, situated on various heights, with slopes connecting
them (Fig.1.12-left).

Fig. 1.12. Left: ES of a 2-layer network (Iris 4-3). Right: ES of a 4-layer network (Iris 4-4-4-3).

 25

ES of networks with hidden layers has a starfish structure. An interesting depiction of
it was given by Denker et. al. [Denker 1987] ”E(W) surface resembles a sombrero that has
been warped in certain symmetric ways: near the middle (w=0) all configurations have
moderately bad E values. Radiating out from the center are a great number of ridges and
valleys. The valleys get deeper as they go out, but asymptotically level out. In the best
valleys, E is exactly or asymptotically zero, other valleys have higher floors”. Pictures
presented in this thesis confirm that global minima rarely create craters but frequently ravines
reaching their minimum in infinity. This corresponds to the infinite growth of (usually output
layer) weights when continuing the training enough long.

Each of h hidden neurons may be labeled with an arbitrary and unique number from 1

to h. Renumerating the network parameters does not change the mapping implemented by the
network, thus giving h! permutational symmetries. A neural activation function for which
f(-x)=-f(x)+const gives further 2h sign-flip symmetries [Sussmann 1992]. This gives together
2hh! equivalent global minima. A training algorithm converges to that minimum which is the
easiest to reach from the starting point. Only some of the minima are clearly visible in the
PCA projections.

Four layer networks have more complex ES than the three layer ones, even with fewer

neurons. Thus they can map more complex data (Fig.1.12-right). In 3-layer networks with
crossover connections (Fig. 1.4) the output layer is connected directly to both: the input (as in
2-layer networks) and hidden layer (as in 3-layer networks). Consequently their ES displays
features of 2-layer networks (low symmetry of ES) and 3-layers networks (complexity of ES)
(Fig.1.13-left).

Fig. 1.13. Left: ES of a 3-layer network with crossover connections (Iris 4-4-3). Right: ES of
a 3-layer network with too many hidden neurons (Iris 4-100-3).

Too few neurons in any hidden layer make a bottleneck and the network cannot learn
the task. The ES consists of some horizontal planes all placed relatively high with some
disturbances between them, but does not contain the characteristic ravines leading to global
minima (not shown here).

 26

The number of global minima visible in PCA projections initially grows when the
number of hidden neurons increases, but with too many hidden neurons big horizontal planes
begin to appear (Fig.1.13-right). This effect caused by the weight redundancy is visible more
clearly in two-weight coordinate systems, where the projected ES is almost flat since many
weights must be changed at the same time to change the error.

1.2.5. Training Dataset Influence on Error Surface

1.2.5.1. Description of the datasets used in experiments

Fig. 1.14. The distribution of class instances shown in the space of two most informative
features. Left-top: Iris, right-top: Breast, left-bottom: Ionosphere, right-bottom: Appendicitis.

1. Iris (Fig.1.14.left-top): 4 continuous features (sepal-length, sepal-width, petal-length, petal-

width), 3 classes, 150 vectors, 50 in each class. Two of the features (petal-length, petal-
width) are most informative for classification, the remaining two features are more noisy
and do not provide additional information. Although the classes are well separated, three

 27

classes make the training a bit longer than the training of the Breast dataset. The accuracy
that may be achieved in 10-fold crossvalidation is about 96%. The dataset is publicly
available at UCI [Mertz 1998].

2. Wisconsin Breast Cancer (Fig. 1.14.right-top): 10 continuous features (f1,...,f10), 2 classes

(class 1-red cross in , class 2-blue square), 699 vectors, 458 in class 1 and 241 in class 2.
The classes are separated rather well, the set is very easy for training. The possible
accuracy in 10-fold crossvalidation is about 96%. The dataset is publicly available at UCI
[Mertz 1998] and described in chapter 3.2.12.4.

3. Ionosphere – training dataset (Fig. 1.14.left-bottom): 34 continuous features (f1,...,f34), 2

classes , 200 vectors, 100 in class ‘good’ and 100 in class ‘bad’. The classes are not so well
separated as in the two first datasets. The possible accuracy in 10-fold crossvalidation is
about 94%. The dataset is publicly available at UCI [Mertz 1998].

4. Appendicitis: 10 continuous features (f1,...,f10), 2 classes (class 1-red cross in Fig.

1.14.right-bottom, class 2-blue square), 106 vectors, 21 in class 1 and 85 in class 2
(strongly asymmetric class distribution). The classes are not so well separated as in the two
first datasets. The possible accuracy in 10-fold crossvalidation is about 89%. The dataset is
described in chapter 3.2.12.3.

1.2.5.2. Experimental Results

Fig. 1.15. Left: ES of Breast (10-4-2) The arrow shows a point to which the jump described
in chapter 1.2.10.2 was made . Right: ES of Ionosphere (34-4-2).

A similar network structure x-4-2 has been used for various datasets. Generally the
following tendencies can be observed:

• More complex training datasets produce more complex ES with more ravines,
especially for data that is not approximately linearly separable.

• Equal classes of examples lead to a more symmetric ES.

 28

Breast (Fig.1.15-left) has two classes with few overlapping vectors and therefore the

simplest ES. Iris (Fig.1.8-left) has 3 classes with little overlap and Ionosphere (Fig.1.15-right)
2 classes with more overlap – they both give similar ES.

Appendicitis (21 vectors of class 1 and 85 of class 2) gives a highly non-symmetric

ES (Fig.1.16-left). Setting the network weights (chapter 1.2.9) to the values represented by
the appropriate parts of the error surface indicates that the big flat area situated in the front
part of the plot corresponds to the majority classification accuracy (for the points located on
this fragment of ES the predicted class is class 2). Frequently training of datasets with
unbalanced classes is more difficult because this part of ES is very flat and very broad. It is
easy to get there, but difficult to leave this area. The ravines between this part and the higher
situated areas in the back of the plot correspond to the optimal classification accuracy (about
90-92% in the case of Appendicitis). But the same dataset with only 42 vectors left (all of
class 1 and randomly chosen 21 vectors of class 2) produces a quite symmetric ES (Fig.1.16-
right). The topic of unbalanced classes will be further discussed in chapter 1.6.

An n-bit parity is a problem, where the dataset has n features and two classes. Each of

the features can take two values: zero or one. If an even number of features in a given vector
take the value of one then the vector belongs to the first class, otherwise it belongs to the
second class. Xor, which is a 2-bit parity problem, is linearly non-separable and therefore has
a complex ES (Fig.1.17-left). 6-bit parity is linearly non-separable and has 32 clusters per
class (Xor has only two) and its ES is very intricate, however symmetric because the number
of vectors in each class is equal (Fig.1.17-right). Moreover, datasets that are easier for
training have error surfaces with broader valleys, while the error surfaces of difficult datasets
have only narrow ravines.

Fig. 1.16. Left: ES of entire Appendicitis dataset (7-4-2). Right: ES of Appendicitis dataset
(7-4-2) with only 42 vectors – all 21 vectors of class 1 and randomly chosen 21 vectors of
class 2.

 29

Fig. 1.17. Left: ES of Xor (2-2-2). Right: ES of 6-bit parity (6-8-2).

1.2.6. Transfer Function Influence on Error Surface

1.2.6.1. Monotone Transfer Functions

Fig. 1.18. Transfer functions: a) sigmoid with offset, b) stretched sigmoid, c) staircase
function.

This chapter contains examples of error surfaces with various transfer functions, such
as a sigmoid with offset, a staircase function and a stretched sigmoid. The purpose of
introducing the functions is to prevent the weights from an infinite growth and in the case of
a staircase function also to simplify the calculations.

Discontinuities are visible in the plot of ES obtained with a staircase function and

with a sigmoid with offset. Both functions give a similar ES (Fig.1.19-right) with the
distinguished feature of sharp edges. The differences are visible in a smaller scale; the
sigmoid with offset gives smooth surfaces with curbs (Fig.1.20-left), while the staircase
function produces quite irregular surfaces (Fig.1.20-right). Both the offset increase and the
decrease of the number of stairs make the training more difficult and produce sharp edges on
the ES. Moreover, these transfer functions are not continuously differentiable and impose
problems to analytical gradient-based methods. The stretched sigmoid does not cause any

 30

sharpness on the error surface and in this way it differs from the two previous transfer
functions. With a small stretch (1.01÷1.1) it seems to be an optimal solution. But with a
bigger stretch the function becomes similar to a step function and has a limited usefulness for
complex datasets – the error surfaces are becoming simple with big flat areas (Fig.1.19-left).

Fig. 1.19. Left: ES of Ionosphere (34-4-2) with stretched sigmoid (stretch=1.3). Right: ES of
Iris (4-4-3) with staircase transfer function (5 stairs).

Fig. 1.20. Left: ES of Iris (4-4-3) with sigmoid with offset=0.2 visible with large zoom.
Right: ES of Iris (4-4-3) with staircase function (11 stairs) visible in a big zoom.

 31

1.2.6.2. Non-monotone Transfer Functions

Fig. 1.21. ES of Xor (2-2-2) with sinusoidal transfer function S=0.3+0.9·sin(0.3·x).

Non-monotone transfer functions produce lots of local minima. Fig.1.21 shows ES of
Xor (2-2-2) with a sinusoidal transfer function. The training of the network was successful
because during the training all weight remained in the monotone interval of the sinusoid (-
π/2; π/2). ES visible in this figure has nothing in common with ES of MLPs with monotone
transfer functions, such as widely used logistic sigmoid and hyperbolic tangent, where local
minima are very rare for real-world datasets, although they may exist as an effect of
superpositions of two or more sigmoids. Mainly an ill-conditioning, large flat areas and
choosing a wrong ES ravine cause many difficulties for training algorithms.

1.2.7. Local Minima

The most well-known difficulty that arises in general optimization problems is the
issue of local minima. Mathematical programming and optimization research was originally
concerned with univariate problems, or with solving systems of equations involving only a
few variables. In the one-dimensional case, the concept of local minima follows closely from
the issue of convexity. The conceptual picture is that if there are no local minima, then the
optimization problem is trivial, and the cost function resembles a parabolic bowl or a single
valley. This picture has persisted in MLP research, perhaps mainly because it was used to
explain the failure of backpropagation to learn, and because the large amount of techniques
from optimization being applied to the development of training algorithms [Gallagher 2000].

Rumelhart stated that the occasional failure of MLPs to learn simple problems

including Xor was caused by local minima [Rumelhart 1986b]. This together with the
experience from the low-dimensional optimization problems led to a widespread perception
that local minima are the greatest obstacle in successful MLP learning (if the training was

 32

successful, then the algorithm found a global minimum, whereas if the training did not
progress satisfactorily then the algorithm was stuck in a local minimum). A good example of
the widespread improper conceptual picture can be found in [Wilson 2003], where a picture
very similar to Fig.2.21 is placed followed by a comment “there may be many thousands of
weights, making the error surface difficult to visualize”.

Some authors claimed that the ES of Xor 2-2-1 and Xor 2-1-1 (with cross-over

connections) contain local minima [Blum 1989] [Lisboa 1991] [Gori 1992] [Horikawa 1993]
by which backpropagation can become trapped.

However, a more detailed analysis of the problem revealed that the error surface of

both Xor 2-1-1 [Sprinkhuizen 1996] and Xor 2-2-1 [Hamey 1995] [Hamey 1998] networks
have no local minima. All stationary points in the 2-1-1 Xor problem are saddle points and
there exist finite trajectories, which allow escape, without increasing the error, from all finite
stationary points. Thus the points are not local minima. It was also shown [Sprinkhuizen
1998] that all stationary points with finite weights are saddle points with positive error or
zero error and not local minima.

Overall, the analysis of the Xor error surface indicates that local minima are not the

cause of poor training performance for algorithms such as backpropagation. Other features,
such as saddle points and plateaus, seem more likely explanations of training difficulties.
Coetze [Coetze 1997] indicates that empirical MLP error surfaces have an extreme ratio of
saddle points to local minima.

It is known that MLP error surfaces are often ill-conditioned [Le Cun 1991],

[Saarinen 1993], with the Hessian eigenvalues differing by orders of magnitude. This fact
means that there are often directions on the error surface in which the gradient varies quickly
(cliffs or steep ravines) and others, where the gradient variation is quite slow (plateaus or flat
regions) [Hecht 1990] [Lehr 1996]. For an algorithm such as backpropagation with a fixed
step size, this feature leads to periods of very slow progress, sudden drops and oscillations in
the error values.

There are several factors that contribute to the ill-conditioning in MLP error surfaces.

The properties of transfer functions are reflected in the properties of the error surface, as it
was seen in the ES projections obtained with various transfer functions. The sigmoids and
still more their superpositions cause the ill-conditioning. Attempting to make sure the
sigmoids in the network operate effectively in their useful regions is one way to reduce the
effects of ill-conditioning [Le Cun 1998]. Very small training sets may also contribute to ill-
conditioning [McKeown 1997].

The local minima were never visible in the ES projections, while the ill-conditioning

effect was frequently. Though it was shown that local minima can exist [Sontag 1989], they
are important mostly from the theoretical point of view, while ill-conditioning has much more
direct and practically important effect on the training algorithms performance.

 33

1.2.8. Error Function Influence on Error Surface

Using MSE error function with desired output signals 0.1 and 0.9 (or 0.2 and 0.8)
produces very similar ES as with desired outputs 0 and 1 but a global minimum tends to lie
close to the ES center in a shallow valley (not shown here).

1.2.8.1. Different Exponents in Error Function

An error surface depends also on the power exponent of the error function. Typically
MSE functions (exponent=2) are used but for exponents ranging from 0.5 to 8.0 error
surfaces look very similar to those obtained with MSE.

Two plots of error surfaces obtained with the exponent = 0.1 and 32 are shown here.

High error exponents successfully reduce the weight growth and can be used as a weight
regularization method. The learning trajectory remains near the ES center. For Iris (4-4-3) the
length of the weight vector never exceeded 25, no matter how long the training was and the
network was always successfully trained. Low exponents produce ES with relatively high
plateaus and the slopes the ES fall down very slowly. With the exponent = 0.1 it is usually
enough to reduce the distance error by 20% to achieve the same classification accuracy on a
training set, as would require reducing MSE by 90%. However, the network training with
such low exponents of the error function may be difficult.

Fig. 1.22. Left: ES of Iris (4-4-3) with power function exponent=32. Right: ES of Iris (4-4-3)
with power function exponent=0.1.

 34

1.2.8.2. Weight Regularization

The regularization term is added to the error function to prevent the weights from
excessive growth in order to provide better generalization (chapter 2.6.3). In the simplest
weight decay model the penalty term for big weight values is added to the error function as
the sum of the weight squares. The error function is:

 ∑∑∑ +−=

i
i

v c
cvcv wcsdfE 2

,,)((1.19)

The error surface then lifts up, less near the center and more further from the center,

thus we can see a superposition of the original ES with the paraboloid caused by the
regularization term. The effect is stronger for bigger c values. A plot for the Breast dataset
with c=0.03 is presented in Fig.1.23.

Fig. 1.23. ES of Breast (10-4-2) with weight regularization, c=0.03.

Solla [Solla 1988] showed that for a cross-entropy error measure, the error surface is
inimum, in comparison to MSE function. Thus, using the cross-

entropy error function can improve the network convergency close to the minimum.

The cross-entropy error function is given by the following formula:

1.2.8.3. Cross-Entropy Error Function

steeper in the region of a m

 ()∑∑ −−+−=
v c

vcvcvcvc STSTE)1ln()1(ln (1.20)

where v is the vector number, c is the output neuron number, corresponding to the class
umber, T is the desired output neuron signal and S is the actual output neuron signal The

error is summed over all vectors v and all output neurons c. But since for (S=0 ,T=1) and
(S=1,T=0) the function takes infinite values the following modification is used:

n

 35

(1.21)
where d is a small (about 10-10) positive number.

Comparing to MSE or other power error functions, cross-entropy error functions give
similar or more complex ES. Fragments of the ES are higher then 1, due to the fact that the
error is not bounded by NvNc as in the case of power error functions.

()∑∑ +−+−−++−+−=
v c

vcvcvcvc ddSTddSTE)1ln()1)(ln(1())1ln()(ln(

Fig. 1.24. Left: ES of Appendicitis (7-4-2) with cross-entropy error function. Right: ES of
Xor (2-2-2) with cross-entropy error function.

Using the principal components, from the equation (1.12) we can calculate the weight
values at any point of the projected error surface:

 (1.22)

On average the weight values in the areas of lower error are more symmetric with respect to
zero and the disproportions between the values of different neuron weights are smaller.
However, the tendencies are not very strong.

1.2.9. Weight Changes on Error Surface

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

nnonn

cc
w

w

ccw

ccw
cc

2

21

2

1

11

1

01

21

211

21

),(

),(
),(

λ

λ

λ

λ
MMMMW

 36

Fig. 1.26. Left: ES of Iris (4-4-3). Right top: weight values in the point with low error (red
ne intersecting the ES). Right bottom: weight values in the point with high error (blue line

 weights, in red: output neuron weights.

ection the possibility to use of PCA to reduce the number of effective training
arameters is discussed. After training the network for some epochs, PCA is performed on
e weight covariance matrix. Then searching for the er

reduced space of PCA-determined directions.

.2.10.

li
intersecting the ES). In violet: hidden neuron

1.2.10. Reducing the Number of Effective Parameters

PCA is a well-known technique, widely used for the preprocessing of training data to
reduce the number of network inputs. PCA was also proposed for weight pruning [Levin

994]. In this s1
p
th ror minimum takes place in the

1 1. Directions in the Weight Space

The analysis of directions in a weight space reveals interesting properties of ES that
can be used to design or improve some neural training algorithms [Kordos 2004b]. Some
trends and tendencies are common for many datasets and network structures with differences
only in details.

The cosine of the angle between two vectors A=[a1, a2, ... an] and B=[b1, b2 , ... bn]T can be
calculated as:

∑∑
==

++
=

⋅
=

n

i
i

n

i
i

nn

ba

baba

1

2

1

2

11 ...
||||

),cos(
BA
BABA (1.23)

The lines for cos W, ||W||, E, cos(W,PC) shown in Fig.1.27-left look very similar for

various training methods (the sample training was performed on the Iris dataset using
backpropagation with variable learning rates). It can be seen that the error E decreases

 37

proportionally to the changes of weight vector direction cosW. At the final stage of the
training, the direction remains almost constant and the error is decreasing very slowly,
although the weights are still growing. The trajectory is then already in the flat part of the ES.
In some cases, such as weight regularization, the weights do not grow to infinity, but only to
limited values, nevertheless the error decreases as long as the weight vector changes its
direction.

Fig. 1.27. Left: Change of parameters during network training. Vertical axis: normalized
||W||, normalized (rescaled to 1) MSE and cosW=cos(W[epoch]-W[last epoch]). Horizontal
axis: epoch number. Right: Change of parameters during network training. Vertical axis:
cos(W,PC)=cosine between the weight vector W and the first PCA direction,
cos(dw,DW)=cos(W[epoch]-W[epoch-1],W[last epoch]), cos(dw,PC)=cos(W[epoch]-
W[epoch-1],PC). Horizontal axis: epoch number.

The line cos(W,PC) in Fig.1.27-right shows the cosine of the angle between the first
CA di

 using PCA for learning trajectory
xtrapolation, thus making a jump several epochs ahead, is not an easy task, since the proper
irection of the jump must be determined very precisely.

The two other lines (red and blue) in Fig.1.27-right show the cosine of angles between

the temporary direction of the trajectory (a vector connecting the last and the actual trajectory
point) and the first PCA direction cos(dw,PC) and between the temporary direction of the
trajectory and the direction determined by the starting and the last trajectory point
cos(dw,DW). These two characteristics differ strongly depending on a training algorithm. The
values of some other angles are shown in Table 1.2.

P rection and a line connecting the starting point with the actual trajectory point. Only
the weights from the first 100 epochs were included in the weight matrix for PCA calculation.
The cosine takes the greatest value about the 50th epoch. Afterwards PCA and W directions
diverge. The divergence is sometimes even stronger than in Fig.1.27-right. For that reason a
big jump only seldom can be made along PCA directions while training the network. PCA
directions are very good for ES and even better for trajectory visualization, where a little
difference in angles does not matter. However
e
d

 38

Table 1.2. Cosine between particular directions in the MLP weight space for the same
training as in Fig.1.27.

 PCA_c1 (λ1) PCA_c2 (λ2) ||1|| traject
ICA_c1 -0.99585 0.08037 0.05832 -0.88185
ICA_c2 -0.96653 -0.15675 0.1038 -0.75964
||1|| -0.06087 -0.02601 1 -0.04991
traject 0.86626 -0.25371 -0.04991 1
PCA_c1 (λ1) 1 0 -0.06087 0.86626
PCA_c2 (λ2) 0 1 -0.02601 -0.25371

traject – direction of a line connecting the first and last trajectory point
||1|| – direction of the diagonal vector [1,1,1,...,1]

1.2.10.2. PCA-based Parameters Reduction. A Case Study

1. Starting from the random weights (error=326) the network (10-4-2) is trained on the

Wisconsin Breast Cancer dataset for some training cycles using numerical gradient
(chapter 2.2). The training is stopped with the error=240.

2. PCA directions are determined.
3. A minimum in the PCA directions is found (also using numerical gradient) with the

error=43 and a jump is made to that point (blue arrow in Fig 1.15-left).
4. No further error decrease in PCA-directions is possible. The network is trained again with

a standard numerical gradient for 5 training cycles.
5. Again, PCA directions are determined on the weight matrix from the last 5 training

cycles.
6. PCA provides the eigenvectors that determine only the directions, the constant values

must be added to the weights. The values do not have to be the mean values that were
subtracted from the weights while calculating the covariance matrix (equation 1.7). We
would rather like them to be the values of the last trajectory point, since this ensures that
the training in the reduced weight space can start from the last point of the training in the
full weight space. However three possibilities of choosing the point (called “fixing
point”) are considered:
a) The zero point in the weight space. However this causes that the projection of the ES

lifts up. The lowest point on it has now the error=244 (Fig.1.28-left)
b) The point of the mean weight values. The obtained ES looks like an intermediate

stage between Figs. 2.28-left and 2.28-right. Moreover the point of mean weight
values is usually not contained in the learning trajectory and much higher error can
correspond to that point.

c) The last training point (Fig.1.28-right). This is the only reasonable choice. When the
point is chosen as a fixing point, the projection of ES does not lift up, but because
PCA directions are determined on the weight matrix from only a small part of the
training, we get some local PCA directions. In the local PCA directions the minimum
is situated very close to the last training point.

7. Thus, the big jump several training cycles ahead could be made only once.

 39

Fig. 1.28. ES of Breast (10-4-2) determined basing on 5 training cycles after the jump. Left:
fixing point at the zero point in the weight space. Right: fixing point at the last trajectory
point.

Breast dataset was chosen for the case study intentionally because the dataset is very
easy to train (what is clear, since its ES is very simple). For most datasets such big jumps in
PCA directions (from error=240 to 43) are impossible. However, using a PCA-based ES
projection on which the last training point is situated, it is usually possible to find a point with
lower error (Fig.1.28-right). The reason for which the method is in most cases impractical is
the computational cost of calculating PCA every some epochs in order to make only a small
step in the reduced space.

1.2.11. Sections of MLP Error Surface

MLP error surface changes slower in the parts that are located further from its center.

These parts are reached by the learning trajectory at the final stage of the training. However
mostly output layer weights contribute to the slower changes. At the beginning of the training
(close to the ES center) usually the error function derivatives in output layer weight directions
are bigger, although the distances from the actual point to the error minimum are shorter.
That is quite opposite to BP assumptions. (There are also versions of BP that use different
learning rates in different layers.) Therefore RPROP, which takes into account only the sign
of a derivative, performs not worse than BP. At the final training stage the landscape changes,
but mainly in output layer weight directions. The differences between error surface sections
in hidden weight directions at the beginning and at the final stage of the training are not so
significant. In any case, gradient direction is not the optimal next step direction.

Frequently some features are irrelevant for the classification task. Error surface

sections in the directions of the weights that connect the irrelevant inputs with hidden neurons
are almost flat. They may only slightly change due to random noise contained in the features.

 40

Fig. 1.29. Left: ES sections in hidden weight directions in the first NG (numerical gradient)
training cycle. Right: ES sections in output weight directions in the first NG training cycle.

th

Fig. 1.30. ES sections in hidden weight directions in the 15 NG training cycle. Right: ES
sections in output weight directions in the 15th NG training cycle.

used for training algorithm optimization and they
ave been implemented into numerical gradient algorithm thus achieving significant
duction of training times (chapter 2.3.5).

1.2.12

ces in 3 dimensions without any
distortions, the first and second PCA component coordinate system gives quite a good insight
into ma elow:

• networks has a starfish structure.

The observations can be practically

h
re

. Conclusions

Although it is impossible to see n-dimensional spa

ny important ES properties, which are listed b

ES of MLP

• ES depends on network architecture and training data as well as on transfer and error
functions.

• Local minima in craters are very rare in standard MLP networks with monotone
transfer functions trained on real-world datasets.

• With MSE error function and sigmoidal transfer functions global minima are in
infinity in the ravines reaching the lowest error values.

 41

• With MSE error function and sigmoidal transfer functions local minima are also in
infinity but in the ravines reaching higher error values.

• Ill-conditioning, large flat areas, or choosing a wrong ES ravine due to a poor weight

och. If the training is not successful than the
learning trajectory does not traverse enough space and both the trajectory and the ES
project

radients are big in this point. It
cannot in this case be trained with BP or NG, but this is due to the limitations of the training
method

eduction of training times. This may be one of the future research subjects
imed at a better understanding of neural networks and improving network architectures and
aining methods.

.3. Visualization and Properties of MLP Learning Trajectories

 the learning trajectory projections. Using
e equations (1.10) and (1.11) does not always work well because the point given by (1.11)

is usua

pt Fig. 1.28-right). Although such ES
rojections are very similar to ES projections fixed to a given point of the learning

trajectories, they do not adhere to the trajectories well.

initialization may cause many difficulties for training algorithms.

The training method used to generate data for PCA does not significantly influence
the ES projection shape. The learning trajectories of many algorithms create an arc lying on
the bottom of one of ES ravines, though the arc may be smoother or rougher. The view of ES
projection depends on the weights after each ep

ions are too flat and too highly situated.

The shape of ES has the greatest diversity close to its center. Far from the center, the
surface changes slowly and flat horizontal areas occupy much place. If the random initial
weight range is too broad then there is a great chance that the starting point lies somewhere
on the flat area, and as a result the network cannot be trained with any gradient-based or local
search methods. On contrary, if all initial weights are zero, the network can be successfully
trained with appropriate methods, such as VSS, because g

s and not of the ES properties around the zero point.

In some cases the network training can be accelerated by determining PCA
components in the weight space after some initial training and then jumping to a minimum
found in PCA coordinates or by extrapolating the learning trajectory in PCA directions.
However, a universal solution has not been found so far. Non-linear techniques, such as
principal curves, principal surfaces or kernel PCA, can also be used to display the surfaces
and to attempt the r
a
tr

1

1.3.1. Error Surface and Learning Trajectory

 In the 3-dimensional plots the learning trajectory usually intersects the error surface in
only one point that will be called a „fixing point” and that corresponds to W0 in the equation
(1.12). One of the learning trajectory points can be arbitrary selected as the fixing point,
while placing in the same plot the error surface and
th

lly not traversed by the learning trajectory.

The convention in this thesis is that the zero point in the weight space is always in the
middle of the base of the cube (c1=0 and c2=0). In all figures presented so far ES projections
were fixed to the zero point in the weight space (exce
p

 42

Fig. 1.31. Left: ES and learning trajectory of Ionosphere (34-4-2). Right: vertical axis:
training error in the point (c1,c2) (red) and corresponding error value on the ES projection
(blue), horizontal axis: training cycle. Fixing point (red cross) at the starting trajectory point.

 The learning trajectory obviously does not lie on the two-dimensional ES projection,
but somewhere in the multidimensional weight space and therefore it cannot ideally adh

e ES projection. The first and second PCA components comprise typically 95-97% of the

ere to

tal variance in the weight (“horizontal”) directions. Nevertheless, the information about the
ons. Therefore, it may happen that although the

“horizontal” distance between the original multidimensional trajectory and its projection into
the first and second PCA direction is within 5% accuracy, the network error in the two points
may differ much more. The effect is caused by a high nonlinearity of the error surface.

th
to
error value is not included in PCA calculati

Fig. 1. 2. Left: ES and learning trajectory of Ionosphere (34-4-2). Right: vertical axis:
training error in the point (c1,c2) (red) and corresponding error value on the ES projection
(blue), horizontal axis: training cycle. Fixing point (red cross) at the 20th training cycle.

3

 43

 However, such rapid changes in the error surface are relatively rare. In most of
network trainings the learning trajectory adheres to the ES projection relatively well along
quite a significant fragment around the fixing point (Fig. 1.32). For small networks and
simple datasets the good adherence can be obtained for the entire trajectory (Fig. 1.33). The
vertical coordinate of a given trajectory point corresponds to the factual network error during
the training, whereas the vertical coordinate of the ES projection point (which has the same
horizontal coordinates as the given trajectory point) shows the error calculated using only the
first and second PCA component.

Fig. 1.33. Left: error surface and learning trajectory of Xor (2-2-2). Right: vertical axis:
training error in the point (c1,c2) (red) and corresponding error value on the ES projection
(blue), horizontal axis: training cycle. Fixing point at the 7th training cycle.

Even if the trajectory does not adhere to the ES projection well, it at least shows us
which ravine was chosen by a training algorithm. The trajectories in n-dimensional weight
space frequently create arcs. The mean direction of the arc usually corresponds to the
direction of the ES ravine in PCA projections. The beginning of a trajectory (the training
cycles before the fixing point) lies often over the ES projection and its end (the training
cycles after the fixing point) under it. Thus, the ES projections are often flatter then original
ES on which the trajectories lie.

1.3.2. Learning Trajectory Extrapolation

PCA projections are most reliable and the original proportions are best preserved if
CA directions are determined using the weights from all training cycles (Fig. 1.33). If PCA

ible as ”bigger teeth” (Fig. 1.36-1.37).
oreover, quite irrelevant results are obtained outside that fragment (Fig. 1.34). That is clear

ecause the remaining data is projected using not its own PCA directions.

P
is calculated using only weights from a fragment of the training and the entire learning
trajectory is projected into so obtained PCA directions than the fragment of trajectory
included in PCA calculations not only tends to be magnified but also has a higher ratio of its
size in c2 to its size in c1 direction, what is vis
M
b

 44

Fig. 1.34. Left: error surface and learning trajectory of xor (2-2-2). Right: vertical axis:
training error in the point (c1,c2) (red) and corresponding error value on the ES projection
(blue), horizontal axis: training cycle. PCA was calculated on weights from the training
cycles 0...10. Fixing point at the 7th training cycle.

FIG. 1.35. Projection of the Iris (4-4-3) learning trajectory trained with NG with an oversized
step in the first and second PCA direction. PCA was calculated on weights from the entire
training (cycles 0...50). The color changes every training cycle.

F
step in the first and second PCA direction.

ig. 1.36. Projection of the Iris (4-4-3) learning trajectory trained with NG with an oversized
PCA was calculated on weights from the training

cycles 20...55. The color changes every training cycle.

 45

Fig. 1.37. Projection of the Iris (4-4-3) learning trajectory trained with NG with an oversized
step in the first and second PCA direction. PCA was calculated on weights from the training
cycles 0...5. The color changes every training cycle.

1.3.3. Learning Trajectories of Various Training Algorithms

The shape of a learning trajectory depends on all parameters that influence the shape

of ES and additionally on the training algorithm and its parameters. For example, BP with a
small learning rate produces very smooth trajectories. Increasing learning rate gives more
irregular trajectories [Gallagher 2003]. Fragments of the BP trajectories may go as well
downwards as upwards, while trajectories obtained with some other algorithms (NG, VSS) go
only downwards.

Fig. 1.38. Projection of the Iris (4-4-3) learning trajectory trained with various algorithms (1-
NG, 2-VSS, 3-LM, 4-SCG, in the first and second PCA direction. The cross shows the zero
point in the weight space. The color changes every training cycle.

Only the trajectories of batch versions of learning algorithms are shown here. The ES

is strictly associated with a given set of vectors. In any training, which does not calculate the
error on the entire set (e.g. online backpropagation), a different ES corresponds to a different
subset of training vectors. It would be impractical to show such trajectories for two reasons:
first it is unclear in what coordinate system they should be shown and second the trajectory

 46

fragments in online trainings are very small and it would be difficult to see them in the entire
trajectory scale.

ig. 1.39. Left: Projection of the very beginning of the Iris (4-4-3) learning trajectory trained

: Projection of the Iris (4-4-3) learning
direction.

F
with VSS in the first and second PCA direction. Right
trajectory trained with VSS in the third and forth PCA

Fig. 1.4

 total variance. Thus, the PCA projections of learning trajectories reflect the properties of
the original trajectories quite well. The similarity between all trajectories presented in Figs.

ing the shape of the Iris error surface ravine.
in chapter 2.4.4. The easier the training of

0. Projection of the Thyroid (21-4-3) learning trajectory trained with VSS in the first
(c1), second (c2) and third (c3) PCA direction. Horizontal axes: c1 and c2, vertical axis: c3.

In spite the fact that learning trajectories look differently for different training

algorithms, the first and second PCA directions usually capture together about 95-97% of
their

1.38 is obvious; they create similar arcs follow
he differences between them will be discussed T

 47

the dataset is the simpler and more regular is the learning trajectory. The Iris dataset is
relatively easy for training and its learning trajectories create regular arcs. Higher PCA
components have significant values only at the beginning of the training, what is clear
because at that stage training algorithms chose the proper direction. As the training
approaches the final stage, the direction changes are usually small.

1.4. Weight Changes during MLP Training

This chapter contains only a short review of the properties of weight changes that are
common for local MLP training algorithms (analytical gradient-based and search-based). The
changes of weight values during network training depend on the shape of the error surface as
well as on the training algorithm. This analysis proved to be a useful factor when designing
VSS algorithm.

Fig. 1.41. Typical changes of weight values during MLP training with local methods.

In general, three properties can be noticed. First, on average the change of a given

weight value in the actual epoch is similar to its change in the previous epoch. Second, the
final values of different weights can vary ranks of order. Third, after several training epochs
some weights stop to change. Thus, it seems that the following conclusions can be drawn: the
previous change of the weight can be used while determining the next change (and some
algorithms really use it, for example in the form of momentum), the changes of particular
weights can differ significantly, the weights that are no longer changing can be either frozen
or pruned.

If we know the typical tendencies, then we can try to use some educated guesses of

the weight values in the next epoch. Frequently the verification of the guess is quicker than
calculating the value from scratch. Moreover, there are strong differences between the
changes of weights in particular layers, however, the differences depend on the training
algorithm. Detailed discussion of the weight changes for backpropagation, Levenberg-
Marquardt algorithm, numerical gradient and VSS algorithm can be found in chapters 2.3 and
2.4.

 48

1.5. Neural Activity and Data Spaces

 While calculating the network error values the input signals are given to the first layer
of the network and then the signals propagate through the network layer by layer. The
number of signals i(n) propagating simultaneously in parallel through the n-th layer equals to
the number of this layer outputs, what in turn equals to the dimensionality of this layer
“signal space” or “data space” or “data representation” or “hypercube”. The first space is the
input data space (feature space), then there are as many hidden spaces as the number of
hidden layers (in practice 0, 1 or 2) and finally there is the output (class) space.

input (feature)
space

hidden space output (class)
space

Fig. 1.42. Data spaces in a three-layer network.

The aim of this chapter is to analyze how particular vectors of the training or test set
are placed in all the data spaces, how their positions change during the training and to draw

me practical conclusions from this analysis. A single layer of a network can correctly
ivide only data, which can be separated by a single hyperplane (linearly separable data). If

the network has more layers than each next layer separates with hyperplanes the data space of
the previous layer.

In classification problems, the training data is divided into labeled subsets

corresponding to classes. Neural networks try to map each of the training subsets into one of
the vertices of the hypercube created in the output space. The task of the hidden layers is to
map the vectors from the feature space in such a way that they could be separated according
to their classes with the hyperplanes determined by the output layer. The higher layer
frequently simplifies the internal representation of the lower layer by reducing the
dimensionality of the data space and by reordering the training vectors (Fig. 1.43). The input
data can be visualized in the input hypercube, the representation of hidden layers in their
hypercubes and finally the network output in the output hypercube. If the dimensionality of a
given hypercube is higher than three, then it is more practical to use parallel coordinates,
though also other projection methods can be used [Duch 2004a].

so
d

 49

Fig. 1.43. Vectors of 3-bit parity (3-3-2) in the hypercubes of feature, hidden and class
spaces.

Fig. 1.44. Hidden (left) and output (right) neuron signals for Thyroid (21-3-3). Top: before
the training starts (random initial weights). Bottom: after the 1st training cycle of VSS.

 50

ig. 1.45. Hidden (left) and outputF
4

 (rights) neuron signals for Thyroid (21-3-3). Top: after the
th training cycle of VSS. Bottom: after the 20th training cycle of VSS.

Fig. 1.4 th6. Hidden neuron signals for Thyroid (21-4-3) after the 10 training cycle of VSS
shown in parallel coordinates.

 51

Neural networks can achieve the same results using various weights. With the same
istribution of vectors in the feature and class spaces

hidden spaces. The various possible distributions are visible as symmetries in the error

 Some vectors are far from the decision borders (close to the proper vertices in the

ypercube). These vectors do not provide useful informatio
they give almost zero error. An easy and effective method to accelerate the network training

 to gradually eliminate or group together some of the vectors [Duch 2004b] (chapter 2.5.1).

1.6. S

such a situation it is likely that the cost
of misclassifying a vector of class 1 as a vector of class 3 will be higher than vice versa
(chapter 3.2.12.1).

Frequently the network training on datasets with unbalanced classes is more difficult

because big flat ES areas (situated in the front part of Fig. 1.49-left) corresponding to the
majority classification accuracy are difficult to leave (see chapter 1.2.5.2).

The standard accuracy is given by

d , there exist many vector distributions in

surface plots.

h n in the training process, since

is

tandard and Balanced Classification Accuracy

The Thyroid dataset (chapter 3.2.13.5) is an example of a dataset with an asymmetric
class distribution. The training set has 3772 vectors, 93 of class 1, 191 of class 2 and 3488 of
class 3. The test set has 3428 vectors, 73, 177 and 3178 of class 1,2 and 3 respectively. Thus
the percentage of vectors in particular classes is 2.47%, 5.06% and 92.47% for the training
set and 2.13%, 5.16% and 92.71% for the test set. In

total
correctAstd = (1.24)

where correct is the number of correctly classified vectors and total is the total number of
vectors in the dataset.

The balanced (weighted) classification accuracy is defined here by

 ∑
=

here nc is the number of classes, correct(c) is the numbers of correctly classified vectors of

class c and total(c) is the total number of vectors in class c.

A network training can be optimized for standard or for balanced accuracy by
adjusting the error function. With a square error function, the standard error is given by

=
nc

c
bal ctotal

ccorrect
nc

A
1)(

)(1 (1.25)

w

2
,,)(∑∑ −=

c v
cvcvstd sdE (1.26)

 52

and the balanced error is given by

 ∑ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
−=

c v
cvcvbal sd

ctotalnc
totalE 2

,,)(
)(

1 (1.27)

where d is the desired signal, s is the observed signal of an output layer neuron c in response
to vector v and total(c) is the total number of vectors in class c.

A network trained with the error function (1.26) achieves higher standard accuracy
and with (1.27) - higher balanced accuracy. Also the error surface of both networks looks
differently, since among other factors, the error surface depends on the error function. In the
first case the PCA-based ES projection shows asymmetries, which are caused by the unequal
class distribution. In the second case the error surface projection becomes symmetric because

the error function (1.27) has an equivalent influence on the error surface as balancing the
number of instances in each class of the training set.

Fig. 1.47. Projection of Thyroid (21-4-3) error surface in the first and second PCA direction
obtained with: left - standard error function (1.26), right - balanced error function (1.27).

 53

Fig. 1.48. Output neuron signals for Thyroid (21-4-3) after the 10th training cycle. Left: with

able. 1.3. Classification accuracies for thyroid dataset with standard and balanced error
functio

standard error function, right: with balanced error function (visible better separation of
classes with fewer vectors).

T

ns achieved after 10 cycles of VSS training. (Longer training allows for much higher
accuracies - see chapter 3.2.12.5).

error function Estd Ebal

Astd(%training) 99.39 99.34
Abal(%training) 95.30 99.60
Astd(%test) 98.13 98.02
Abal(%test) 85.17 92.98

1.7. Decision Borders

 MLP decision borders are hypersurfaces in the feature space that divide the space into
subspaces assigned to particular classes. After the network training is finished, the vectors in
the class space should be situated close to these hypercube vertices, which correspond to their
classes. Vectors situated on the decision borders in the feature space will be placed on the
equidistance hypersurfaces (shown in gray in Fig.1.49-right) in the class space.

ns), which evenly covered all the space in
ig.1.49-left. That allowed for determining the decision borders, which are shown in
ig.1.49-left. The representation of the test vectors in the class space is shown in Fig. 1.49-
ght.

In the example shown in Fig. 1.49. only two features (petal-width and petal-length) of
the Iris dataset were used for network training (the network structure was 2-2-3). The test set
consisted of 961 vectors (31 rows and 31 colum
F
F
ri

 54

Fig. 1.49. Left: training vectors and decision borders of Iris (2-2-3) using only two most

ectors in the output

 test vectors cover evenly the entire
 but most of them is attracted to the

roper vertices and almost all others are located close to the lines connecting the vertices of
ame was observed for the Thyroid dataset (Fig. 1.45, 1.48). The
d cross and blue square are separated quite clearly. On the other

and th

requently a great disadvantage of neural networks is that as a result of a little

ace are concentrated close to the hypercube vertices and do not
flect their probability of particular class membership. Thus, it may be desired to provide
ore smooth transitions between the vertices of the output

o it is to use weight regularization or early stopping of the
lthough such a network may have lower training classification accuracy, it can provide

In the same way, as training the neural network is equivalent to searching for a
inimum on the error surface, extracting logical rules from da
e description of decision borders (chapter 3.2).

significant features. Right: class subspaces and representation of test v
pace. s

It is an interesting observation that although the
nput space, they do not cover the entire output space,i

p
two neighbor classes. The s
lasses represented by the rec

h e border between the vectors shown in green and the vectors shown in blue is not so
sharp, with higher density of the test vectors in the intermediate region.

F

perturbation of the input values the vector is classified to a different class [Duch 2005]. Most
of the vectors in the output sp
re
m hypercube. One possible way to
d network training (chapter 2.6.2).
A
more information, its decisions will be more stable and it may generalize better avoiding
overfitting of the data. Thus, the classification accuracy, frequently used as the only
measurement of the classifier quality, is not the only value that should be taken into
consideration (chapter 3.2.12.1). Decision borders will be further considered in chapter 2.6.2.

m ta is equivalent to providing
th

 55

Part 2

or MLP Training

2.1.1. Analytical Gradient-based Algorithms

Backpropagation was the first successful trainin
[Werbos 1974][Rumelhart 1986]. Other analytical gradient-based algorithms use the same

ren weight update methods.

ay:

Search-based Algorithms
f

2.1. Review of MLP Training Algorithms

2.1.1.1. Backpropagation

g algorithm for multilayer perceptron

error backpropagation mechanism, but diffe t

The sum-squared error function, which is minimized by backpropagation algorithm, can be
ritten in the following ww

 2)()()(
2

)(n
j

v j
j

n
ij outdesiredwE −= ∑∑ (2.1) 1

here desiredj is the desired signal and outj is the
error is summed over all j output neurons and all v vectors. The network weights are adjusted

) (2.2)

s the

w actual signal of the j-th output neuron. The

by a series of gradient descent updates. For sigmoid transfer function after some calculations
that can be found literature, the equations that constitute the basic BP algorithm are obtained
in the form presented below. We define

 1()()()()()(n

k
n

k
n

kk
n

k outoutoutdesireddelta −⋅⋅−=

a delta for the output layer, where n is the index of the layer. Then we back-propagate
the deltas to earlier layers using

 56

)k
k

lkkk
⎠⎝

 (2.3)

where wkl is the weight connecting the k-th neuron in the n-th layer with the
n+1 layer. Then each weight update equation can be written as

1()()()1()1()(nnnnn outoutwdeltadelta −⋅⋅⎟
⎞

⎜
⎛ ⋅= ∑ ++

k

l-th neuron in the

)1()()(−⋅=∆ ∑ n

j
v

n
k

n
kl outdeltaw η (2.4)

o enhance the BP algorithm, variable learning rate and momentum can be used. Since T

similar enhancements can be used with numerical gradient (NG), they will be described in
etail in the c ut NG.

RPROP is a modification of standard backpropagation, which considers only the sign
of the derivative, but not its value [Riedmiller 1992]

d hapters abo

.1.1.2. RPROP (Resilient Backpropagation) 2

⎟
⎟
⎠

⎞⎛ ∂)(kE ⎜
⎜
⎝ ∂

−=∆
)(

sgn)(
kw

kw
ij

ijij η (2.5)

The learning rate η is adjusted individually for each weight in each training cycle; if the
direction of error derivative with respect to w e in the actual and in the previous ij
epoch then
)),1(min()(max

 is the sam

ηηη −= kak ijij (2.6)

where a and b are constants, a=1.2, b=0.5.
with respect to wij in the present and in the previous If the directions of error derivatives

pochs are opposite then e
)),1(max()(minηηη −= kbk ijij (2.7)

If the direction of error derivative with respect to wij was zero either in the actual or in the
previous epoch then
)1()(−= kk ijij ηη (2.8)

Thus, the lea ate increases if the the same
and decreases otherwise. RPROP due to omitting the information about gradient value makes

ckprop

rning r derivative sign in two successive epochs is

the learning process much faster in the areas of low error surface steepness.

.1.1.3. Qui2

The idea of the quickprop algorithm [fahlman88][Osowski 1996][Duch 2000] is to
approximate the minima on the error surface with a parabola. Using the values of weights and
gradients in two points (β in equation 2.11) a parabola is determined and a step is made to its
minimum.

 57

Quickprop algorithm uses the following rule of weight changes:

)1()()(
)(
)()(−∆+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
∂

−=∆ kwkkw
kw
kEkw ijijij

ij
ij αγη (2.9)

he change of the weight depends here on three factors: the error function derivative with
spect to this weight, the actual value of the eight and the previous change of the weight
omentum). The coefficient γ (typically γ ≈ -4) is responsible for weight reduction and

revents the weights from excessive growth. The learning rate η takes one of the two values:

η=η0 if

T
re w

 10(m
p

0)(
)(
)(

>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
∂ kw

kw
kE

ij
ij

γ or 0)1(=−∆ kwij (2.10)

 η=0

he momentum term α is adjusted individually for each weight in each epoch:

 otherwise

T

max)(αα =kij if (max)(αβ >kij or 0)()1()(<−∆ kkwkS ijijij β) (2.11)
otherwise)()(kk ijij βα =

where)()()(kwkEkS ijij γ+
∂

= and
)()1(

)(
)(

kS
kij =β

)(kwij∂ kSkS ijij

ij

−−

r than standard backpropagation and less prone to spurious
cal minima. Also a simpler version of the algorithm exists, which uses only the parabolic

pproximation to find the error function minimum.

2.1.1.4

dient g0 and initial vector p0=-g0 the conjugate gradient method
cursively constructs two vector sequences:

 and

Quickprop is much quicke

lo
a

. Scaled Conjugate Gradient

With initial gra
re

)(11 ++ ∇= ii wEg 1−+−= kkkk pgp β (2.12a)

where

 2
1

1
2

||
||

−

−−
=

k

k
T
kk

k g
gggβ (also other definisions of

pi to the minimum of E at wi+1 through line minimization and then set gi+1 at the
inimum.

The idea of the conjugate gradient is to sp
urrent step as little as possible by making the current step in the direction orthogonal to the

s step. The conju

idly in the steepest descent directions.

 βk a can be used)

where g is gradient direction and p is called conjugate direction. We proceed from wi along
the direction
m

oil the results of the previous step in the
c
previou gate direction p minimizes trajectory oscillations and allows longer
steps, which leads to a faster convergence than steepest descent directions, although the error
function decreases most rap

 58

Scaled conjugate gradient algorithm is a version of conjugate gradient that avoids the

time-consuming line search along conjugate directions. SCG algorithm [Möller 1993][Haykin
1994] is considered to be the quickest one among the well-known algorithms for larger
networks. As a Levenberg-Marquardt algorithm, it introduces a scalar λ to regulate the
Hessian .

EH 2∇=

kkk pw ε=∆ (2.12b)

 step size: 2|| kkk
T
k

k
T
k

k psp
gp

λ
ε

+
= (2.12c)

k

kkkk
k

gpwgs
σ
σ −+

=
)((2.12d)

)()(
)()(kkkk

k pwEwE
pwEwE

ε kkkqk

ε
+−
+−

=∆ (2.12e)

here E is the real error, Eq is the quadratic approximation of the error, λk is a scaling

which in each iteration is raised or lowered according to how close E/Eq is to one, i.e. how
lose the error approximation is to the real error.

Since conjugate gradient methods do not compute any matrices, they scale well with
he net

ptimization. [Dennis 1983] [NN Tolbox 2004]. The gradient descent algorithm uses the
llowing update rule:

)

w factor,

c

t work size (chapter 2.4.5).

2.1.1.5. Quasi-Newton

Newton’s method is an alternative to the conjugate gradient methods for fast
o
fo

 (01 iii wEww ∇−=+ λ (2.13)

(2.14)

olving the equation

Expanding the gradient of E(w) using a Taylor series around a point wi,

 restwEwwwEwE i

T
iiii +∇−+∇=∇ ++)()()()(2

11 ,

 0)(=∇ iwE higher order rest, we get Newton’s and neglecting the
rule:

S
update

)(
)(

1
i

i
ii wH

wEww ∇
−=+ (2.15a)

w rmance index at the current values
of the weights and biases.

here is the Hessian matrix of the perfo)()(2
ii wEwH ∇=

 59

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

∂
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=∇

n

MPMPMP

n

PPP

n

e
w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

E

MOMM

L

MLMM

L

21

1

2

1

1

1

2121

1

21

⎥
⎥

⎢

∂

∂ n

w

w

L

2

2

⎤
⎢
⎡ ∂

∂
∂

∂
∂ e

w
e

w
e

L 1111

1

11

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎢
⎢

⎣ ∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

∂∂
∂

∂∂∂∂∂

=

2
21

2
2
221

112
2
1

nnn

n

n

w
E

ww
E

ww
E

ww
E

w
E

ww
E

wwwww

H

L

MOMM

L

L

 (2.15b)

Because it is complex and expensive to compute the Hessian matrix H for feedforward neural
network

⎤

⎢

⎡ ∂∂∂ EEE

was developed. It
pdate of the algorithm.

lar method of calculating the approximate Hessian G is the BFGS (Broyden-
er-Shanno) method, which calculates the inverse of the approximate Hessian:

s, a version of the algorithm called quasi-Newton (or secant)
s only the approximate Hessian matrix G entries at each iteration k u

The most pupu
oldfarb-FletchG

k

T
k

T
kkkk

T
kk

k
T
k

T
kk

k
T
k

kk
T

k
kk rs

srVVrs
rs
ss

rs
rVrVV 111

1 1 −−−
−

+
−⎥

⎦

⎤
⎢
⎣

⎡
++= (2.15c)

where kk GV 10 =V 1−−= kkk WWs 1−∇−∇= kkk EEr 1−=

uasi-Newton algorithm requires more computation in each iteration and more
storage than the conjugate gradient methods, alt
iterations. The approximate Hessian must be stored, and its dimension is Nw x Nw, where Nw is
equal to the number of weights and biases in the network. For very large networks it may be

 the well-known algorithms
for smaller networks [Ranganathan 2004][Marquardt 1963][Ranga 2004][Fang 1999]. LM
algorithm uses both gradient descent and curvature information (Newton’s method).
Combining these two algorithms, the following update rule can be written:

 (2.16)

where is the Hessian matrix and

Q
hough it generally converges in fewer

better to use Rprop or the conjugate gradient algorithm. For smaller networks, however it can
be an efficient training method.

2.1.1.6. Levenberg-Marquardt Algorithm

LM algorithm is considered to be the quickest one from

)()(1
1 iii wEIHww ∇+−= −

+ λ

)(2
iwEH ∇=)(iwE∇ is the Jacobian matrix. Replacing the

identity matrix with the Hessian diagonal increases the step in the direction of small gradient
minimizing the trajectory oscillations. Thus, we get the final Levenberg-Marquardt update
rule:

 (2.17)

)(])[(1
1 iii wEHdiagHww ∇+−= −

+ λ

 60

λ is dynamically decreased about a rank of order if the error decreases. If the error increases
λ is increased about a rank of order, learning trajectory returns to the previous point and the
step is

N and that of Hessian is . That in practice terms means that for satellite
age database with 27 hidden neurons as discussed in [Ranga 2004] the Jacobian alone

quires 248 MB memory using double (8 Byte) type. To reduce the memory requirements
parts and Hessian calculated by summing partial

t computational overhead. For comparison the VSS algorithm
hapte 2.4) r

repeated.

The main disadvantage of LM algorithm is a high memory requirement. The size of
Jacobian is v NN 2

wo wN
im
re
the Jacobian may be divided into several
results but this adds a significan
(c r equires whov NNNN 2)(++ memory for network parameters, what gives only
1.26 MB memory with double (8 Byte) type. Storing the training set in memory requires 1.30
MB with double type. (Nw is the number of weights, N – number of training vectors, N –
number of hidden neurons, N

v h

o – number of output neurons.)

The RLS (Recursive Least Square) algorithm relie

The algorithm minimizes the following perfor

j
j

t ==

here λ

tailed equations describing RLS
lgorithm are rather complex and therefore even though RLS requires fewer training cycles
an BP the total computational cost of RSL is comparable or only slightly lower than that of

.1.1.7. RLS 2

s on the analogy between adaptive

filters and neural networks [Azimi 1992][Bilski 2002, 2004]. It is well known that in adaptive
filtering the RLS algorithm is typically an order of magnitude faster than LMS algorithm (on
which backpropagation is based).

mance measure:

)()(
2

tnJ
LN

L
n

tn ∑∑ −= λ (2.18) e
11

w , called the forgetting factor, is a positive constant less than one, e is the error in the
linear part of the j-th neuron in the highest (L-th) layer, n is the number of the iteration and
NL is the number of neurons in the highest layer. The de
a
th
BP.

 61

2.1.2. Global Optimization Algorithms

plied to neural networks are computationally much
ore costly than gradient-based methods. Nevertheless, they are used because of their ability
 find frequently much better solutions then anal

.1.2.1. Simulated Annealing

 Simulated Annealing [Kirkpatrick 1983] is inspired by the annealing (cooling)
rocess of crystals that reach the lowest energy corres
ooled significantly slowly.

) (2.19)

the probability of accepting the new set of parameters, based on the energy landscape
property at the new and at the old states

Global minimization methods ap
m
to ytical gradient-based methods can find
[Duch 1999a].

2

p ponding to perfect crystal structure, if
c

An annealing methodology requires three functions [Harold 1997]: the probability
distribution of parameters

 /exp()2()(25.0 TXTXxGT −=+ −π

)]/exp(1/[1 TEPT ∆−+= (2.20)

and the cooling schedule for changing the temperature T to generate a new state

)1/(0 TTT += (2.21)

 In interesting paper by Engel [Engel 1998], simulated annealing was applied to a

etwork i hich the adaptive param
an

n w eters were discretized.

.1.2.2

perature parameter in a manner similar to that in simulated annealing.

The algorithms can be described as follows: consider a neuron i connected to neuron j

n

2 . Alopex

Alopex uses local correlations between changes in individual weights and changes in
e global error measure [Unnikrishnan 1994]. The algorithm is stochastic and uses the th

tem

with a weight wij. During the nth iteration, the weight wij is updated according to the rule:

)()1()(nnwnw ijijij δ+−= (2.22)

where δij(n)=- δ with the probability pij(n) and δij(n)= δ with the probability 1-pij(n). The

robability for the negative step pij(n) is given by the Boltzman distribution: p

 62

)(npij))](/)(exp(1/[1 nTnCij+= (2.23)

where Cij(n) is given by the correlation

)()()(nEnwnC ijij ∆⋅∆= (2.24)

and T(n) is positive temperature.)(nwij∆ and)(nE∆ are the changes of weight wij and the
error measure E over the previous two iterations.

)2()1()(−−−=∆ nwnwnw ijijij (2.25)

)2()1()(−−−=∆ nEnEnE

If)(nE∆ is negative, the probability of moving each weight in the same direction is greater
than 0.5. The temperature T is updated every N iterations using the following annealing
schedule:

 ∑ ∆= |)
N

n
−

−=

|)'((nET if n is a multiple of N and T(n)=T(n−1) otherwise (2.26)

1nδ
' Nnn

In Alopex, the magnitude of w∆ is the same for all weights and that point does not
seem to be a very good solution since it does not take an advantage of the natural ill-
conditioning of MLP error surfaces. So in empirical tests [Unnikrishnan 1994] Alopex
required 487 training cycles to solve the Xor problem, while algorithms such as Levenberg-
Marquardt or proposed further in this thesis Variable Step Search Algorithm require less than
10 training cycles for the Xor problem. On the other hand, the aim of global optimization
algorithms is not to compete with local algorithms for the speed but for the quality of solution
for difficult problems. Thus, it seems worthwhile to modify Alopex so that it could use
different w∆ for different weights.

2.1.2.3. NOVEL Algorithm

Novel is a hybrid, global-local trajectory-based method, exploring the solution space,
locating promising regions and using local search to locate promising minima [Shang 1996].
Trajectory in the global search stage is defined by a differential equation

 (2.27)

The first component allows the trajectories to be attracted by local minima, and the second

fine search.

))()(())(()(tPtTtPMtP tg −+∇−=
•

µµ

one allows them to walk out of the minima. The trace function T should assure that all space
is finally traversed. It may either partition the space into regions or make first coarse and then

 63

2.1.2.4. Genetic Algorithms

ith sexual
reproduction, where stronger individuals in the population have a higher chance of creating
an offs

o not guarantee
nvergence to the single best solution to the problem, they are frequently efficient search
chniques. The main advantage of GA is that they are able to manipulate numerous strings
multaneously, where each string represents a different solution to a given problem. Thus,
e possibility of the GA getting stuck in local minima is greatly reduced because the whole
ace of possible solutions can be simultaneously searched. A basic genetic algorithm

 population of strings (representing possible solutions),
te successive generations. First, pairs of individuals of

the current population are selected to mate with each other to form the offspring, which then
s based on the survival-of-the-fittest strategy with the
 of the population. The most commonly used strategy

to select pairs of individuals is the method of roulette-wheel selection, in which every string
is assigned a slot in a simulated wheel sized in proportion to the string’s relative fitness. This
ensures that highly fitted strings have a greater probability to be selected to form the next
generation through crossover. The mutation operator, which with low probability randomly
cha

pairs of parent strings, the crossover operator is
applied to each of these pairs.

arent A = a1 a2 a3 a4 | a5 a6 Parent B = b1 b2 b3 b4 | b5 b6 (2.28)

al between the two parents on either side of the selected
rossover point, represented by “|”, produces the following offspring:

Genetic Algorithms (GA) were proposed by Holland [Holland 1992] in the 1970s as

an algorithmic concept based on a Darwinian-type survival-of-the-fittest strategy w

pring [Rutkowska 1997][Jain 1998][Michalewicz 2003].

Every member of a population has a certain fitness value associated with it, which

represents the degree of correctness of that particular solution or the quality of solution it
represents. The basic approach is to model the possible solutions to the search problem as
strings of ones and zeros. The strings are manipulated by the GA using genetic operators, to
finally arrive at a quality solution to the given problem. Although GA d
co
te
si
th
sp
comprises three genetic operators:

• selection
• crossover
• mutation

Starting from an initial random

the GA use these operators to calcula

form t tion. Selection i
key idea to select the better individuals

s he next genera

nges single bits in the individuals, is introduced to prevent premature convergence into a
suboptimal solution. After selection of the

The crossover operator involves the swapping of genetic material (bit-values) between

the two parent strings. In a single point crossover, a bit position along the two strings is
selected at random and the two parent strings exchange their genetic material as illustrated
below.

P

The swapping of genetic materi
c

Offspring A= a1 a2 a3 a4 | b5 b6 Offspring B= b1 b2 b3 b4 | a5 a6 (2.29)

 64

Genetic algorithms are very popular as a training method for neural networks

[Matthews 2000][Seiffert 2001], although not many commercial programs use them and it is
difficult to find results that show their clear advantage in this type of applications.

In the case of neural network training with GA, the fitness function corresponds to the
net ed in the genome. However,
the y,
both encoded in the genome [Kwaśnicka 2004]. The networks can be also trained with
gradient-ba n be used only for optimization of network topology - then
genome en an also
be used as one training (chapter 3.2.10).

2.2. Basis of Search Algorithms

Search is a systematic examination of states to find a path from the start state to the
goal stat The outpu f a sea on to t problem. The basic search
algorithms can be divided as follows:

• Breadth-First
formed (heuristics) search methods:

• Beam-Search

Best-First

The simplest search methods are uninformed. They have no information about the state

space and perform blind systematic search.

If knowledge about the problem is available, we can attempt to guide the search to a
more efficient conclusion. The knowledge we have about the solution cannot be explicit - this
would mean we could solve the problem directly. Instead, we have rules of thumb –
heuristics. They are not guaranteed to find a good solution, nor necessarily to find one at all,
but they will usually help us find an adequate solution more swi .

The depth-first search algorithm searches through the tree systematically, exploring

each b

nd non-optimal (the algorithm will

work error (e.g. MSE), and particular weight values are encod
 fitness function can be also a weighted sum of network error and network complexit

sed methods and GA ca
codes only the network structure [Mandischer 1993]. Genetic algorithms c

 possible method of SMLP network

e. t o rch algorithm is a soluti he

ftly

Uninformed (blind) search methods:

• Depth-First

In

• Hill Climbing
•

2.2.1. Depth-First Search

ranch until it finds a goal node. One alternative is selected and pursued at each node
until the goal is reached or a node is reached where further downward motion is impossible.
When further downward motion is impossible, the search is restarted at the nearest ancestor
node with unexplored children. This search is complete a

 65

not necessarily find the most efficient route through the state space). For a tree with
ber of children of each node) at depth d, the time efficiency

Th

ot node
etermine if the first element in Q is

the goal
a. If it is, do nothing

irst element from Q and add the first element’s
 front of Q

3. If the goal is reached then success else failure

branching factor b (average num
bd) and the space efficiency is O(bd).

is O(

e Depth-First Algorithm:

Form a one element queue Q consisting of the ro1.
2. Until Q is empty or the goal has been reached, d

b. If it is not, remove the f
children, if any, to the

810

4 6

5 1 0

7

2 4 5

3

S

3 4

2

1

4 6 7

8

10 11

Fig. 2.1. The D ue.
The hich the nodes were examined.

2.2.2. Breadth-First Search

5 9

3

epth-First Search. The numbers inside the nodes correspond to the error val
 red numbers outside the nodes show the order in w

10 8

4 6

5 1 0

7

2 4 5

3

1

S

4

3

1

4

2

5 6

Fig. 2.2. The Breadth-First Search. The num ers inside the nodes correspond to the error
tside the nodes show the order in which the nodes were examined.

7 8 9 10 11 12

b

value. The red numbers ou

The breadth-first search algorithm searches for the goal node among all the nodes of a

particular generation (level) before expanding further. If there is more than one goal node,
always the nearest one in a given generation is found. This search is complete and non-
optimal. Time efficiency O(bd). Space Efficiency: O(bd).

 66

The Breadth-First Algorithm:

1. Form a one element queue Q consisting of the root node
2. Until Q is empty or the goal has been reached, determine if the first element in Q is

g b. If it is not, remove the first element from Q and add the
Q

2.2.3. H

Hil on depth-first search. A heuristic is used to improve the
search effic ice is likely to be better than another
and the choices are ordered accordingly. This search is complete and non-optimal.

he Hill Climbing Algorithm:

1. Form a one eleme
2. Until Q is empty or the goal has been reached, determ

the goal.
a. If it is, do nothing
b. If is not, remove the element from Q, sort the first element's children, if any,

by estimating remaining distance, and add this sorted list to the front of Q
3. If the goal is reached then success else failure

the goal. If it is, do nothin
first element's children, if any, to the back of

3. If the goal is reached then success else failure

ill Climbing Search

l climbing search is based
iency. At each step, it is estimated if one cho

T

nt queue Q consisting of the root node
ine if the first element in Q is

810

4 6

5 1 0

7

2 4 5

3

S

1

43

2

3

Fig 3 des correspond to the error
val .

2.2.4. Beam Search

on problem of breadth first search by
xpanding only the p most promising nodes at each level. A heuristic is used to predict which

nodes

. 2. . The Hill Climbing Search. The numbers inside the no
ue. The red numbers outside the nodes show the order in which the nodes were examined

Beam search avoids the combinatorial explosi

e
are likely to be closest to the goal. Beam search expands several partial paths and

purge the rest. Beam search is like breadth-first search because it progresses level by level but
it is also like depth-first search, because the beam search moves downward only through the

 67

best p nodes at each level; the other nodes are ignored. This search is incomplete and non-
optimal. There is a danger that a goal-finding route will be removed from Q before it can be
explored. This may lead to not finding any goals at all. At each level there are only p nodes
stored. This avoids the exponential explosion problem of breadth-first search.

he Beam Search Algorithm:

ot node
2. Until Q is empty or the goal has been reached, determine if any of the elements in Q

c. Sort Q by heuristic.
d. Remove all but the first p nodes from Q.

3.

T

1. Form a one element queue Q consisting of the ro

is the goal.
a. If they are, do nothing
b. If they are not, remove the elements from Q and add their children, if any, to

the back of Q.

If the goal is reached then success else failure

108

4 6

5 1 0

7

2 4

53

3

S

12

1 1

1 1

2 2

4

3 3

Fig. 2.4. The Beam Search. The numbers inside the nodes correspond to the error value. The
red numbers outside the nodes show the order in which the nodes were examined and the red
rrows the paths taken by the beam search.

.2.5. Best-First Search

2. Until Q is empty or the goal has been reached, determine if the first element in Q is

to the
Q.

The Best-First Search is based on as well breadth- as on depth-first search. A heuristic
is used to improve the search efficiency. At each step, the expansion of nodes is resumed
from the most promising node opened so far, no matter where it is in the tree. This search is

a

2

The Best-First Algorithm:

1. Form a one element queue Q consisting of the root node

the goal.
a. If it is, do nothing
b. If is not, remove the element from Q and add the first element's children

c. Sort Q by estimated remaining distance
3. If the goal is reached then success else failure

 68

complete and non-optimal. Since there are
best) node, there are some variants of the

 different ways to compute the most promising
best-first search: uniform-cost search (estimated

est is the least cost so far), greedy search (least estimated cost to goal), A* (cost so far plus
stimated cost to goal), and many refinements of those.

raining algorithms, such as NG, VSS and SMLP training
methods had to be developed.

k are thought of as tree nodes then the number of nodes is
limited but each node can be assigned an infinite number of values. Also the points in the

s converge to that one with the lowest error after the first training epoch.

at makes a step in
random irections instead of always downward can be implemented with beam search.

owever, the node analogy does not seem to be the best choice for MLP networks and
therefo

.

(
b
e

2.2.6. Search Algorithms for MLP Training

There are two significant differences between the weight space in MLP networks and
nodes of trees or graphs. First, network weights take continuous values. Second, except for
very simple cases, it is impossible to determine the optimal value of a given weight in a
single step and the process must be repeated iteratively always in interaction with other
weights.

For that reason, the described above search algorithms are not very suitable for MLP
networks and new search-based t

If the weights of the networ

weight space can be thought of as tree nodes. Then there are an infinite number of nodes and
each node can be assigned only two values (the learning trajectory passes or does not pass
through this point).

 The first approach, where a weight represents the node, is closer to SMLP networks
(chapter 3.2), where the weights can take only three values (-1, 0, +1). SMLP training
methods, which change one or two weights at a time, resemble the best-first search with
many significant modifications. Also an SMLP training method based on the beam search is
proposed.

The second approach, where a point in the weight space represents the node, is closer
to the standard MLP networks. Numerical gradient (NG) and variable step search algorithm
(VSS) use a strategy similar to hill climbing search.

However, it seems that there is no use to apply a modification of the beam search to
standard MLP networks trained with NG and VSS. We can generate several sets of random
weights (several starting points) but there are no forks in the road along the trajectory paths
and all the beam

Nevertheless, methods based on beam search can be used for MLP training, but not
with such search methods, as NG or VSS. For example, an algorithm th

 d

H
re it is no further used in the thesis. Instead, the weights and the points in the weight

space are considered in MLP training algorithms

 69

2.3. Numerical Gradient

2.3.1. Overview of Numerical Gradient Algorithm

Numerical Gradient (NG) is a local gradient-based search algorithm. In contradiction

to the tr ina ing algorithms, which use analytical gradient, it does not require the knowledge of
connection structure among neurons. Also the neural transfer functions do not have to be

ifferen iable. Moreover, special tables that remember neuron signals can be used to reduce
 to several hundred times. In chapter 2.3 only the batch training is
n of the semi-batch and on-line training can be found in chapter

.5.2. T

d t
the computational cost up
onsidered, the discussioc

2 he networks discussed here consist of usually three fully connected layers and the
neurons use sigmoidal transfer functions. In the second part of the thesis it is assumed that the
slope β of logistic sigmoids used as neural transfer functions equals one, thus the transfer
function is given by the formula:

 ue
Y −+

=
1

1
 (2.30)

where Y is the neuron output signal and u is given by (1.1). The networks considered here are
used for data classification.

As all MLP learning algorithms, NG optimizes weights (including biases as w0

weights) of output and all hidden layer neurons. Before the training starts, the weights are
initialized with small random values. If the random initial weight range is too broad then it is
a great chance that the starting point lies somewhere on the flat area of the error surface and
s a result the network cannot be trained wita h any gradient-based or local search methods
hapter 1.2).

The initial values of all weights cannot be equal (e.g. all zero), because this would

provide no difference between the signals of hidden neurons at the starting point. Although
the gradient components are different from zero, they are the same for the corresponding
weights of each hidden neuron, what makes the training impossible. This situation resembles
the vertex of a cone, where the numerically calculated gradient components are different from
zero, but they are the same in each direction and cancel each other, what finally gives zero
gradient.

NG algorithm consists of two stages: finding the gradient direction and finding the

minimal error along this direction. To find the gradient direction, a constant, small value dw
is added to a single weight w and the error decrease dE(w) is calculated as

(c

)()()(dwwEwEwdE +−= (2.31)

E(w) takes the same value for all weights because the gradient component dE(w) is

tional minimization converges better than BP without

calculated in the same point for each weight w.

Such a simple NG algorithm shows better convergence than standard

backpropagation. NG without direc

 70

directional minimization and NG with directional minimization better than BP with
directional minimization. (In directional minimization the minimum along the gradient

ched for and this version
ycles ng
tional t
. The m h redu
 convergence, will be

eight i a time, the signals do not have to be propagated
k to late the error, but only through the fragment of the

re and after the change. The remaining signals
incomi

nce per each training cycle. The dimension of the signal table is NV x (NH+NO) where NV is
e number of vectors in the training set and NH and NO the number of hidden and output

le are
to be

alcula

direction is sear than a step is made to that minimum.) NG in
requires fewer training c

a
than BP, but has higher compu

 frequen
tational effort per one traini

cycle. The total comput effort is comparable or ly even higher than that of BP
ost andwith optimal parameters

improve the algorithm
odifications of NG, whic

successively introduced in the following
ce the computational c

chapters.

2.3.2. Signal Table

ne wSince only o
through the entire networ
network in which the signals are different befo

s chan
 calcu

ged at

ng to all neurons of hidden and output layers are remembered for each training vector
in an array called “signal table”. With VSS the signals must be propagated through the entire

etwork only once at the beginning of the training thus filling in the signal table and with NGn
o
th
neurons. After a single weight is changed, only the appropriate entries in signal tab

pdated. Also the error of each output neuron is remembered and does not have u
c ted again if a weight of another output neuron is changed. The signal table reduces
three types of calculations: summing the signals incoming to the neuron, calculating the
neural transfer function values and calculating the network error. It significantly shortens
training times, especially for bigger networks. For a network structure 125-8-2 the training is
accelerated about 35 times, for smaller networks less and for bigger networks more. The
acceleration is stronger for VSS than for NG.

Fig. 2.5. Signals that change if an output neuron weight is changed are shown in red. Signals
that change if a hidden neuron weight is changed are shown in blue. The remaining signals
are remembered in the signal table.

 71

Table 2.1. Number of particular operations with and without a signal table required to calculate
numerical gradient direction. Ni, Nh, No – number of input, hidden and output neurons.

type of operation without signal table with signal table
calculating sigmoid value [No(Nh+1)+Nh(Ni+1)](No+Nh) No(Nh+1)+Nh(Ni+1)(1+No)
adding incoming signals [Nh(Ni+1)+No(Nh+1)]2 2[No(Nh+1)+Nh(Ni+1)(1+No)]
calculating network error [Nh(Ni+1)+No(Nh+1)]No [Nh(Ni+1)+(Nh+1)]No

Table 2.2. Number of particular operations with and without a signal table required to calculate
numerical gradient direction for the network structure 125-8-2 (Ni=125, Nh=8, No=2).

type of operation without signal table with signal table
calculating sigmoid value 10260 (100%) 3043 (29.7%)
adding incoming signals 1052676 (100%) 6084 (0.0058%)
calculating network error 2052 (100%) 2034 (99.1%)
total calculation time
(experimental measurement)

100% 2.63%

Th
ined on m

e values in table 2.1 and 2.2 are given for a single training vector. If the gradient is
determ ore vectors at once, the values must be multiplied by the number of vectors.

2.3.3. Analytically and Numerically Determined Gradient Directions

An interesting comparison can be made between the gradient direction determined
analytically by BP (the same direction is used by all algorithms that use the backpropagation
mechanism to calculate gradients) and the gradient direction determined numerically (given

radient direction. Thus the numerical gradient directions
r dw=0.02 and dw=0.0002 do not differ noticeably. The plots in Fig. 2.6 are made for the

ormalized length of the gradient vector = 1. That is justified, since only the proportions
between particular gradient components are meaningful and not their absolute values.

by the formula 2.31) [Kordos 2004d, 2005]. To obtain a good estim
direction in a given point, dw must sufficiently small. As the experiments showed any
dw<0.02 gives practically the same g

ation of the gradient

fo
n

Fig. 2.6. Comparison of numerically (NG) and analytically (BP) determined gradient
components in particular weight directions in the first training cycle. Left: Iris (4-4-3). Right:
Thyroid (21-4-3).

 72

The main difference between numerically and analytically determined gradient
directions is that backpropagation interprets small gradient components (frequently hidden
neuron weight components at the beginning of the training) as still smaller and big ones as
still bigger. The differences between particular numerical and analytical gradient components
are stronger for bigger networks and more complex datasets (for example the differences are
stronger for the Thyroid than for Iris dataset, as shown in Fig. 2.6).

a. Spurious means that
e minima are in the backpropagation-estimated gradient direction, but there exists a

irection in which the trajectory can still go downward. In the experiments the networks were
ained with BP. When they got stuck in a “local minimum”, then from the same point in the

ases were able to leave the apparent
inimum and finally converge.

There are two reasons to assume that the direction towards minimum is closer to the

numerical gradient than to the analytical one. First, in NG the gradient is determined directly
and not assessed by backpropagation or by any other mechanism. Second, BP frequently does
not converge. The effect is known as falling in spurious local minim
th
d
tr
weight space the trainings continued with NG in some c
m

Fig. 2.7. Iris (4-4-3) trained with NG. Left: the first hidden neuron weight changes. Right: the
first output neuron weight changes.

Fig. 2.8. Iris (4-4-3) trained with BP. Left: the first hidden neuron weight changes. Right: the
first output neuron weight changes. The training started from the same initial weights as the
NG training shown in Fig .2.7.

)
e

g the training are shown for the first hidden and first output neuron. The
rst difference that can be noticed is that after the network is trained, the hidden weights are

only slightly smaller than the output ones for NG training, while for BP training they are

Figs. 2.7-2.8 present the results of experiments conducted with the network (4-4-3

trained on the Iris data with NG and with BP, starting from the same initial weights. Th
eights values durinw

fi

 73

signific

erence is that some weights in NG and BP trainings after initially moving in the
same direction, finally went in opposite directions and both trainings ended in different points
of the w

antly smaller than output weights. This could be expected, because of different
gradient component distributions (Fig. 2.6). Thus, it can be concluded that the hidden layer
weight values are underestimated in backpropagation-based trainings. This problem will be
further discussed in chapter 2.4.3.

The second difference is that in BP the weights after some cycles grow very slowly,

almost asymptotically. In NG the weight growth also slows down, but not so dramatically.
The third diff

eight space, although the initial starting point was identical.

2.3.4. Continuous and Discrete Search Space

The discrete NG is an algorithm, which assesses very roughly both the gradient
direction and the optimal step length along this direction (Fig. 2.9-left). It works well for
simple datasets, however in more difficult cases the continuous version of NG may be
required. A comparison between discrete and continuous NG is presented in table 2.3.

Continuous Numerical GradientDiscrete Numerical Gradient

START START

find g ction

N

radien dire
dw = 0.02

NE<t*OE

find gra
dw = D

N

dien direction

Y

Y

NE<AE

move
 thi

 1 unit D
in s direction

N

D = D/2

STOP

Y

NE<AE

find m um
in thi ction

inim
s dire

STOP

Fig. 2.9. Discrete and continuous numerical gradient algorithms. Any combination of these
models is possible.

 74

At the beginning of the discrete NG training both dw=0.5 and the precision of finding
minimum D=0.5. If the error in the next training cycle is greater than 0.999 of the error in the
previous training cycle, than both dw and D are divided by two (Fig. 2.9-left). The
approximated gradient component dE(w) can take only 3 values: –1 if the error increases after
perturbing weight w with dw, 0 if it does not change and +1 if the error decreases. Other
symbols used in Fig. 2.9: NE is the new error, OE – the (old) error in the previous training
cycle, t s a threshold (t=0.995÷0.999), reducing the error to AE (acceptable error) terminates

 the continuous space, but it requires more training cycles to converge.
oreover, it is frequently unable to converge to such a good solution as the continuous

ersion.

Table 2.3. Comparison of discrete and continuous NG - number of training cycles required to
chieve

discrete NG continuous NG (2.37)

 i
the training.

Numerical gradient in the discrete search space can be realized using only as few bits
as four or five to represent all the weights and the value of the transfer function, which also
can be discretized. Higher precision is required only to store the error value. The algorithm is
simpler than NG in
M
v

Both search spaces continuous and discrete can be realized with sigmoid, staircase
and many other transfer functions [Duch 1999b]. The thesis concentrates on NG in
continuous search spaces, and by “NG”, the NG in the continuous search space will be
nderstood. u

a a given 10-fold crossvalidation accuracy (%test).

dat
number of total number of total

aset %
test

network
structure

training
cycles

computational
effort (scaled
training time)

training
cycles

computational
effort (scaled
training time)

Iris 96 4-4-3 60 668 11 175
Breast 96 10-4-2 9 195 4 112

Mushrooms 98 125-4-2 82 3551 21 1070

The total computational cost of NG training consists of two terms: the cost of finding

the gradient direction and the cost of finding the minimum along this direction. The higher
the precision of finding the minimum along the gradient direction is the fewer training cycles
are required to train the network, but the cost of finding the minimum grows.

While finding the gradient direction, only one weight is changed at a time and the

signal table is used, thus the signals are propagated only through small fragments of the
network. While finding the minimum along gradient direction, all the weights are changed at
once and the signal table cannot be used, thus the signals must be propagated through the
entire network. The ratio of the cost of finding the gradient direction cdir to the cost of
checking the error in one point along this direction cmin depends on the network structure.
For networks with 50÷1000 weights usually cdir/cmin=15÷30. Detailed explanation of how
cdir/cmin as calculated can be found in chapte .3.2, where the signal table is discussed.

 w r 2

 75

There exists an optimal precision of finding the minimum along the gradient direction
that allows for achieving a minimal cost of the training. As the experiments showed, using
single or double parabolic approximation (the error is calculated 3 or 6 times) during the line
search is frequently close to the optimal solution.

2.3.5. Gradient Direction and Optimal Next Step Direction

It would not necessarily be optimal to search for the minimum along the gradient
direction (chapter 1.2.11). The statistically optimal search direction component dS(w) is a
function of three variables: the network layer, the training cycle Tc and the gradient
component dE(w):

 (2.32)

The function f can be considered as a product of two functions fTL=f(Tc,layer(w)) that
depends on the training phase and on the network layer and fD=f(dE(w)) that depends on the
gradient component in weight w direction.

))(),(,()(wdEwlayerTcfwdS =

 DTL ffwdS =)((2.33)

The aim of the following reasoning is to determine how to select the functions fTL and

 to obtain the best approximation of the search direction dS(w) for a wide range of training
atasets.

tribute to slower changes (Fig. 1.29-1.30). The
ifferences between error surface sections in hidden weights directions at the beginning and

at the final stage of the training are not so significant.

e training the values dE(w) are greater in the output layer than in the hidden layer, while
w is smaller. Moreover, as the training progresses – the proportions change.

Although the function mw=f(dE(w)) cannot be a priori defined for any particular

weight, some statistical correlations are quite easy to observe. Thus mw=f(dE(w)) should be
rather thought of as a statistical distribution than as a function given by an analytical formula.
As many statistical distributions must be maintained during the training as the number of
neuron layers with optimized weights: one for each hidden layer and one for the output layer.
The distributions must be gradually modified as training progresses, since the error surface
landscape changes.

fD
d

The error surface changes slower in the areas located further from its center.

However, mostly output layer weights con
d

We are in a given point of the weight space and we want to assess the relation

between the gradient component dE(w) in the direction of the weight w and the distance mw
from the actual point to the error minimum in the direction w (Fig. 2.10). Both values dE(w)
and mw can be obtained from the plots in Figs. 1.29-1.30. Some algorithms (wrongly) assume

at mw=f(dE(w)) is a linear correlation. However, it is clearly visible that at the beginning of th
th
m

 76

ig. 2.10. dE(w) is proportional to the error derivative in the actual point with respect to

F
weight w. Since dE(w) is not proportional to mw, we search for the value dS(w) that allows
for a better approximation of mw.

Fig. 2.11. Dependence between the gradient component dE(w) and the distance from the
actual point to the error minimum mw in a given weight direction at the beginning (left) and

same network layer:

at the end of the training (right) for Iris (4-4-3).

In the first approximation we can assume a linear dependence between the optimal
search direction component dS(w) and the gradient component dE(w) within the same
training cycle and the

)()())(,()(wdEfwdEwlayerTcfwdS TL ⋅=⋅= (2.34)

rom a higher value at the initial

 fTL is the more important factor and using only fTL we can get a better approximation of the
direction toward the minimum than using only fD. fTL equals 1 for the output layer and for
hidden layers it can either equal 1 or decrease gradually f
phase of the training down to 1 at the final stage of the training.

 77

 the
actual point to the error minimum in a given weight direction mw at the beginning (left) and
at the e

Fig. 2.12. Dependence between the gradient component dE(w) and the distance from

nd of the training (right) for Iris (4-3-3-3). Red cross = first hidden (counting from
input), green triangle = second hidden, blue square = output layer.

3. Linear approximation

Fig. 2.1 of the dependence between mw and dE(w) for hidden layers;
1 – training cycle 1 through 3; 2 – training cycles 4 through 6; 3 – training cycles 7 through
11; 4 – training cycles above 11. The red line (4) also approximates the dependence between
mw and dE(w) for the output layer in any training cycle. Left: the hidden layer in three-layer
networks and the first hidden layer in four-layer networks. Right: the second hidden layer in
four-layer networks.

 In case of a four-layer network, the dependence between mw and dE(w) for the second
hidden layer can be approximated with a line situated between the lines approximating the
dependencies for the first hidden and for the output layer, however at the end of the training
all the three lines converge to one.

 78

Thus, the formula (2.34) can be written as:

)())exp(1()(wdETcbawdS ⋅⋅−⋅+= (2.35)

where the typical, experimentally determined, optimal values are:

for 3-layer networks:

a=0 for the output layer

T ication works signif better, but as experiments showed, too big
dE(w) do not correspond to mw linea sh d ue.

There are several ways to do it. For example tead a li function, a linear

function e outsi cer
used:

w for - ≤dE dE0

00)()(dEdEsignfwdS TL

a=0 for the output layer
a=10÷20 for the hidden layer
b=0.10÷0.15

for 4-layer networks:

a=3÷5 for the second hidden layer (between the first hidden and the output layer)
a=10÷20 for the first hidden layer (between the input and the second hidden layer)
b=0.10÷0.15.

his modif icantly
husrly. T , they ould be limite to a certain val

, ins of near
 with a constant valu de a tain range (a saturated linear function) can be

dE0 (w)≤ (2.36))

)(dEfwdS ⋅= (TL

⋅⋅= otherwise

where)exp(1 TcbafTL ⋅−⋅+= .
Another possibility is to use a square root of dE(w)

 |)(|))(()(wdEwdEsignfwdS TL ⋅⋅= for -dE1≤dE(w)≤dE1 (2.37)
 ||)()(11 dEdEsignfwdS TL ⋅⋅= otherwise

where)exp(1 TcbafTL ⋅−⋅+= .
Still another option is to use a non-monotone transfer function, for example:

 (2.38)

where dE0,dE1,dE2 are proportional to the standard deviation σ of
gradient components in a given training cycle (dE0=4σ, dE1=8σ, dE2=2σ).

A series of experiments was conducted to assess which approximation would be the
best. Instead of using the least square error as an index of the approximation quality, the
network convergence was observed. The experimental results are presented in Table 2.4.

Though the differences are not big, on average the formula (2.37) gives the best

performance and it will be used further. This formula was tested with various exponents from
(0;1), not only with 0.5. However, the exponent 0.5 seems to be the most optimal one. It is
interesting that the convergence speed for the exponent being zero and being one are very

))(exp()())(()(2
2

2
2 wdEdEwdEwdEsigndEfwdS TL ⋅−⋅⋅⋅⋅=

)exp(1 TcbafTL ⋅−⋅+= ,

 79

similar. RPROP is an algorithm, which takes into consideration only the sign of the
erivative, but not its value (exponent=0) and it performs not worse than BP (exponent=1).

Sin-Ch
d

ung Ng [Ng 2004] has also recently proposed that the gradient components calculated
by backpropagation should be taken in power 0.5, however their main reason for that is
increasing the small gradients to accelerate the training in the flat error surface areas.

Fig. 2.14. Iris 4-3-3. Dependence between the search component dS(w) and the distance mw
from the actual point to the error minimum in a given weight direction at the beginning of the
training for Iris (4-4-3) calculated with (2.37), which displays the best convergence properties
of the methods considered here.

Table 2.4. Average number of training cycles required to reach a given accuracy on the
training set with various versions of NG.

dataset Iris Ionosphere Thyroid
network 4-4-3 43-4-2 21-4-3
accuracy 92% 98% 90% 96% 94% 97%
gradient (2.33) 18 30 20 70 - -
Tc optimized (2.34) 12 18 12 64 32 -
linear + limit (2.36) 9.3 14 12 42 28 52
sqrt + limit (2.37) 8.0 11 12 42 18 40
a·dE·dE·exp(-a·dE) (2.38) 9.5 14 20 44 - -

 80

2.3.6. Error Surface Curvature and Second Derivative

The second order analytical gradient based MLP training algorithms, such as
Levenberg-Marquardt (LM) use not only the information con
second derivative (error surface curvature). They assume tha
in the direction w is approximately proportional to the ratio of the first to the second

 very

tained in the first but also in the
t the optimal search component

derivative. This assumption seems to be right, because LM algorithm displays much better
convergence properties than first order methods, but on the other hand its memory
requirements and calculation times grow rapidly with the network and dataset size, which
causes that in practice LM can be used only for small networks and small datasets (chapter
2.1.1.6). However, the second order methods are not very stable. LM sometimes finds a

ood solution but frequently does not converge at all. g

Fig. 2.1

r convergence than the first order
methods, while being still suitable for large ne
would

5. Left: Dependence between the search component dS(w) and the distance from
actual point to the error minimum in a given weight direction mw at the beginning of the
training for iris (4-4-3) trained with: left – LM, right – NG using equation (2.40).

The equation (2.37) aims at achieving a bette

tworks and large datasets. Nevertheless, it
be interesting to see the correlation between the ratio of the numerical gradient

component to the curvature of the error surface section in a single weight direction and the
distance to the error minimum in that direction. To achieve this, the numerical second
derivative d2w is calculated as the curvature measure, only in single weight directions. We
already know the error E(w) in the actual point and the error in the point E(w+dw). In order
to assess the curvature, we must calculate the error in one additional point, for example in
(w+0.5dw):

 ())5.0()()(5.0)(2 dwwEdwwEwEwEd ⋅+−++⋅= (2.39)

Thus calculating the second derivative requires twice as much calculation as

calculating only the first derivative. Therefore, this approach may be justified only if it allows

 81

for reducing the number of training cycles at least twice in comparison to the number
achieved with (2.37).

|)(|

)()()()(dwwEwEwdEw
|)(| wEdwEd 22dS +−
== (2.40)

d2E(w)<0 means that the error surface in weight w direction is concave. It is fortunately
concave in the prevailing number of points covered by the training trajectory. That is

bvious, because the trajectory tends to occupy rather the error surface ravines than ridges.
he absolute value of d2E(w) is taken in (2.40), because the sign of dS(w) is determined only

by the direction of error decrease and not by the error surface being concave or convex.

Although using the second order information gives on average a slightly better
linearity of the correlation between mw and dS(w), it allows to train the network on average
in the same number of training cycles as the search direction given by (2.37), as shown in
Table 2.5. Moreover, sometimes problems with convergence may occur and the amount of
calculations is doubled. Thus, it is not suggested to use this method.

The most efficient solution would be probably when we get a linear dependence

dS(w)=f(mw), except for the cases when a minimum in a given direction lies in infinity or
very far - then the move in this direction must be limited. In this aim, the minimum in each
weight direction must be searched for separately. Searching for the minimum in each weight

ver, after
me modifications this idea can work exceptionally well (chapter 2.4).

2.3.7. Numerical Gradient with Momentum

The idea of momentum is to accelerate the training convergence by using the
information about the weight changes in the previous training cycle while determining the
changes in the actual training cycle. Usefulness of this approach can be explained in two
ways: either using the information about single weight changes or using the information
about MLP error surface and learning trajectory shapes.

The average changes of a given weight in two successive training cycles are usually

similar. Therefore, it seem easonable to force greater changes in the same direction in order

 gradient
direction in that point strongly differs from the gradient direction close to the bottom of the
ravine.

with

o
T

direction separately will be computationally costly and as it is known from the experiments,
the results expressed by the number of training cycles improve only a little. Howe
so

s r
to minimize the required number of training cycles. However, forcing the algorithm to go
beyond the minimum in the gradient direction does not work very well. After making such an
oversized step we reach a point on the opposite slope of the error surface ravine. The

 Consequently, the trajectory will oscillate from one side of the ravine to the other.
Thus, when the step size increases beyond the minimum in a given direction, also the
direction must be corrected. This leads to a conclusion that error surface ravines create arcs.
If the same distance along the arc must be covered in fewer steps, then it is obvious that the
angle between the directions of the successive steps must be smaller. That can be obtained by
using a weighted sum of the previous step and the line from the current position to the
minimu in the gradient direction. This method known as momentum can be realized m

 82

NG in

d in the weight w direction if the trajectory
moved in the gradient direction. With momentum the weights grow quicker, especially at the
beginni

a similar way as it is realized with BP. The following formula expresses the change of
weight w, using NG with momentum:

 dw(Tc) =mometum·d(wTc-1)+d(wTc) (2.41)

where d(w) is the distance that would be covere

ng of the training.

ig. 2.16. Iris (4-4-3) trained with NG without momentum. Left: MSE (red) and classification F
accuracy (blue) on the training set. Right: values of the first hidden neuron weights.

accuracy (blue) on the training set. Right: values of the first hidden neuron weights.

Also another interesting effect caused by momentum can be observed with some
datasets: many weights do not grow slowly to infinity or to very big values, but stabilize at
constant values after some training cycles (Fig 2.17). The stabilization occurs already in the
area of network convergence. A network trained with NG without momentum requires much
more training cycles to reach such big weights values. Moreover, momentum decreases the
oscillations of classification accuracy on the training set at the beginning of the training.

Fig. 2.17. Iris (4-4-3) trained with NG with momentum. Left: MSE (red) and classification

 83

Momentum can be also used to minimize trajectory oscillations. The oscillations can
appear if we use the discrete version of NG, where the minimum along the gradient direction
is not localized, but a constant step is used. With continuous NG, the oscillations are limited
to the accuracy of finding the minimum along the gradient direction and are too small to have
practical influence on the training process. Thus, there is no need to reduce them by
averaging the directions from several iterations.

Momentum works very well for the Iris dataset but it does not work equally well for

every dataset. The optimal momentum value must be chosen individually for each dataset.
Usually higher momentum values are possible for smaller networks. Moreover, while used
with NG, it must be sometimes switched off the final stage of the training, since after
accelerating the initial stage of the training, e momentum term can prevent the network
from the final convergence (the weight stabilization can occur too early).

Other possibilities of decreasing training times include weight pruning and freezing

(see chapter 2.4.3), using border vectors (chapter 2.5.1) and updating the weights after only a
part of the training set is propagated through the network (chapter 2.5.2).

2.3.8. Experimental Comparison of various NG Methods

Table 2.5. Average number of training cycles required to obtain a given accuracy on the
training set with various versions of NG. The optimal was determined
xperimentally for each dataset.

 at
th

 momentum
e

dataset Iris Ionosphere Sonar
network 4-3-3 34-4-2 60-8-2
accuracy 90% 96% 90% 96% 90% 99%
gradient (2.31) 18 30 20 56 12 32
optimized (2.37) 7.9 11 12 32 10 30
second derivative (2.40) 8.1 11 12 - 17 45
momentum (2.41) 8.0 11 12 24 14 60
optimized+momentum 7.1 10 8.2 16 12 45
step to a minimum
in each weight direction

5.1 8.6 5.4 13 6.8 25

Figs. 2.18-2.21 are presented as comments to Table 2.5.

 84

Fig 2

. .18. Standard NG (2.13) for iris 4-3-3. Left-top: error surface sections in the search

directions dS at the starting point and in training cycles: 5, 10, 15, 20 and 25. Right-top:
PCA-based learning trajectory projection. Middle: on vertical axis: E - MSE error, acc -
accuracy, |W| - length of weight vector, on horizontal axis: training cycle (the vertical axis is
in relative values that can be compared among pictures 2.14-2.17). Left-bottom: Dependence
between search components dS(w) and the distance mw from actual point to the minimum in
weight w direction in the first training cycle. Right-bottom: dS(w) and mw in the 25th training
cycle.

 85

Fig. 2.19. NG with optimized direction (2.37) for iris 4-3-3. Left-top: error surface sections in
the search directions dS at the starting point and in training cycles: 5, 10, 15, 20 and 25.
Right-top: PCA-based learning trajectory projection. Middle: on vertical axis: E - MSE error,
acc - accuracy, |W| - length of weight vector, on horizontal axis: training cycle. Left-bottom:
Dependence between search components dS(w) and the distance mw from actual point to the
minimum in weight w direction in the first training cycle. Right-bottom: dS(w) and mw in the
25th training cycle.

 86

Fig. 2.20. NG with momentum = 0.25 (2.42) for iris 4-3-3. Left-top: error surface sections in
the search directions dS at the starting point and in training cycles: 5, 10, 15, 20 and 25.
Right-top: PCA-based learning trajectory projection. Middle: on vertical axis: E - MSE error,
acc - accuracy, |W| - length of weight vector, on horizontal axis: training cycle. Left-bottom:
Dependence between search components dS(w) and the distance mw from actual point to the
minimum in weight w direction in the first training cycle. Right-bottom: dS(w) and mw in the
25th training cycle. Momentum does not work so well on every dataset..

 87

Fig. 2.21. NG with optimized direction and momentum (2.43) for iris 4-3-3.Left-top: error
surface sections in the search directions dS at the starting point and in training cycles: 5, 10,
15, 20 and 25. Right-top: PCA-based learning trajectory projection. Middle: on vertical axis:
E - MSE error, acc - accuracy, |W| - length of weight vector, on horizontal axis: training
cycle. Left-bottom: Dependence between search components dS(w) and the distance mw from
actual point to the minimum in weight w direction in the first training cycle. Right-bottom:
dS(w) and mw in the 25th training cycle.

 88

2.3.9. Conclusions

The numerically and analytically determined gradient directions in MLP weight
ace differ. Though the difference is usually not great, its cumulative effect during the

merical and analytical gradients will find
e initial weights. A significant difference

xists b

tional cost per one training cycle, however it requires more training cycles and
s tota

sp
training can cause that the algorithms based on nu

uite different solutions while starting from the samq
e etween any of the gradient directions and the optimal next step direction. The
common tendency of many training algorithms based on analytical gradient is to
underestimate the modifications of the hidden layer weights (Fig. 2.7, 2.8 and 2.28).

The discrete NG is the simplest version of the numerical gradient algorithm. It has

ower computal
it l computational effort is higher than that of continuous NG. There exists an optimal
precision of finding the minimum along the gradient direction or along the modified search
direction, which allows for the lowest training costs.

The optimized direction dS allows for longer steps and thus the training can be done

in fewer steps. Since this does not impose any additional overhead, it is advocated to use the
optimized direction dS. Except for the optimized direction dS, each other enhancement
increases the training speed by reducing the amount of information calculated by NG
algorithm (including semi-batch or on-line training or using border vectors – see chapter
2.5.1–2.5.2). The information cannot be reduced too much, since then the training will not be
able to converge. For that reason if some of the methods are combined together, each of them
should modify the basic training algorithm less than if used separately (for example the
optimal momentum can be 0.4 with the batch training and 0.2 with the semi-batch training).

 89

2.4. Variable Step Search Algorithm

e
point on the error surface and then a single step is made in the calculated direction. In the
progressive search, after each weight change is examined, immediately a step in this weight

ges are examined already in the new point on the

2
y the new point. Then we move to the minimum found in the weight w2 direction and

so on.

hat
changi

he quality of the solution is the most important factor and the
training

f minimizing the cost. The first method is
remem

2.4.1. In-Place versus Progressive Search

 the in-place search used by NG, all the weight changes are examined in the samIn

direction is made and the next weight chan
rror surface. e

As the experimental results showed (chapter 2.3.8), the best method of searching for

the next step direction is to find a minimum in each weight direction separately (using any
line search method) and then to move to that point.

However, if the minimum in the weight w1 direction is found, we can immediately

move to that minimum and then search for the minimum in the weight w direction being
alread in

Always a step in a given weight direction is made immediately after the minimum in
that direction is found, while all remaining weights are not changed. Thus, there are as many
steps in orthogonal directions during one training cycle as the number of weights. Many
experiments aiming at determining the optimal weight change sequence were performed,
however the various sequences did not have significant influence on the training efficiency. It
cannot be concluded that any sequence produces the same results because it is also possible
that the optimal sequence has not been found so far. Therefore the weights are changed one
be one, first all weights from the hidden layer than all weights from the output layer, or first
all weights from the output layer and then from the hidden layer. Only after detecting t

ng a given weight does not change the error, the weight is frozen or pruned (chapter
2.4.3).

The computational cost per training cycle is the same as for the NG in-place search,

but as experiments showed, several times fewer training cycles are required to train the
network. Moreover, the progressive search method is usually able to find better solutions than
the in-p ace search. Frequently tl

 time is less important or not important at all, especially for small datasets.

The progressive search as an MLP training algorithm is more stable and allows for

training the network in a fewer training cycles than any other method considered so far.
However, several modifications are still required to decrease the computational cost of the
solution.

There are at least three methods o
bering neuron signals in the signal table instead of calculating them every time

(chapter 2.3.2). Signal tables can reduce the cost up to hundreds times. The second method is
to use appropriate search heuristics while determining the weight values (chapter 2.4.2). The
cost reduction due to the heuristics is difficult to assess precisely, because it depends on many
factors. After applying these two methods, this algorithm performed exceptionally well and
the name variable step search algorithm (VSS) was proposed for it [Kordos 2004b].

 90

The third, optional, method is to use a staircase transfer function instead of sigmoids,

which can be used since no gradient and no derivatives are calculated by VSS. The values of
the staircase functions can be read from arrays instead of being calculated each time. The
time of calculating the neuron signals is ranks of order shorter, but the total training times are
about 3÷30% shorter compared to logistic sigmoids and 4÷40% shorter compared to
hyperbolic tangents, depending on the network structure and the training algorithm.

2.4.2. Determining Weight Values

The simplest search-based algorithm works in the following way: in one training
cycle the value of dw is added to or subtracted from a single weight w. If the error decreases
then the change is kept, otherwise it is rejected. Then dw is added to or subtracted from the
next weight and again the error is calculated, until the changes of all weights are examined.
dw can be gradually decreased each training cycle. This algorithm used for logical rule
extraction from MLP networks with not fully connected layers will be presented in chapter
3.2.

VSS is the modified version of the simplest search-based algorithm, in which dw is

not constant, but dynamically adjusted independently for each weight during a rough
minimization in each weight direction. VSS was designed taking the advantage of MLP error
surface properties that its steepness in different directions varies ranks of orders, and the
ravines in which the MLP learning trajectories lay are usually curves, slowly changing their
directions [Kordos 2004a, 2004c][Gallagher 2000, 2003]. Basing on the properties we can
expect that an optimal dw for the same weight in two successive training cycles will not differ
much while dw for different weights in the same training cycle may differ ranks of order.

In each training cycle i the first guess of dw(w,i) for a given weight w might be the

value dw(w,i−1) that the weight changed about in the previous training cycle. However the
detailed experimental analysis of the algorithm behavior leads to the conclusion that for most
cases the least number of calculations is obtained when the first guess is dw(w,i)=
c1·dw(w,i−1), with c1 in the range 0.3÷0.4, in spite that statistically the ratio of
dw(w,i)/dw(w,i−1) is close to 1.

Fig. 2.22. shows a diagram for determining dw of a single weight in one training

cycle. Before the training starts, the weights are initialized with random values from the

liminated from
rther training. After the first training cycle all hidden weights that still equal zero are

 Since dw(w,0)=0, for each weight w in the
st tra

close to
cannot
at all du
problems

interval (−1;+1). Initializing all hidden layer weights with zero values and setting the first
guess d0 of each weight change to a large value is an effective method of feature reduction in
the first training cycle. The larger d0 (0.5, 1, 2) is the more features are e
fu
runed and d0 is again set to a smaller value.

p

In the first training cycle d=d0=0.2÷0.3.
fir ining cycle the first guess is dw(w,1)=d0. The ravine on the error surface is narrow

 the algorithm starting point. Thus setting d0>0.5 frequently causes that the trajectory
well fit into the ravine bottom and some weights oscillate while others do not change

ring some initial training cycles, resulting in a slow training or convergence
.

 91

START

dw(w,i-1)=0

d=c1*dw(w,i-1)

NE<OE

Y

d=d1*sign(w)

NY
1

23

dw(w,i)=d

4

N

d= -d

NE<OE

dw(w,i)=0

Y

N

N

Y

N

Y

n<max_n
& |w|<max_w
& |d|<max_d

n=n+1

NE<OE

7

10

8

9

5

n=1

n=1

6

c3*(VE-OE)
N Y>NE-OE

11

dw(w,i)=d

d=c2*d

d=d/c2

ig. 2.22. Determining a single weight value in one training cycle of the Variable Step Search

1: if dw(w,i)=0 then goto 3.
2: the value c1·dw(w,i-1) is added to the weight w.
3: if the weight w did not change in the previous training cycle try to add (or subtract)

to it a smaller value d=d1·sign(w). Each weight is more likely to change in the
same direction in the next training cycle. For that reason d1 is multiplied by sign(w)

F
Algorithm. Typical values of constants c1, c2, c3, d1 are given in Table 2.6.

Comments to the VSS algorithm diagram (Fig. 2.22):

 92

to minimize the number of operations. If the situation repeats twice or more than
the weight can be optionally frozen.

nge the direction of search .
ror NE after the change is not smaller than the old error OE before the

of weight regularization and can be set to
infinity if weight regularization is not required or already provided by a standard
penalty term added to the error function.

: If the new error NE after the change is smaller the than old error OE before the
change then goto 7 else goto 10.

10: If c3·(VE-OE)>NE-OE then accept that point in spite that the error in the previous

1: d=d/c2. Return to the previous point.

Table 2.6. VSS parameters with sigmoid slope=1. The sensitivity column contains the range
of a parameter within which the VSS effectiveness is at least 90% of that for the optimal
parameter. The values are only approximate and do not include interactions between
parameters.

parameter optimal
value

sensitivity
(10% range)

explained
in point No.

4: If the new error NE after the change is smaller than the old error OE before the
change then the direction of the change is correct, goto 7.

5: otherwise cha d=-d
: If the new er6
change then do not change the weight.

7: Search for an approximate minimum along this direction; set d=c2·d
8: If n<max_n and |w|<max_w and |d|<max_d then goto 9 else goto 11. max_n is

given to prevent the loop through points 7-9 from being executed too many times.
Maximal acceptable values for a single weight max_w and for a single weight
change max_d provide an optional way

9

point was a bit lower else return to the previous point (goto 11). VE is the last error
before OE, i.e. NE=error(n), OE=error(n-1), VE=error(n-2). It works like a
momentum with standard backpropagation and is likely to bring gain in the next
training cycle.

1

d0 0.2 0.10÷0.30 above
Fig.2.18.

d1 0.03 0.01÷0.10 3
c1 0.33 0.22÷0.44 2
c2 2.0 1.5÷3.3 7

max_n 4 3÷8 8
c3 0.3 0.1÷0.5 10

Many experiments with various weight updates strategies were made. On average the
calculated about 3 times while determining a single weight value in one training

cycle. It is possible to reduce this number but this leads to a higher number of training cycles.
It is likely that a more efficient weight update scheme exists, however it has not been found
so far.

error is

 93

2.4.3. Analysis of Weight Changes

The VSS algorithm is very convenient for visualization purposes since it changes only
one weight at a time, which allows us to assess the influence of single weights on the
convergence process.

The plots presenting error value as a function of epoch number are widely used in

literature. From Fig. 2.23 it can be seen that the weight changes (absolute values) in the first
training cycle are either zero or the initial change d0. As the training progresses some weights
change slower and some faster. After several training cycles it is clearly visible which
weights do not change any more or their little anges do not significantly influence the error

ch
value and these weights can be frozen or pruned.

Fig. 2.23. Thyroid (21-4-3) trained with VSS: MSE (red) and classification accuracy (blue)
on training set, length of weight vector W (black), absolute value of single weight change
|dw| (yellow), MSE decrease due to a given change dE (green). All values are rescaled to fit
the plot. (see chapter 3.2.12.5 for the Thyroid dataset description)

 94

Fig. 2.24. Mean values (M) and standard deviation (S) of hidden (H) and output (O) weight

anges during the Thyroid dataset (21-4-3) training with VSS.

ch

Fig. 2.25. Selected output layer weights. Thyroid (21-4-3), training with VSS.

Fig. 2.26. Selected hidden layer weights (among the 8 input features only 2 are meaningful)
hyroid (21-4-3), training with VSS.

T

 95

Fig. 2.27. Selected hidden weights of irrelevant features. Mushrooms (125-8-2), training with
VSS. (see chapter 3.2.9.2 for the Mushrooms dataset description)

In many datasets, especially in those with large number of features, only some
features are useful for classification purposes. The weights connecting hidden layer neurons

ining cycle. Mushrooms and Thyroid are
xamples of datasets with plenty of irrelevant features (Fig. 2.26, 2.27).

s of a few weights (Fig. 2.23). Since some of the weights changed at
nnot be assumed that they are irrelevant, but rather that they

have already reached their optimal values and these weights can be frozen and not modified
any more. A threshold for the minimal weight change must be determined or set a priori. If
the weight change in a given training cycle is below the threshold, the weight is frozen for 2n
training cycles, where n starts from one and is incremented each time the weight value is
determined without being changed. If the change is above the threshold, the weight is
normally taken into account in the next training cycle.

 These methods of weights pruning and freezing, which can be used as well with VSS
as with NG, aim at accelerating the training, however they also improve network

timate the
radient components in the hidden weight directions (chapter 2.3.3). As a result even the

hidden weights of a network trained with LM, which assesses the optimal direction much

ight values much quicker and after some training cycles no further
hanges are required (after 4 training cycles in Fig. 2.28-right) That is one of the main
asons why VSS requires fewer training cycles than LM. The output layer weights also grow

quicker

with the irrelevant features do not change during the training with NG or VSS. Thus, it is
very easy to detect the irrelevant features and to remove them from the further training by

runing their weights after the first or second trap
e

 Observation of the weight changes shows that after several training cycles many
weights do not change significantly any more and the further training concentrates on
djusting only the valuea

the beginning of the training, it ca

generalization by removing the connections that transport only residual noise.

The training algorithms based on analytical gradient frequently underes
g

better than BP, grow much slower than when trained with VSS (Fig. 2.28). Thus VSS reaches
the optimal hidden we
c
re

 in VSS trainings, but here the differences between LM and VSS are much smaller. In
both algorithms the output layer weights grow faster than hidden layer weights in LM, but
slower than the hidden layer weights in VSS.

 96

Fig. 2.28. Hidden layer weights for Iris (4-4-3). Left: trained with LM. Right: trained with

SS.

2.4.4. Learning Trajectories

The first and second PCA directions usually capture together about 95-97% of total
variance contained in the learning trajectory. Thus, the PCA-based projections of learning
trajectories reflect the properties of the original trajectories quite well (Figs. 2.29-2.33).

V

Fig. 2.29. PCA-based projection of Iris (4-4-3) error surface trained with VSS with visible
learning trajectory. The trajectory color changes every training cycle.

The trajectories show some regularity for every datasets. Not only dw for the same
weight in two successive training cycles does not differ much, while dw for different weights
in the same training cycle may differ ranks of order, but also some trends in weight changes
may be observed. All sample plots in this chapter use the same network with 4 inputs, 4
hidden and 3 output neurons trained on the Iris dataset.

 97

Fig. 2.30. Projection of Iris (4-4-3) learning trajectory trained with VSS in the first and
second PCA direction. The cross shows the zero point in the weight space. The trajectory
color changes every training cycle.

Fig. 2.31. Projection of the Iris (4-4-3) learning trajectory trained with NG without
momentum in the first and second PCA direction.

Fig. 2.32. Projection the Iris (4-4-3) learning trajectory trained with LM in the first and
second PCA direction.

Fig. 2.33. Projection of the Iris (4-4-3) learning trajectory trained with SCG in the first and
second PCA direction. The training cycles are divided with short crosswise lines.

 98

Fig. 2.34. Projection of the Iris (4-4-3) learning trajectory trained with VSS in the third and
fourth PCA direction.

Higher PCA components have significant values only at the beginning of the training,
what is clear, because at that sta ge training algorithms chose the proper direction. As the
training

endent on a
factor that vanishes as the training progresses, so gradient-based algorithms have a tendency
to decrease their learning steps as gradient decreases and thus slowing down the training even

 VSS does not decrease the step when the gradient decreases, because VSS does not

r n f a , r er t a ng s c in in t .
general, VSS also some r s e , t is re o ig c v e
the ravine, not of a sm

 approaches the final stage, the direction changes are usually slow.

The similarity between all trajectories presented in Figs. 2.30-2.33 is obvious; they

create similar arcs following the shape of the Iris error surface ravine. The differences are
also clearly visible. Using gradient-based information makes the training dep

more.

rely on g adie t in orm tion but ath on he le rni hi tory onta ed the rajectory In
times dec ease th step but hat a sult f a t hter ur atur of

aller gradient. VSS stops when the gradient reaches zero values.

 99

2.4.5. Experimental Comparison of VSS, NG, LM and SCG

The numerical experiments were made on some well-known benchmark dataset from
the UCI learning repository. The datasets and their detailed description can be found in
[Mertz 1998]. Most of the datasets are also described in chapter 3.2.12. For each training
algorithm about 20 experiments were made with every dataset. The network was tested on
test sets (Thyroid, Shuttle) or in 10-fold crossvalidation (Iris, Wisconsin Breast Cancer,
Mushrooms). A vector was considered to be classified correctly if its corresponding output
neuron signal was higher then other neuron signals and than 0.5. All training algorithms were
run with their default parameters, the same for each dataset. Only sigmoid transfer functions
were used, so the additional acceleration of VSS that can be obtained with staircase transfer
functions is not revealed here.

Four values determining the algorithm efficiency are considered: the total

computational complexity (Ct) required to achieve the desired effect, memory requirements

y program. In general, it
would not be the best idea to compare the tim between Matlab and my program directly.
Therefore, the computational complexity of the algorithms was assessed in the following

umber of training cycles require to converge Nt for Mushrooms, Thyroid and Shuttle and the
aining time Tt was measured. The real training times for Iris and Breast were too short for
liable direct measurement, thus the algorithms were run 1000 training cycles and the

t: Tt=Tm(Nt/1000). All on-screen display and additional
programs (though for bigger datasets it had negligible

 to 100 for the bigger
etworks (Mushrooms). For LM Ce was between 4 and 540 and grew rapidly with network

size. For SCG Ce did not depend much on the network size, being between 2 and 8. The
number of the training cycles Nt required to converge was always the lowest for VSS and the
highest for SCG.

The total computational complexity Ct shown in Table 2.7 reflects the algorithm

speed. It expresses the ratio of the total training time to the time of propagating the dataset
through the network once. Ct can be obtained by multiplying the per training cycle
complexity Ce by the average number of training cycles Nt required to train the network:

t=CeNt. It is clear that Ct cannot be calculated very precisely and it will surely vary
l

(MB), the quality of the solution the algorithm can find (% accuracy on the test) and the
ercentage of the algorithm runs that converge to the solution (CR) of this quality. p

VSS and NG calculations were done using my own program written in Delphi
[Delphi]. Matlab Neural Network Toolbox [NN Toolbox 2004] was used for LM and SCG
calculations. For bigger datasets (such as Shuttle) the time of propagating once the training
set through the network in NN Toolbox and in my program did not differ more than 5%. For

aller datasets (such as Iris) the times were much shorter in msm
es

way: first only the datasets were repeatedly propagated through the network with calculating
the MSE error Ns times (in the case of Matlab it was done by modifying trainscg.m so that
only sim() function was called within the plot). Then the algorithms were run the average
n
tr
re
measured time Tm was rescaled to T
ptions were switched off in both o

influence). A given algorithm computational complexity was calculated for given dataset and
network structure per one training cycle as: Ce=(Tt/Nt)/(St/Ns).

For VSS Ce was from 18 for the smaller networks (Iris, Breast)

n

C
depending on a given algorithm implementation, nevertheless it provides quite a usefu
outlook.

 100

In all cases Ct for VSS was lower than that for LM. In most cases, it was also lower
than that for SCG, however for larger datasets that are relatively easy to train, such as the
Mushrooms dataset, the differences were vanishing.

Only VSS and LM were able to converge to the solutions with the lowest error on the

training set (e.g. to classify all training set instances correctly, while the other algorithms
made some errors on the training set). However, LM frequently did not converge to the
solution and had to be repeated with other starting weights. The CR parameter in Table 2.7
expresses the convergence rate of algorithms, i.e. the percentage of the algorithm runs that
onverged to the desired solution within 5000 cycles.

mber
t given in Table 2.7, while for LM the difference was often over 100%. VSS and NG

s had the smallest memory requirements. The performance of NG was poorer than
that of VSS. The main difference between the algorithms is that NG uses directly gradient
information, while VSS does not.

Additional techniques such as weight freezing, weight pruning, calculating the error

not on the entire dataset each training cycle (semi-batch or on-line training) or eliminating
vectors that give the least error, lead to much shorter training times with each of the
examined algorithms, but since the techniques can be used with all the compared algorithms
they are not included here. The methods will be shortly discussed in chapter 2.5.

T

c

For VSS and NG the minimum and maximum number of training cycles in that a

iven algorithm converges to a given solution differed less than 30% from the mean nug
N
algorithm

able 2.7. Comparison of VSS, NG, LM and SCG algorithms.

dataset % VSS NG LM SCG
network test Nt MB CR Ct Nt MB CR Ct Nt MB CR Ct Nt MB CR Ct

Iris
4-4-3

96.0 3.5 - 100 62 11 - 100 175 20 - 80 223 118 - 90 948

Breast
10-4-2

96.0 1.5 - 100 45 4 - 100 112 20 1.5 100 109 147 0.4 60 271

Mushrooms 98.0 1.2 100 124 21 100 1070 4 90 2180 20 100 167
125-4-2 99.6 2.0

0.4
100 206 -

0.4
0 - 6

240
90 3260 45

40
100 377

Thyroid 97.0 6.1 100 392 40 40 862 25 50 1640 103 70 581
21-4-3 98.0 10

0.2
100 643 -

0.2
0 - 35

30
40 2300 -

1.0
0 -

Shuttle 98.0 4.5 100 423 34 90 1300 14 60 1430 780 50 1480
9-6-7 99.0 6.0

1.6
100 564 58

1.6
90 1740 19

1400
60 1940 1620

20
30 3080

Nt - number of training cycles
MB - memory usage in

alculated by subtract
 MB for storing network and training parameters, without memory used for the dataset

ing the memory used by the program running the algorithm on a given dataset from the
emory used by the program with the given dataset loaded in memory and running the algorithm on the Xor

ataset. Memory usage was measured with Task Manager)
R – convergence rate (percentage of training runs that converged to a given accuracy within 5000 training

t mplexity (ratio of the total training time to the time of propagating the dataset
hrough t

(c
m
d
C
cycles)

 - total computational coC
t he network once)

 101

450

100

120

140

20

40

60

80

% of Converged Trainings
Computational Complexity
Memory Requirement

0
VSS NG LM SCG

Fig. 2.35. Comparison of VSS, NG, LM and SCG algorithms (mean values from Table 2.7).

 VSS does not converge in 100% runs for every dataset (see next chapter). It also did

ot outperform in every case the other algorithms so much as it could be concluded from the
hart above. The chart is made for average values. Thus, the general tendencies shown in the

e of VSS.

n
c
plot below may reflect more faithfully the performanc

Fig. 2.36. Comparison of VSS, NG, LM and SCG algorithms. General tendencies of relative
training times in function of network and dataset size (upper bound for difficult, lower for
easy to train datasets).

2.4.6. N-bit Parity Problems

 The n-bit parity problems (chapter 1.2.5.2) are very difficult for MLP training
algorithms. The following plots of MSE and accuracy on the training set in the function of
training cycle show typical VSS performance on n-bit parity problems.

 102

Fig. 2.37. MSE (red) and training accuracy (blue) during the VSS training of: left: Xor (2-2-
1), convergence rate ≈ 90%, right: 4-bit parity (4-4-1), convergence rate ≈ 98%.

Fig. 2.38. MSE (red) and training accuracy (blue) during the VSS training of: left: 6-bit parity
(6-32-1), convergence rate=100%, right: 6-bit parity (6-16-1), convergence rate ≈ 95%.

is case the
conver

There are 2 =4 data clusters per class for the Xor (2-bit parity) problem, 2 =8
clusters

output neuron joins the partial rules with the OR operator. With only 8 hidden neurons the

Fig. 2.39. MSE (red) and training accuracy (blue) during the VSS training of 6-bit parity (6-
8-1). Left: successful training. Right: two vectors wrongly classified. In th

gence rate is about 35% but the accuracy of at least 96.88% (two vectors wrongly
classified) is obtained in about 95% of the algorithm runs.

(2-1) (4-1)
 per class for 4-bit parity and 2(6-1)=32 clusters per class for 6-bit parity. If there are 32

hidden neurons for the 6-bit parity problem, then the number of hidden neurons equals the
number of data clusters per class and the network training is quite easy. Also 32 hidden
neurons are required in this case for the SMLP network (chapter 3.2) to describe the 6-bit
parity problem with logical rules – each hidden neuron generates one partial rule and the

 103

representation of particular data clusters is distributed among them using complex
the network training, since the ravines on the
 very narrow (Fig. 1.17-left). In this case the

SS tra

, popular in artificial intelligence and
completely neglected in neural networks (with an exception of rarely used Alopex algorithm

ar the performance of VSS as a standalone algorithm has been more than
atisfa is fast, can fin s. Since

VSS is very simple to progra r s), it is
quite surprising that in empir ts it us

aces of real- rld datasets local minima in craters are extremely
rare. Local search algorithms based on analytical gradient that do not have direct access to the
influen layer weights he network error cannot precisely d e the
gradient direction and fall in spurious local minima. VSS does not fall in spurious minima
and seldom requires multistart, only in that case when there is really no downward way from
the star

ata but near the end of the training use only a small subset of vectors near the
ecision borders. The same learning strategy can be used with neural networks,
dependently of the actual optimization method used. The threshold for acceptance of

vectors useful for training is dynamically adjusted during learning to avoid excessive

dependencies, which are difficult to obtain in
error surface containing the global minima are
V ining converges to 100% accuracy in only about one third of the runs, depending on
the starting point.

2.4.7. Conclusions

It is clear that search-based techniques

based on simulated annealing), may be the basis for network training algorithms. They may
be used for initialization and in combination with traditional gradient-based techniques.
However, so f
s ctory. It d very good

m (does not
al tes

solutions and has low memory requirement
equire calculation of derivatives and matrice
ually outperforms both LM and SCG. ic

For the error surf wo

ce of hidden on t etermin

ting point to one of the global minima.

Although local optimization methods including VSS do not guarantee finding a global

minimum for every problem, for the prevailing number of real-world problems they are
sufficient and it is rarely required to use global optimization methods, which on the one hand
have greater chance to find the solution for complex problems but on the other hand require
much higher computational effort [Matthews 2000].

2.5. Decreasing Training Time

The methods of decreasing training time and improving generalization are outlined
here because of their importance, though in most cases they can be used with any MLP
training algorithms, not only with the search-based ones.

2.5.1. Border Vectors

 Neural networks are usually trained on all available data. Support vector machines
tart from all ds

d
in

 104

oscillations in the number of support vectors. Benefits of such an approach include faster
training, identification of small number of support vectors near decision borders and may also
include higher accuracy of the final solution. balanced datasets
(with small number of samples in some classes i) the solution may be
significantly better, automatically focusing on dif t classes vectors
near the decision borders.

 The goal of the Support Vector Neural Training algorithm [Duch 2004b] is to reduce
the amount of training data, finding only those tr vectors tha eally needed to
support the training process. Network weights are updated after presentation of the training
data, depending on the difference between the target output values and the achieved network

utputs. Patterns that are close to the decision borders give significant errors and should be
sed for further training. If a given pattern contributes to the error less than the threshold,
en it is removed from further training.

Moreover, for strongly im
and large
the same

n other classes
number of feren

aining t are r

o
u
th

ig. 2.40. Training vectors of the Iris dataset projected into two most significant input space
ature

F
fe s. Left: the entire training set. Right: vectors with the greatest error selected for further
training.

Fig. 2.43. Left: Error surface sections get flatter after the 8th training cycle when border
vectors are selected. Right: MSE and classification accuracy on the training set.

 105

There is however one risk of such an approach. If the algorithm is not controlled
carefully and the data are noisy, the classification process may invert the decision borders.
There are two ways to prevent this: either to use efficient schemes of updating the threshold
values [Duch 2004b] or to cluster the vectors with the lowest error instead of rejecting them.

If some vectors are represented by points that lie very close to the proper output space
hypercube vertex, they can be clustered and replaced by a single vector. This vector
represents the cluster and its error is be multiplied by the number of that cluster instances.
That guarantees that the decision borders will not be inverted.

e of
e vectors can be propagated through the network and after the partial error is calculated the

i-batch training). In on-line training, the weights are updated
after each single vector is presented. In the examples below, the training set is divided into 10
parts for the Iris and 100 parts for the Mushrooms dataset. Every training vector is randomly
assigned to one of the parts at each training cycle.

Table. 2.8. Computational effort reduction of NG training obtained by dividing the training
set into parts.

dataset number of
parts

training time reduction (training time with
calculating error on the whole data set = 1)

2.5.2. Batch Versus Online Training

Weights can be updated after the entire training set is presented and the error is
alculated on the entire set (batch training). In order to decrease training times, only somc

th
weights can be updated (sem

Iris 10 0.30
Wisconsin Breast
Cancer

10 0.18

Mushrooms 100 0.047

No modification of the weight update step is required with the number of parts in the

training set shown in Table 2.8. However, if we decrease more the number of vectors on
which the error is calculated at a time (the batch size), then it is required not to go to the
minimum in the gradient direction, but to make a shorter step with NG. Similarly with VSS,
when the error is calculated only on a few vectors the weight update can be calculated
according to the diagram in Fig. 2.22, but then each weight should be updated about a value
proportional to but smaller than the calculated one. If the update values are not smaller than
the calculated (as well with NG as with VSS), then the weights will oscillate and the network
will be unable to converge.

On-line training decreases the training time about a smaller factor than the number of

vectors in the training set. A detailed comparison between efficiencies of batch and on-line

ing was practically the same. The authors

training using backpropagation was presented in [Wilson 2003]. Selected results from that
work are summarized in table 2.9. Though the training time was different, the average
generalization accuracy for on-line and batch train

 106

use about 60% of the original datasets for training
ifferent training algorithm and different network s

 and the rest for tests. Since they used a
tructures, their results for Iris, Breast and

ushrooms differ from mine, but the same trend is visible: stronger acceleration is obtained
r bigger datasets. The same authors also compared training times for the Digit Speech

sing various batch sizes. The results they obtained suggest that
ecreasing the batch size below a certain number of vectors does not cause further training
cceler

d
M
fo
Recognition database, u
d
a ation.

Table 2.9. Selected experimental results from [Wilson 2003]; training time reduction
obtained with on-line BP in comparison to batch BP.

dataset training
set size

training time
reduction

Iris 90 1.00
Wisconsin Breast Cancer 410 0.71
Mushrooms 3386 0.011
Shuttle 5552 0.010
Ionosphere 221 0.50
average of 26 datasets 1329 0.05

Fig. 2.44. MSE and classification accuracy on (the actual part of) the training set. Training
set divided into 10 parts. Iris (4-4-3) trained with: left - standard NG, right - NG with
momentum.

Semi-batch training, momentum, border vectors and weight freezing/pruning can be
used together in any combination. However, this must be done carefully, since adding each
method causes some loss of information. The information cannot be reduced too much,
because then the training will not be able to converge. For that reason if some of the methods
are combined together, each of them should modify the basic training algorithm less than if
used separately (for example the optimal momentum can be 0.4 with batch training and 0.2

t for small dataset there is no need for
aining acceleration.

with semi-batch training). All the methods work fine with big datasets. If the dataset is small
and noisy, efficiency of the methods decreases bu
tr

 107

Fig. 2.45. Iris (4-4-3) trained with standard NG. Training set divided into 10 parts. Left:
weights of a selected hidden neuron. Right: weights of a selected output neuron.

Fig. 2.46. Iris (4-4-3) trained with NG with momentum. Training set divided into 10 parts.
Left: weights of a selected hidden neuron. Right: weights of a selected output neuron.

ig. 2. with NG with momentum and 100 parts in the
aining set. Selected weights of an output neuron.

F
tr

47. Mushrooms (125-8-2) trained

 108

2.6. Improving generalization

2.6.1. Introduction

Generalization is the neural network ability to learn the data structure and not the
single data vectors used for network learning and consequently to make reasonable decisions
for data unseen in the learning process. It is known from the approximation theory (Tikhonov
regularization) and from the statistical learning theory that too precise learning on a training
set leads to overfitting, which results in poor generalization ability [Łęski 2002]. Vapnik-
Chervonenkis (VC) theory is a general theory for estimation of dependencies from a finite set
of data [Vapnik 1998]. The most important in the VC-theory is the structural risk
minimization (SRM) principle. The SRM principle suggests a tradeoff between the quality of
the approximation and the complexity of the approximating function. A measure of the
approximation function complexity is called VC-dimension (VCdim).

VCdim is defined as the number of elements in the greatest set S, for which the system

can perform all possible 2n dichotomies of the set (linear divisions of the set into two parts).

d in all possible configurations. VCdim can
e assessed as:

 NhN ≤ VCdim ≤ 2Nw(1+logNn) (2.42)

where N is the dimensionality of input data, Nh is the number of neurons in the hidden

layer, Nw is the number of weights in the network and Nn is the total number of neurons. If the
sigmoid transfer functions are used, than according to [Hush 1993], VCdim can be assessed
as:

 VCdim=2Nw

 (2.43)

In the case of a network used for binary classification, VCdim equals the maximal number of
training vectors that can be correctly reconstructe
b

Fig. 2.48. Two factors determining generalization: network complexity corresponding to
VCdim (left) and number of training cycles (right).

 109

It is usually difficult to design an optimal network structure before the training,
especially in situations, where a complicated problem must be solved, and the system must
make optimal use of a limited amount of training data. It is known from theory [Denker
1987] and experiments that for a fixed amount of train
weights do not generalize well. On the other hand, networks with too few weights will not
have enough power to represent the data accurately (Fig. 2.48-left). The best generalization is
obtaine

network must solve [Jankowski 1999]. The first choice for the number of hidden neurons
may be

ut also the fully connected network is not always optimal and some
weights can frequently be removed. A simple method of removing irrelevant weights was
discuss

e popular methods aiming
below. Since the methods can be used with m
search-based ones, they will be only shortly outlined.

.6.2. Early Stopping

dating the
ll decrease

itially

emaining tasks as presented in the figures below.
However, from the generalization point of view it is not always desired to solve all the

maining tasks.

corresponding to X and Y in Fig. 2.49-left), 20 hidden
 of the training is

 obta

0 for the instances shown in red
i b ue

ing data, networks with too many

d by trading off the training error and the network complexity.

The network complexity should correspond to the complexity of the problem the

 the geometric mean of the input and output neuron numbers. However, if the data is
simple then fewer hidden neurons or no hidden neurons at all will be optimal while for
complex data more hidden neurons must be used. Not only the number of neurons should be
properly selected b

ed in chapter 2.4.3. The purpose of that method was rather decreasing training times,
although it also leads to improvement in network generalization.

The ideas of som at improving generalization are presented

any training algorithms, not only with the

2

The idea is to use two datasets, one for training and one for vali
eneralization performance. Typically, both the training and validation errors wig

in but the validation error will start to increase at some point (Fig. 2.48-right). Thus, the
training should be stopped when the error on the validation set starts to increase.

This can be explained in two ways. The first explanation (maybe better suited for

networks trained for regression problems) is that network learning typically starts from small
random weights. This corresponds to simple, essentially linear mappings. As the training
proceeds, the weights grow and the network mappings become increasingly nonlinear, i.e. the
model complexity grows.

The second explanation is that first all neurons try to solve the task, which mostly

reduced the network error, and then the r

re

The network with 2 inputs (
nits and 1 output is trained on the dataset shown in Fig. 2.49-left. The aimu

to in the following network output signal:

1 for the instances shown n l

 110

The three remaining figures show the network output (vertical axis) corresponding the
particular points of the input space area (the output signal value 0.5 corresponds to the
decision border). After 3 training cycles of VSS the network is in the optimal state, though
two training vectors are still misclassified. After 10 training cycles, the accuracy on the
training set is 100%, but it is obvious looking at Fig. 2.50-right that such a network has poor
generalization abilities.

Fig. 2.49. Left: class distribution of the training set. Right: decicion borders after 1 training
cycle of VSS (84% accuracy on the training set).

Fig. 2.50. Left: decision borders after 3 training cycles of VSS (92% accuracy on the training
set). Right: decision borders after 10 training cyc

t).

.6.3. Weight regularization

com terms: the ordinary training
erro he effect of using weight
reg

s is added to
the error function as the sum of all the weight squares. The error function is:

les of VSS (100% accuracy on the training
se

2

tradeoff between the training error and the network One technique to reach this
plexity is to minimize the cost function composed of two

. Tr, plus some measure of the network complexity
 ularization is similar to that of early stopping.

In the simplest weight decay model, the penalty term for big weight value

 111

 ∑∑∑ +−= i

v c
cvcv wcsdfE 2

,,)((2.44)
i

As a result, the error surface lifts up (Fig. 1.23), less near the center and more further

om the center, thus we can see a superpositio
by the regularization term. It is obvious that the weights will not grow much in this situation.

l
ts with the same strength, while frequently the best results can be obtained if some

eights are allowed to grow to relatively high values and the others are set to zero
ankowski 1999].

To solve this problem a weight elimination method was proposed [Weigend 1990,

fr n of the original ES with the paraboloid caused

Nevertheless, this quadratic regularization term has one disadvantage. It influences al

weigh
w
[J

1991], where the regularization term added to the error function is:

∑ +i

i

i

ww
wwc 2

0
2

2
0

2

/1
/ (2.45)

 this case, the limit of the regularization term for a single weight is c and not infinity, as in

At the final stage of MLP trainings the weights of output layer neurons tend to grow

ining goals must not require infinite weight values. One
ossibility is to use a stretched sigmoid (Fig. 1.18.b) or other transfer functions that reach the

value for a finite argument [Duch 1999b]. Another possibility is to set the
 and 1.

in
the standard weight decay regularization form.

2.6.4. Stretched Sigmoids and Desired Output Signals 0.1 and 0.9

to very high values. This is caused by the sigmoidal transfer function properties (Fig. 1.2-
a,b). To obtain zero error, the output neuron signals must be zero or one (-1 and +1 in the
case of hyperbolic tangent). This is possible only with infinite weighted sum of the neuron
inputs and that forces the infinite growth of weights. To improve network generalization and
to prevent the training algorithm from wasting time for the excessive increase of output

euron weights, achieving the tran
p
training target
targets as 0.1 and 0.9 instead of 0

2.6.5. ε-insensitive Learning

 The ε-insensitive loss function has the following form:

),0max(ε−= EE (2.46)

Roughly, the idea of this method is that the error must decrease at least by ε to accept the
change of parameters leading to the error decrease. The ε-insensitive learning applied to

euro-fuzzy models was considered in [Łęski 2002]. Since neuro-fuzzy models can perform n

 112

thinking tolerant to imprecision, but neural network learning methods are zero-tolerant to
imprecision, this can remove the inconsistency thus leading to better generalization. The
insensitive threshold t will be further used

 in this thesis to improve classification rules
LP networks (chapter 3.2).

Surgeon (OBS)

t it is possible to take a perfectly reasonable network,
elete half (or more) of the weights and achieve a network that works just as well, or better
eCun 1990]. The saliency of a weight is defined as the change of the error function caused

y deleting the weight. A simple strategy consists in deleting weights with small saliency. It
n be observed that frequently small weights have the least saliency, so a reasonable initial
rategy is to train the network and delete small weights. Then the network should be
trained. This procedure can be repeated iteratively.

 magnitude equals
 the error function

ith respect to the weights. The error function can be approximated by Taylor series:

produced by SM

 (OBD) and Optimal Brain 2.6.6. Optimal Brain Damage

 The basic idea of OBD is tha
d
[L
b
ca
st
re

The main point of OBD is to move beyond the approximation that
saliency and propose a saliency measure that uses the second derivative of
w

)||(||
2
1 3

2

2

dwOdw
dw

Eddwdw
dw
dEdE ⎜

⎛= T
T

+⋅⋅+⋅⎟
⎠
⎞

⎝
 (2.47)

inished, it can be assumed, that the network is in the error function
minimum and the first term of (2.46) can be ignored. Also the terms higher than the second
When the training is f

one can be ignored. Only the second term (Hessian 2

2

dw
EdH =) is important. LeCun assumed

that only the Hessian diagonal is important, so (2.47) can be written as

∑=
i2

The saliency of each weight is defined as

 2

iiii wHs = (2.49)

The OBD procedure can be carried out as follows:

1. choose a network architecture
2. train the network u

iiidwHdE 21 (2.48)

ntil a reasonable solution is obtained
3. ompute the second derivatives H for each weight
4.

c ii

compute the saliencies si for each weight
5. sort the parameters by saliency and delete some low-saliency parameters
6. go to step 2.

Optimal Brain Surgeon [Hassibi 1993] also uses only the second term in the Taylor
series (Hessian). The weight saliency in OBS is:

 113

 1

2

2 −=
ii

i
i H

ws (2.50)

nd after the a

d
selected weights are pruned all remaining weights are modified about the value

wi:

 i
ii

i H 12 −

where I

i IHwdw 1−= (2.51)

ros elsewhere.

.6.7. Statistical Weight Analysis

i is a vector consisting of one at the i-th position and ze

2

 The statistical approach to weight pruning is based on cumulating the differences
among different weights in one epoch [Finnhoff 1993][Cottrell 1995]. The weight saliencies
are defined as

)(

|)(|
j

j
ii

i dwstd
dwmeanws +

=
i

(2.52)

ning error and the network complexity can be
obtained by starting with a very small network and then adding gradually neurons as
required. This constructive approach is used by many algorithms [Fahlman 1990][Jankowski

Adamczak 2001], also by the SMLP network presented in chapter 3.2. If the
etwork without a hidden layer is not sufficient, then the hidden neurons can be added one by

one unt

ith limited number of neurons, however the results
with crossvalidation or on test sets are not better than for other classification algorithms.

d.

where wi is the weight value before the actual epoch, dwi
j is the change of the weight wi as a

response to the presentation of the j-th training vector, mean(dwi) is the mean value and the
std(dwi) is the standard deviation of all the weight changes in the actual epoch. The value si is
large if the weight is large and its changes are small, otherwise si is small and the weight is
supposed to be relatively useless.

2.6.8. Growing Networks

 Another approach to trading off the trai

1999, 2003][
n

il the results are satisfactory. That can be realized in several ways.

Perhaps the best-known network-growing algorithm is the cascade correlation
[Fahlman 1990], which adds the hidden neurons using cascade connection. The network is
able to fit perfectly into the training data w

A method used by SMLP networks is described in detail in chapter 3.2. The SMLP network
has a separate hidden neurons assigned to particular classes. It starts with one hidden neuron
per class and the others are added as neede

 114

Part 3

MLP Networks

3.1.

.1.1. Decision Trees

3.1.1.1. Introduction

The attractiveness of tree-based methods is in large part due to the fact that decision
by their nature [Ho Tu Bao 2002]. Therefore, the explanation of any

particular classification or prediction is relatively straightforward. Decision-tree building
algorith

here are also many weaknesses of decision tree methods. Decision trees are less
approp
and fo orithms can only deal with binary-valued
target classes, others are able to assign records to an arbitrary number of classes, but are
error-p
decision tree is computationally expensive. At each node, each candidate splitting attribute
must be sorted before its best split can be found. Pruning algorithms can also be expensive
since many candidate sub-trees must be formed and compared. Most decision-tree algorithms
re univariate, examining only a single feature at a time. This leads to hyperrectangular

Logical Rule Extraction from

 Review of Rule Extraction Algorithms

3

Decision trees are a form of recursive partitioning [Lewis 2000]. Each node can be
split into two or more child nodes, in which case the original node is called a parent node.
“Recursive” means that the partitioning process can be applied repeatedly. Thus, each parent
node can give rise to child nodes and, in turn, the child nodes can split themselves into two
further nodes.

trees represent rules

ms have the ability to clearly indicate best splits. They put the split that divides into
classes the largest number of training records at the root node of the tree. The second strength
is that decision trees can deal with continuous and categorical variables. Categorical variables
pose problems for some neural networks and statistical techniques. Discretization of
continuous features by decision trees is a by-product of applying the splitting criteria in the
process of tree building.

T
riate for estimation tasks where the goal is to predict the value of a continuous variable
r time-series data. Some decision-tree alg

rone when the number of training examples gets small. The process of growing a

a

 115

decision borders that may not correspond well with the actual distribution of points in the
class space.

3.1.1.2. CART

CART (classification and regression tree) [Breiman 1984], is a binary decision tree
lgorithm, which has exactly two branches at each internal node. The idea of impurity used in a

CART is formalized in the GINI index for the current node c:

 ∑−=

j
jpcGINI 21)((3.1)

where pj is the probability of class j in node c. For each possible split the impurity of the

bgroups is summed and the split with the maximum reduction in impurity is chosen. For
rdered and numeric attributes, CART considers all possible splits in the sequence. For n

 are n-1 splits. For categorical attributes CART examines all
ossible binary splits. For n values of the attribute, there are 2n-1-1 splits. At each node CART

ttributes one by one. For each attribute it finds the best split. Then it
ompares the best single splits and selects the best attribute of the best splits.

odes, during which each node is assigned a
redict

two iss

.1.1.3

e tree, according to the
info a
sep
inform
the tree [Quinlan 1986][Mulawka 1996].

erizes the purity of an
arbitrar
collect
S relati

i
ii ppy

1
2)log((3.2)

su
o
values of the attribute, there
p
searches through the a
c

CART analysis consists of four basic steps [Lewis 2000]. The first step consists of

uilding a tree using recursive splitting of nb
p ed class in a way that minimizes the a priori given misclassification costs. The second
step consists of stopping the tree building process. At this point a maximal tree has been
produced, which probably greatly overfits the information contained within the learning
dataset. The third step consists of tree pruning. CART treats pruning as a tradeoff between

ues: getting the right size of a tree and accurate estimate of the true probabilities of
misclassification. This process known as minimal cost-complexity pruning results in the
creation of a sequence of simpler and simpler trees, through gradually cutting off the
increasingly important nodes. The fourth step consists of optimal tree selection, during which
the tree that fits the information in the learning dataset, but does not overfit the information,
is selected from the sequence of pruned trees.

3 . ID3

ID3 algorithm selects which attribute to test at each node in th
rm tion gain (entropy). The information gain measures how well a given attribute

arates the training examples according to their target classification. ID3 uses this
ation gain measure to select among the candidate attributes at each step while growing

Entropy that measures homogeneity of examples (charact
y collection of examples) is used to define information gain precisely. Given a

ion S, containing positive and negative examples of some target classes, the entropy of
ve to the Boolean classification is

nc

∑
=

−= Entrop

 116

where pi is the proportion of positive examples in S and nc is the number of classes. In all
calculations involving entropy we define 0log0 to be 0. The information gain, Gain (S, A) of
an attribute A, relative to a collection of examples S, is defined as

)(
||
||

)(),(
)(

v
AValuesv

v SEntropy
S
S

SEntropyASGain ∑
∈

−= (3.3)

The central focus of the ID3 algorithm is selecting which attribute to test at each node

in the tree, according to the following procedure:
1. See how the attribute distributes the instances.
2. Minimize the average entropy (calculate the average entropy of each test attribute

training data with missing attribute values, handling attributes with different costs
nd improving computational efficiency.

re. In all cases the left side
(LS for a given dataset D.

us (3.4)

and choose the one with the lowest degree of entropy).

Quinlan [Quinlan 1986] proposed a window-based rule, where only some randomly
chosen instances (window) are considered at each iteration step and exception from the
generated rules are searched for in the remaining data.

3.1.1.4. C4.5

C4.5 is a an extension of the basic ID3 algorithm designed by Quinlan to address

issues not dealt with by ID3 [Hamilton 2002][Quinlan 1986], such as: avoiding overfitting
the data (determining how deeply to grow a decision tree), reduced error pruning, rule post-
pruning, handling continuous attributes, choosing an appropriate attribute selection measure,

andling h
a

3.1.1.5. SSV Tree

The SSV (Separability of Split Value) criterion [Grąbczewski 2003] allows to

separate objects with different class labels. It can be applied to both continuous and discrete
features. The best split value is the one that separates the largest number of pairs of objects
from different classes. The split value (or cut-off point) is defined differently for continuous
and discrete features. In the case of continuous features, the split value is a real number, in
othe ar c ses it is a subset of a set of alternative values of the featu

f feature f can be defined) and right side (RS) of a split value s o

LS(s, f, D) = {x ∈ D : f(x) < s} if f is continuo
LS(s, f, D) = {x ∈ D : f(x)∈ s} otherwise

RS(s, f, D) = D - LS(s, f, D) (3.5)

|)),,(||,),,(min(||),,(||),,(|2),,(c
Cc

cc
Cc

c DfsRSDfsLSDDfsRSDfsLSDfsSSV ∑∑
∈∈

−−⋅⋅=

 (3.6)
where C is the set of classes and Dc is the set of data vectors from D which belong to class c.
According to the SSV criterion the best split value is the one which separates the maximal
number of pairs of vectors from different classes and among all split values that satisfy this

 117

condition – the one which separates the smallest number of pairs of vectors belonging to the
me class. For every dataset containing vectors, which belong to at least two different

he SSV criterion easily
 into a small

umber of crisp logical rules. The classification trees are built by finding the best split of the
es a node of the tree) and splitting the data into two parts for further

 -based rule extraction algorithms fall into two categories: black-box

ecompositional (local) methods.

In black-box methods, the analysis of all the network outputs is performed for
rk weights. The network is used to predict the
 by some other methods, e.g. by decision trees.

 neuron
bec
val
con positive. Rules corresponding to the

h n k node.

ext

set of

4. Quality

prehensibility (readability of rules and size of the rule set)
complexity.

sa
classes, for each feature, which has at least two different values, there exists a split value of
maximal separability.

 The SSV criterion can be used to build decision trees. Since t
finds the best split points, the generated trees can be small, and can be converted
n
dataset (which becom
recursive analysis.

3.1.2. Neural Networks

3.1.2.1. Introduction

Neural
) and d

 network
(global

different inputs, without analyzing the netwo
class of the instance but the rules are extracted

Decompositional methods analyze fragments of the network, usually single nodes to

extract rules. Such networks are based either on sigmoidal functions (step function is the
logi cal limit) or on localized functions. Using step functions, the output of each

omes logical (binary), and since the transfer functions are monotonic and their output
ues are zero and one, it is enough to know the sign of the weight to determine whether its

utrib tion to activation of a given unit is negative or
ole etwork are combined from rules for each networw

Andrews [Andrews 1995] introduced the following set of criteria for logical rule

raction from data using neural networks:
1. Expressive Power (IF...THEN rules, fuzzy rules, other rules)
2. Translucency (degree in which the rule extraction algorithm looks inside the network)
3. Portability (how well the rule extraction technique covers the available network

architectures)

 - rule accuracy
 - rule fidelity (how well the rules mimic the NN behavior)
 - rule consistency (the extend to which equivalent rules are extracted from different
 networks trained on the same task)
 - rule com

5. Algorithmic

 118

3.1.2.2. Validity Interval Analysis (VIA)

IA) proposed by Thrun
[Thrun 1995]. VIA is a generic approach to analyzing the input-output behavior of MLP
net e of each neuron (or
a s vals,
called validity intervals I. VIA checks whether there exists a set of network activations inside
the validity intervals. It does this by iteratively refining the validity intervals, excluding
activations a re
prepositional intervals for the
individual input values and the output is a single target category. Rules of this type can be
written as:

 if (input contains in the hypercube I) then class is C (or shortly: I → C)

Two types of approaches can be distinguished: specific-to-general and general-to-
specific. In a spe ith rather specific rules that are easy to
verify and gradually generalize those rules by enlarging the corresponding validity intervals.

stance already forms a (degenerated) set of validity intervals I. VIA
pplied to I will confirm the membership in C and hence the single point rule I → C. Starting
ith I a sequence of more general rule preconditions can be obtained by gradually enlarging

i.e. the input intervals I) and verifying if the new rule is still a
ember of its class. In a general-to-specific approach we start from rules like “everything is

in class

 REPAN [Craven 1996a, 1996b] algorithm combines decision trees with neural
networks. Decision trees are induced on the training data, plus the new data obtained by
perturbing
Nodes in the d
node have bee t decision tree
approaches h deeper branches. The algorithm
runs as fol

1. Take a trained network and a set of training data as inputs
2. As output, produce a decision tree

twork to label the instances
4. Incrementally add nodes to the decision tree

The

presentations accurately model the network for those instances.

An example of global methods is Validity Interval Analysis (V

works. The key idea in VIA is to attach intervals to the activation rang
ubset of all neurons), such that the network activation must lie within these inter

 th t are probably inconsistent with other intervals. The obtained rules a
if-then rules, where the precondition is given by a set of

cific-to-general approach we start w

Imagine one has a training instance that, without loss of generality falls into class C. The
input vector of that in
a
w
the precondition of the rule (
m

 C” and then new a rule can be generated by splitting the hypercube spanned by the
old rule.

3.1.2.3. TREPAN

The T

the training data. The additional training data are classified by the neural network.
ecision tree are split only after a large number of vectors that fall in a given
n analyzed. Therefore, this method is more robust than direc

, w ich suffer from a small number of cases in the
lows:

3. Use the ne

 function to evaluate node N is f(N) = reach(N)·(1 – fidelity(N)), where reach(N) is the
estimated fraction of instances that reach node N and fidelity(N) is the extend to which the
extracted re

 119

3.1.2.4. RULENEG

rule system = empty
r every training example E

twork for E
if E is not classified by a rule in a rule system

 if negation of A leads to classification P (classification does not depend on A)
 remove A from the rule

endfor

3.1

d Input-Output Rule
Ext
BIO-RE

1. attern of input attributes

3. Generate boolean functions from the truth table

he search for single strong connections continues until the first one not strong enough to
y itself is found. If more detailed information is required, the algorithm
ons of two or more unmarked connections that activate the neuron.

inally, rule antecedents representing hidden neurons are replaced by the corresponding set
of inpu

 the following rule is generated:

The RULENEG algorithm [Hayward 1996] is black-box algorithm for binary attributes based
on the idea that a conjunctive rule only holds if all antecedents are true. Thus a systematic
negation of antecedents in a hypothesized rule can show, which antecedents have to be true to
make the rule true. The network is used to test the hypothesized rule.
The algorithm can be described by the following pseudocode [Neumann 1998]:

fo
 find classification P of the ne

 initialize a new rule for P and E
 for every attribute A in E

endif
endfor

endif

.2.5. BIO-RE, Partial-RE and Full-RE

BIO-RE [Taha 1996] [Neumann 1998] stands for Binarise

raction. It is a black-box algorithm that extracts binary rules from any neural network.
 consists of the following steps:

Obtain the output of the network for each possible p
2. Generate a truth table by concatenating each input pattern with its corresponding net

output

Partial-RE is a decompositional algorithm that consists of the following steps:
1. For each hidden and output neuron order incoming connections according to their

weights
2. Find individual incoming connections that cause the neuron to fire, if they exist
3. For a connection between neurons i and j, generate rules IF ji

jc
→ with believe cj that

is equal of the activation value of the neuron j. Mark the connection as being used in
the rule

T
activate the neuron b
looks for combinati
F

t attributes.

Full-RE extracts all possible rules and corresponding certainty factors. For each
neuron jxwxwxw

jcjnnjjj →>+++ α]...[2211 , where w denotes

the weight and x the input.

 120

3.1 .

The

2.
3.

ber of input connections is less than an upper bound, then extract
rules to describe the activation values in terms of the inputs

se form a subnetwork
i. set the number of output units equal to the number of discrete

n step 3 and 4.

A number of decompositional approaches s
994], RULE-OUT [Decloedt 1996] and Destructi

1. Find all combinations p with positive weights to C whose sum
of C

2. For each p = {p1,...,pi}

.1.2.8. M-of-N

plexity of SUBSET and to further increase the
compre

ilar weights
2.

.2.6 RX

 RX algorithm [Setiono 1995] [Neumann 1998] runs as follows:
1. Train and prune the NN

Discretize the activation values of the hidden units by clustering
Generate rules that describe the network outputs using the discretized activation
values

4. For each hidden unit:
a. if the num

b. el

activation values. Treat each discrete activation values as a target
output

ii. set the number of input units equal to the number of inputs connected
to the hidden units

iii. introduce a new hidden layer
iv. apply RX to this subnetwork

 5. Generate rules that relate the inputs and the outputs by merging rules generated
 i

3.1.2.7. Subset Algorithms

uch as SUBSET [Towell 1991], KT [Fu
ve Learning [Yoon 1994] differ only in 1

some details but share the same technique for the rule extraction process:

or each hidden and output neuron C: F
 exceeds the threshold

a. find the set Sn of all combinations of negative weights to C, such that the sum
of the weights of p and the weights of N-n exceeds the threshold of C, where N
is the set of all negative weights for C and n is an element of Sn

b. for each element n = {n1,...,nj} create the rule:
 if p1,...,pi, not n1,..., not nj then C

3

To overcome the high com
hensibility of a rule system, Towell [Towell 1991] developed the following M-of-N

algorithm:
1. or each neuron, cluster the incoming connections into groups with simF

Average the weights within each cluster
3. Eliminate the clusters without significant effect on the output of the neuron
4. re-train the network with frozen weights to optimize biases
5. form a single rule for each neuron
6. simplify rules to M-of-N form

 121

3.1.2.9. RULEX

 The RULEX [Andrews 1994] algorithm is based on constrained MLP networks with
pairs of sigmoidal functions combined to form ridges or local bumps. Rules in this case are
extr e
data
network with step activation functions. The method works with continuous as well as with
disc

.1.2.10. NeuroRule and M-of-N3

Neurorule and M-of-N3 are two similar decompositional algorithms developed by
etiono [Setiono 2000a]. They share the common network training and rule extraction

techniq

 in terms of the discretized hidden unit

algorith

act d directly from an analysis of the weights and thresholds. Disjoined regions of the
 are covered by different hidden units. In effect, this method is similar to a localized

rete inputs

3

S
ue:

1. Select and train the network to meet the prespecified accuracy requirement
2. Remove the redundant connections in the network by pruning while maintaining its

accuracy. Steps 1 and 2 can be repeated several times if required.
3. Discretize the hidden unit activation values of the pruned network by agglomerative

clustering (the neighboring activation values of different input patterns are joined
together as long as this does not change the network classification)

4. Extract rules that describe the network outputs
ctivation values (find any combination of hidden neuron signals that causes the a

output neuron to fire, i.e. to produce the positive output signal)
5. Generate rules that describe the discretized hidden unit activation values in terms of

network inputs (find any combination of inputs that makes the hidden neuron
activation within particular discretization interval)

6. Merge the two sets of rules to obtain a set of rules that relates the inputs and outputs
of the network

Both the hidden and output neuron use hyperbolic tangent transfer functions. The

ms require discrete input data. The present value of a given feature is coded as +1 and
the absent values as –1. The training process starts with an oversized network that is
successively pruned. In the case of M-of-N3, after the small weights are removed, the
remaining positive weights are set to +1 and the negative ones to –1. Since the network
training starts with random weights, different rule sets can be extracted from the same
dataset, depending on the initial weights distribution. In the discussion with me, Setiono
admitted that in general he considers Neurorule the best of his rule extraction algorithms.

3.1.2.11. FERNN

Since the repetitive network training and pruning is a time consuming process,
Setiono proposed an algorithm for ”Fast Extraction of Rules from Neural Networks”
(FERNN) [Setiono 2000b], which extracts the rules without weight pruning in the following
way:

 122

1. Identification of useful hidden units based on the information contained in these units.
For this purpose C4.5 is employed.

2.

.1.2.12. FSM

k 2001] is a constructive neural network that
estimates probability density of input-output pairs in each class. The architecture of the FSM

 enerally, there is no restriction upon the type of transfer functions in the FSM
model,

Identification of relevant connections from the input units to the useful hidden units
based on magnitudes of their weights.

Thus it can be said that FERNN is a mixed algorithm: it performs the analysis of the

input-to-hidden weights but uses the black-box approach (by employing C4.5) to hidden-to-
output weights.

3

 FSM (Feature Space Mapping) [Adamcza

network, which is based on the RBF network architecture, consists of three layers (input,
hidden and output). The number of nodes in the hidden layer depends on the problem and is
found automatically during the training phase. There can be only one node in the output
layer, which estimates the confidence of the classification or there can be one output node per
class.

G
 however so far only localized functions G, such as gaussian, bicentral, triangular and

rectangular, were used:

);(),;(, iii

i
i DxGDxG σσ ∏=

 (3.7)

Rectangular functions are especially useful for crisp logical rule extraction, other functions
lead to fuzzy rules. The FSM network realizes the following function:

))),;(((max)(σDxGclassxFSM i
i

= (3.8)

The initial structure of the network includes input and output units and a single layer
of hidd

facilitate extraction of logical rules from an MLP network, one can transform it
smoothly into a network performing logical operations – a logical network (LN). This

ansformation is the basis of the MLP2LN algorithm [Adamczak 2001]. One can try to
extract logical rules from an already trained network. However, starting from a single neuron
or constructing the LN using training data directly (constructive, or C-MLP2LN algorithm) is

en units with parameters determined by a clustering algorithm [Duch 1997]. For on-
line learning, the initialization of additional hidden nodes is performed after a fixed number
of incoming training vectors. One of the problems with RBF networks is their inability to
select relevant input features. In FSM feature selection is performed by adding a penalty term
for small dispersions to the error function.

3.1.2.13. MLP2LN

The MLP2LN network uses the same structure as the SMLP network (Fig. 3.1),
however the two networks use quite different training algorithms.

To

tr

 123

faster and usual more accurate. Since the interpretation of MLP network activation is not
sy, a smooth transition from MLP to a logical type of network performing similar functions

jectives are achieved by
adding two additional terms to the error function:

ea
is advocated. This transition is achieved during network training by the following:

1. Increasing gradually the slope of sigmoidal functions to obtain crisp decision regions.
2. Simplifying the network structure by inducing the weight decay through a penalty

term.
3. Enforcing integer weight values –1, 0, 1 interpreted as: 0 = irrelevant input,

-1 = negative evidence, +1 = positive evidence. These ob

 222222212
,,)1()1(

22
)(

2
1

−+++−= ∑∑∑∑ ii
i

i
i

i
v c

vcvc wwwwdyE λλ (3.9)

The first part is the standard MSE measure of matching the network output y with the

esired output d for all outputd neurons c corresponding to particular classes and all training

rs are needed. To achieve these
bjectives, the first regularization term is used at the beginning of the training to force some

e sufficiently small to remove them.

put class. A single hidden neuron per
class is

rocedure is repeated until all data samples are classified correctly, or until the number of
erfitting (for example one or more rules per one

data samples v. The first term scaled by λ1 is used frequently in the weight pruning or
regularization methods to improve generalization of MLP networks. A naive interpretation of
why such regularization works is based on the observation that small weights mean that only
the linear part of the sigmoid is used. Therefore, the decision borders are rather smooth. On
he other hand, for logical rules, sharp decision bordet

o
weights to becom

The second regularization term, scaled by λ2 has a minimum (zero) for weights

approaching –1, 0 and +1. The first term is switched off and the second increased in the
second stage of the training. This allows the network to increase the remaining weights and,
together with increasing slopes of the sigmoidal functions, to provide sharp, hyperrectangular
decision borders. Thus, the network is transformed into a logical network by increasing the
slope of sigmoidal functions to infinity, changing them into the step functions. Such a process
is difficult, since a very steep sigmoidal functions leads to the noncontinuous gradients.

he training can process separately for each outT

 created and trained using a backpropagation procedure with regularization. λ1 and the
slopes of sigmoidal functions are increased gradually and weights with a magnitude smaller
than 0.1 are removed. λ2 is then increased until the remaining weights reach –1, 0, 1 +/- 0.05.
Finally very large slopes (about 1000) and integer weights –1, 0, 1 are set, effectively
converting neurons into threshold logic functions. The weights of existing neurons are frozen
and new neurons (one per class) are added and trained in the same way as the first ones. This
p
obtained rules grows sharply, indicating ov
new vector classified correctly are obtained).

The C-MLP2LN network expands after a neuron is added and then shrinks after

connections with small weights are removed. A set of rules is found for each class separately.
The output neuron for a given class is connected to the hidden neurons created for that class.
In some cases, only one hidden neuron can be sufficient to learn all instances, becoming an
output neuron rather than a hidden neuron. Output neurons perform summation of the

coming signals and have either positive weight +1 (adding more rules) or negative weight –in

 124

1. The last case corresponds to those rules that cancel some of the errors created by the rules
found previously that were too general. They may be regarded as exceptions to the rules.

The network requires discrete inputs. If the data is continuous it must be discretized
efore giving it to the network inputs. Domain knowledge that can help to solve the problem
an be inserted directly into the network structure, defining initial conditions, which could be
odified further in view of the incoming data. Since the final network structure becomes

ally correct rules to be refined by the learning process is quite
raightforward.

ust, efficient and easily interpretable system where the advantages of both
odels are kept and their possible disadvantages are removed.

erence system (NFIS) performs multi-input-single output fuzzy

apping X→Y, where X ∈ Rn and Y ∈ R. The main blocks of the NFIS are: fuzzifier, rule
base, in

 and conjunction to
aggregation. Frequently Mamdani-type systems are more suitable to approximation problems,

hereas logical-type systems may be preferred for classification problems.

The FLEXNFIS model [Rutkowski 2003] can learn not only the parameters of the
membe

b
c
m
quite simple, inserting parti
st

3.1.3. Fuzzy and Neuro-Fuzzy Systems

 The fuzzy modeling is based on the premise that human thinking is tolerant to
imprecision, and the real world is too complicated to be described precisely [Łęski 2002]. A
neuro-fuzzy system is a fuzzy system trained with some algorithm derived from the neural
network domain. The integration of neural networks and fuzzy systems aims at the generation
of a more rob
m

A neuro-fuzzy interf
m

ference and defuzzifier. The fuzzifier performs a mapping from the observed crisp
input space X ∈ Rn to the fuzzy sets. The fuzzy rule base consists of a collection of N fuzzy
if-then rules, aggregated by disjunction or conjunction. The fuzzy inference determines a
mapping from the fuzzy sets in the input space X to the fuzzy sets in the output space Y. Each
of N rules determines a fuzzy set B. The defuzzifier performs a mapping from a fuzzy set B to
a crisp point y in Y ∈ R. The training algorithm is based on backpropagation.

3.1.3.1. FLEXNFIS

There are two approaches to NFIS designing: the Mamdani method, where
conjunction is used for inference and disjunction to aggregate individual rules and the second
“logical-type” method, where fuzzy implications are applied to inference

w

rship functions but also the type of systems (Mamdani or logical). Consequently, the
structure of the system is determined in the learning process. Several types of FLEXNFIS
systems can exist. For example, the AND-type FLEXNFIS is characterized by the
simultaneous appearance of Mamdani-type and logical-rule systems, while the OR-type
FLEXNFIS depending on a certain parameter exhibits “more Mamdani” or “more logical”
behavior.

 125

3.1.3.2. NEFCLASS

 The NEFCLASS model [Nauck 1999][Hoffmann 2002] is based on a three-layer
fuzzy perceptron network. It uses fuzzy sets as weights between the input and the hidden
layer and 0/1 weights between the hidden and the output layer. Input neurons correspond to
the features, hidden neurons represent the fuzzy rules and output neurons represent different
classes. A fuzzy if-then rule is generated by a hidden neuron by assembling all its connection
weights to input layer in the antecedent part and by setting the conclusion part equal to the
class of the output neuron to which the hidden neuron is connected.

 Prior to the learning process, each feature is equipped with a number of fuzzy sets.
The sets are associated with linguistic terms, which in turn form the universe of input to

scription for each
ature in the antecedent part of the rule. The fuzzy sets can be shifted or their core or support

can be

The rule induction algorithm consists of three parts: 1 – creation of an initial set of

riables defuzzification. The number of neurons and connections
an be dynamically changed by the training algorithm.

h learning, changing the centers and the widths
of the triangles. Several training algorithms, such as backpropagation or genetic algorithms
have be

important features and the classification rules. In the
bsequent phases, the network is pruned to an “optimal” architecture that represents an

“optimal” set of rules. The pruned network is further tuned to improve performance.

hidden layer connection weights and thus make up the granularity of de
fe

 expanded or contracted in the learning process, but their connections with the
linguistic terms remain fixed.

rules, 2 – selection of the best rules according to some criterion, 3 – the fine tuning of the
fuzzy sets that model the linguistic terms. The third step, called fuzzy backpropagation, uses
a fuzzy heuristic variant of the gradient descent method.

3.1.3.3. FuNN

The FuNN model [Kasabov 1996, 1999, 2003] is based on a five-layer feedforward
neural network. The first layer of neurons receives the input information. The second layer
calculates the fuzzy membership degrees to which the input values belong to the predefined
fuzzy membership functions. The third layer of neurons represents associations between the
input and the output variables, fuzzy rules. The fourth layer calculates the degrees to which
output membership functions are matched by the input data. The fifth layer calculates the
exact values for the output va
c

The membership functions used to represent fuzzy values are triangular with the

centers of triangles being attached as weights to the corresponding connections. The
membership functions can be modified throug

en developed for FuNN, as well as several rule extraction algorithms.

3.1.3.4. Four-layer Neuro-fuzzy Systems

 An interesting four-layer neuro-fuzzy scheme for designing a rule-based classifier
along with feature selection was proposed in [Chakraborty 2004], however the authors did
not name their solution. The network is trained with backpropagation in three phases. In the
first phase, the network learns the
su

 126

es that represent the then part of
e rules.

 solutions for some cases of medical diagnosis of
higher quality than decision trees and some other systems. However, despite their success
they ha

 explain how a diagnosis was reached. Therefore,
nother system was used to obtain transparent explanations of the decisions. The SMLP

networ

3.1.4.1

ral network. The advantage
of that approach is that the

to the rule set and the neural network. Each
divid

rithms.

tion capability inherent in neural networks, along
with the obvious com

 instance. As the boosting process progresses, higher weights are given to the data
instances that have not been successfully classified by previous networks generated for the
ensemble. The higher the weight, the more influence the data item has on the learning process

The first layer consists of input nodes, the second one performs fuzzification and
feature analysis, the third one contains antecedent nodes (each node in this layer represents
the if part of a rule) and the forth one contain the output nod
th

3.1.4. Hybrid Systems

Two hybrid systems in which the neural network is use for the improvement of the
input data quality and another system is used for rule extraction are presented here. Neural
networks proved to be capable of providing

d problems with being widely accepted by the medical community due to the lack of
transparency in the methods they use to reach the diagnosis. A critical factor in medical
diagnosis is the necessity to be able to
a

k presented in chapter 3.2 aims at joining these two abilities (high accuracy and clear
explanation).

. GEX and GenPar

Methods called GEX and Genoa were proposed in [Markowska 2002] and
[Markowska 2004]. An MLP network is used to predict the class of a given data instance.
Then the genetic algorithm-based rule extraction module generates rule not for the original
class of the actual instance but for the class predicted by the neu

neural network clears the data from noise, thus the rules can be
more accurate and comprehensive. At the beginning the chromosome is decoded to a rule set.
Afterwards the training patterns are applied
in ual is evaluated on the base of accuracy (number of misclassified examples) and
comprehensibility (number of rules and premises). Then the algorithm searches for the best
individuals and calculates the global adaptation value for each of them. In the last step
individuals are drawn to the reproduction and finally by applying genetic operators the new
population is produced. This method follows the key idea of the TREPAN algorithm, using
instead of decision trees logical rules optimized with genetic algo

3.1.4.2. C4.5 Rule-PANE Algorithm

C4.5 Rule-PANE [Pennigton 2003] is a rule-based machine learning technique that
employs a neural network as a pre-process in the organization of a rule set. This technique is
believed to provide the strong generaliza

prehensibility of a rule set. The training dataset is used to generate a
neural network ensemble using bagging or boosting. Thus, each network in the ensemble is
trained on a slightly different dataset. (Boosting instead of just drawing a succession of
independent samples from the original dataset as in the bagging approach, maintains a weight
for each

 127

of the c

 the original dataset proportionally to the sample weight. Still another
chnique is multiple boosting [Zhengz 1998] that uses ensemble of ensembles to obtain

results

3.1.5. Other Algorithms Used in Comparison of Experimental Results

parisons of the experimental results in chapter
.2.12:

le, in which a dramatic gain in computational speed
can be obtained by reducing the number of vectors that represent each class by clustering. A
set of r

teration).

tion and clustering capabilities. The
utput layer of neurons is a two-dimensional array (map) that is directly used for data

visuali
pendently, in SOM the winning

unit interacts with its neighbor, which are also moved toward the data, the more the closer
they ar

n system that searches for the sets of rules in
e discrete feature space. It generates rules describing a single class, using training vectors

from th

N2 [Clark 1989] is a rule induction system, that modifies the basic AQ algorithm in
such a

s of a given class and few of other classes. At each step it either adds a new
conjunctive term or removes a disjunctive one. Having found a good complex, CN2 removes
those e

urrent neural network. In AdaBoost.M1 [Freund 1997] the network error given by the
instance is multiplied by its weights. The other alternative is to increase the number of that
instance samples in
te

more accurate than through bagging and more stable than through boosting.) The data
items are then passed through the neural networks one last time and the new dataset is created
using the classes assigned to the instances by the network ensemble. An additional dataset is
then created by randomly generating further data items. The union of the two datasets is used
as the training data for C4.5 Rule.

Besides some of the algorithms presented above the following classification and/or
rule extraction algorithms are used in com
3

 LVQ (Learning Vectors Quantizers) [Kohonen 1990] is a supervised classification
system based on the nearest-neighbor ru

eference vectors, also called codebook vectors, is obtained through an iterative process
according to the competitive learning rule (only the closest vector, called winning, moves
toward the presented data at each i

SOM (Self-Organizing Map) [Kohonen 1984][Naud 2001] is a particular type of
neural networks that combines multivariate data visualiza
o

zation. The learning process is unsupervised and self-organized. It is similar to the
LVQ algorithm, but while in LVQ each unit is updated inde

e to the winning unit.

AQ15 [Michalski 1995] is a rule inductio
th

at class as positive and others as negative examples. For multi-class problems, it is
enough to repeat the algorithm for each class.

C
way that it is able to deal with noise and other complications in the data. CN2 does not

automatically remove from its consideration a candidate that includes some negative
examples. Rather it retains a set of complexes in its search that cover large number of
example

xamples it covers from the training set and adds the rule “if <complex> then predict
<class>” to the end of the rule list. The process terminates for each given class when no more
acceptable complexes can be found.

 128

ITRULE [Goodman 1989] is a rule induction system, which uses a maximum entropy
estimator to rank the hypotheses during decision rule construction. It produces rules in the
form: “if <all conditions> then <class> with probability 1”.

LERS (LERning from exampleS) [Grzymała-Busse 1999] is based on rough sets and
uses d

AC2 [Statlog 1994] is not a single algorithm, but rather an expert system, which

allows the user to build graphically a decision tree by placing a considerable emphasis on the
dialog between the system and the user.

Bayes Tree [Buntine 1993] is a Bayesian approach to decision trees. It is based on a
full Bayesian approach: as such it requires the specification of prior class probabilities
(usually based on empirical class proportions), and a probability model for the decision tree.

CAL5 [Müller 1997] is a decision tree especially designed for continuous and
ordered discrete attributes, though an added sub-algorithm is able to handle unordered
discrete attributes as well. CAL5 separates the examples from n dimensions into areas
represented by subsets of samples, where the class exists with a probability greatest than a
given decision threshold. Similar to other decision tree methods, only class areas bounded by
hyperplanes parallel to the axes of the feature space are possible.

CASTLE (CAsual STructures from inductive LEarning) [Acid 1991] is a program

that implements casual (Bayesian) networks.

DIPOL92 [Statlog 1994] is a learning algorithm, which constructs an optimized
piecewise linear classifier by a two-step procedure. In the first step the positions of the
discriminating hyperplanes are determined by pairwise linear regression. Then to optimize
these positions in relations to misclassified patterns an error criterion function is minimized
by a gradient descent procedure for each hyperplane separately.

FACT (Fast Algorithm for Classification Trees) [Loh 1988] uses statistics based on
some assumptions about the probability distribution. It divides continuous features and
discrete features are converted to continuous ones with special methods.

QUEST (Quick, Unbiased, Efficient, Statistical Tree) [Loh 1997] is the more

complex version of the FACT algorithm.

FDA (Fisher’s Discriminant Analysis) [Fisher 1936] uses hyperplanes in n-

dimensional feature space to separate the known classes as well as possible by optimizing a
quadratic cost function. Vectors are classified according to the side of the hyperplane they
fall on.

iscrete features. LERS searches for a minimal length description for each class
represented in the training set. It generates two sets of rules: certain and possible, respectively
for the lower and upper approximation of the set.

1R [Holte 1993] is a decision tree based on single attribute. It allows for discovering

simple correlations between features and classes, however in tests it is usually not so accurate
as more complex classification algorithms.

 129

LDA (Linea
that separates vecto

r Discriminant Analysis) [Schalkoff 1992] searches for a hypersurface
rs that belong to two different classes and keeps the maximal distance

from both classes.

c Linear Discriminant Analysis) [Statlog 1994] operates by choosing
e two classes as well as possible, where the criterion for a good

paration is maximization of the conditional likehood. However, in practice, there is often

climbin

N (k-Nearest Neighbors) assigns a given vector to that class to which most of the k

nearest vectors belongs, using a given distance measure.

n Tree) [Brodley 1992] uses at each node linear
scrim

ed by instances. Rules of the First Order Logic are more general than prepositional
les.

LogDA (Logisti
a hyperplane to separat
se
very little difference between LDA and logDA, and the linear discriminants provide good
starting point for the logistic ones that computationally are much more expensive.

NewID is a decision tree algorithm similar to C4.5. It performs probabilistic
classification, but unlike C4.5 NewID does not perform windowing [Statlog 1994].

OC1 (Oblique Classifier) [Murthy 1997] searches for decision trees using hill
g and uses a combination of heuristic and non-deterministic methods to find the linear

combinations of features in the tree nodes.

PVM (Predictive Value Maximization) [Weiss 1990] performs a full search in the
solution space. It is very efficient for small datasets, however for large datasets it may run
into combinatorial explosion problems.

QDA (Quadratic Discriminant Analysis) [Statlog 1994]. Quadratic discrimination is

similar to linear discrimination, but the boundary between two discrimination regions is now
allowed to be a quadratic surface.

kN

LMDT (Linear Machine Decisio

di inants and tries to reject the least important features.

IncNET (Incremental Network) [Jankowski 1999] is an ontogenic neural network,

built upon the RBF architecture, which can contract and expand in the learning process
optimally adjusting its size to the data structure.

MML (Minimum Message Length) [Cichosz 2000] is a decision tree algorithm,
which searches for the rules in the form that requires the fewest bits, based on entropy
measure.

FOIL (First Order Inductive Learning) [Cichosz 2000] is an algorithm, which uses

sequential covering in searches for the rules that are no longer than required to describe the
ea coverar

ru

Naive Bayes classifier [Duda 2001] assumes that all features are conditionally

independent and instead of the n-dimensional probability density function, the problem is
reduced to estimation of n one-dimensional probability density functions.

 130

SVM (support vector machines) [Vapnik 1995] searches for a hypersurface that
separates vectors that belong to two different classes and keeps the maximal distance from
both classes. Contrary to LDA, it separates not the original vectors but their projections in a
new space.

SMART is a statistical classification and regression method, ALLOC80 [Hermans

1982] is a discriminant analysis, ASI and ASR and LFC (look-ahead feature constructor)
[Ster 1996] are decision trees and RBF is a Radial Basis Function network [Hen 2002] .

Many of the methods were used in Statlog, a large-scale European project aimed at

comparison of various statistical, neural and machine learning systems for classification
problems [Statlog 1994], where their more detailed descriptions can be found.

 131

3.2. SMLP

to understand by experts in a given domain, and they may expose
problem

training algorithm is based on search methods
[Kordo

LP2LN) network
[Adam ak 2001] (chapter 3.1.2.10). However the networks use quite different training
algorithm

earch (SMLP-VSS). The algorithms change one weight at a time, or, if
needed, SMLP-DS changes two weights at a time only in fragments of the network. SMLP-
DS allo

t is usually easier to apply SMLP-VSS for complex

put neuron is used for each discretized feature value. Thus, the number
of all input neurons equals the sum of all distinct values for all features. The network input
value is 1 if the feature has the value represented by a given neuron and 0 otherwise.

3.2.1. Introduction

A good strategy in data mining is to extract simplest crisp logical rules first. They
provide hyperrectangular decision borders in the feature space. This approximation may not
be sufficient if complex decision borders are required, but it works quite well if the problem
has an inherent logical structure. For many datasets crisp logical rules proved to be highly
accurate, they are easy

s with the data itself [Duch 2001].

The approach to classification and extraction of logical rules proposed here is based

on the initial framework presented in [Duch 1999c]. The acronym of this approach, SMLP,
may be interpreted as either “search-based MLP” or “simplified MLP”. The advantages of
MLP neural networks are combined with rule based systems, allowing for extraction of
simple logical rules. Instead of the gradient-based methods that run into problems for
discontinuous, step-like transfer functions, the

s 2003a, 2004b]. It leads to simplified network structures, with few connections
between the hidden and output layer. Various SMLP architectures, training, and rule
extraction algorithms are considered. Several sets of rules of similar accuracy can be
generated, offering different advantages to domain experts.

3.2.2. SMLP Network Structure

 SMLP network uses the same architecture as MLP2LN (or C-M

cz
s. MLP2LN uses backpropagation with variable sigmoid slopes and two adjustable

regularization coefficients. SMLP can use two training algorithms: Direct Search (SMLP-DS)
and Variable Step S

ws for building more diverse sets of rules (chapter 3.2.9) and if the network structure
is fixed during the training, it can be frequently trained in only one training cycle, what
together with the use of signal tables (chapter 2.3.2) and the step transfer functions allows for
very fast training. With SMLP-VSS our control over the form of the extracted rules is not so
full as in the case of SMLP-DS, but i
datasets.

The basic version of SMLP network is based on a 3-layer MLP architecture. Neurons
implement sigmoidal or step output functions with scalar product activation (see chapter 3.2.6
for comparison). The network requires discrete input data. If the data is continuous, it must be
discretized prior to the training or at the run-time by an additional network layer.

A separate in

 132

One hidden neuron per class is initially created. The second hidden neuron per class is
added, if the results with only one neuron are not satisfactory (the indices of the neurons in
Fig. 3.1. indicate the order in which the neurons were added to the network). Weights of
neurons that have already been trained are frozen, minimizing calculation time and leading
frequently to better results, since it corresponds to incremental learning, decomposing the
task into learning general rules first and than exceptions to these rules instead of trying to
modify all rules to fit the data. If the results are still unsatisfactory then the next hidden
neuron is added. The number of hidden neurons per a given class should equal the number of
the data clusters within this class, which cannot be joined together without decreasing the
classification accuracy. Each such cluster is then represented by one disjoined rule generated
by the neuron. The hidden layer performs M-of-N logic operation, which frequently can be
reduced to the AND or OR operations.

FC1

FD1.value1

FD1.value2

Class 0

Class 1

N1a

N2a

N1b

N2b

N[0,0]

N[0,1]

N[0,2]

N[0,3]

N[1,0]

N[1,2]

N[1,1]

N[1,3]

N[2,0]

N[2,1]

N3a

N3b

N0

Fig. 3.1. SMLP network with a discrete feature FD1 and some pre-processing L-units for the

1.

 one output neuron per class that combines the partial rules produced by
t neurons

y logical units (L-units). There are two L-units in Fig 3.1. The first one consists

continuous feature FC

There is

hidden neurons for a given class (OR operation). The biases and weights of outpu
are constant (bias = ±0.5, weights = ±1).

The SMLP network diagram is shown in Fig. 3.1. Each value of a discrete feature

(FD1.value1, FD2.value2) is given to a different input neuron. Continuous features (FC1) are
discretized b

 133

of neurons N0, N1a, N2a, N3a, and the second one of neurons N0, N1b, N2b, N3b. Signals
from L-units are given to the input neurons. The L-units are discussed in chapter 3.2.8.2.

3.2.3. SMLP-DS Training Algorithms

 Three SMLP-DS training methods are discussed: changing one weight at a time,
changing two weights at a time and changing one weight at a time with a search strategy
based on the beam search. In SMLP-DS training, the error is expressed by the standard MSE
function (equation 1.3).

Only weights and biases of the hidden neurons are optimized. The weights can take

only –1, 0 and +1 values if step transfer functions are used, and any integer values with
sigmoidal transfer functions. The biases can take the values 0.5, 1.5, 2.5,…. up to the number
of features minus 0.5. At the beginning of the training all hidden neuron weights have the
value of zero and biases of 0.5. This gives no signals from the hidden to output neurons and
consequently all output neuron signals are zero. Thus, at the starting point no vectors are
assigned to any class.

When the training starts, the value of 1 is added to or subtracted from a single weight.

If the network error decreases after the change more than the predefined threshold t (chapter
3.2.9), then the change is kept, otherwise it is rejected. The default setting is that after any
error decrease the weight change is kept (t=0). Then the value of 1 is added to or subtracted
from the next weight and again the error is calculated, until the changes of all weights in the
hidden neuron are examined. In some cases, (e.g. for the Xor problem) changing only one
parameter at a time may not be sufficient for the algorithm to converge. Thus, modifying two
or more parameters at a time can be used, though it is more time consum g. Moreover, in
cases where the strong asymmetry in class distribution occurs, sometimes the training may be

Usually one training cycle of the algorithm is sufficient as well with changing one as

two we

 a given weight is
determ ed in a single step. If the properties of the actually used training subset differ too
much f

orks, when the
weight values are determined in many steps and therefore the semi-batch or even on-line
training

in

easier and better results may be achieved using the balanced error function.

ights at a time. More training cycles may be required if the threshold value t is being
gradually changed.

The desired signal of each output neuron is 1 if the actual vector belongs to the class

represented by this neuron, and 0 otherwise. A vector is considered to be classified correctly
if the signal of the output neuron corresponding to its class is higher than signals from all
other output neurons and higher than 0.5. In the case of step transfer functions, the output
signals can be obviously only 0 and 1.

While determining each weight change, the error should be calculated on the whole
training set. The reason for this is that in SMLP network the proper value of

in
rom the entire training set properties, then a wrong decision about the weight value

may be taken. The problem is significantly easier in standard MLP netw

 works well.

 134

START

NE+t<OE

w(i)=0, for i=1,...,n
bias=0.5, i=1, pw=0, OE=NE

OE=NE

Y

Y

N

NE+t<OE

w(i)=-1

w(i)=1

w(i)=0

N

i=n

pw=1

STOP

N

i=i+1

Y

f(i)<>f(i-1)
& pw=1

bias=bias+x
pw=0

Y

N

Fig. 3.2. One training cycle of SMLP-DS algorithm with changing one weight at a time.

Explanation of symbols used in Figs 3.2 and 3.3:

ber of weights in the hidden neuron

d
E – Old Error, the lowest error value obtained (with the accepted weight change) as so far
 the training

given weight change is accepted if it decreases the error at least by t
f(i) – fe

 least one weight in the last group of weights connecting values of the same feature
i) to the network is set to +1, pw is set to 1 and the bias can be left unchanged (x=0) or can

ented (x=1), (chapter 3.2.9.2). When two weights are m
e 0, 1 or 2

n – num
i,j – the actually modified weight
w(i) – the i-th weight
NE – New Error, after the weight w(i) is change
O
in
t – threshold, a

ature connected to the network with the weight w(i)
x – after at
f(
be increm odified at a time, then x can
b

 135

START

w(i)=0, for i=1,...,n
bias=1.5, i=0, j=1, pw=0, OE=NE

f(i)=f(j)
Y

N

OE=NE
pw=1

j=j+1
i=0

N

w(i)=0
w(j)=0

N

Y

i=j
Y

j=n

STOP

i=i+1

NE+t<OE

w(i)=1
w(j)=1

N

Y

f(j)<>f(j-1)
& pw=1

bias=bias+x
pw=0

Y

N

F e of with changing two weights at a tim

hile changing two weights at a time, there is no need to examine all possible

 bias=1.5. The weight combinations (-1,+1) and (+1,-1) can be
hecked only with bias=0.5 (assuming that other weight values are zero). However the lack of

one fea ivalent to e lly
enoug 1,+1) w . The influence of negative weights (-1,-1)
can be easily exam the “n hen b s assign a given
class and only the exceptions must be found. That can be s s simpler. Also these two
ap d in ork. However, in the majo the
po e and tural .

ig. 3.3. One training cycl SMLP-DS algorithm e.

W
combinations of the weight values (-1,0,+1), since all combinations with 0 on any position
have already been tested while changing one weight at a time. Only the weight combination
(+1,+1) is checked with
c

ture value is equ
h to check the (+

 the prese
eight combination
egative logic”, w

nce of some other values and th

y default all data i

refore it is usua

ined in ed to
ometime

proaches can be combine one netw
 better reflects na

SMLP rity ses of ca
sitive logic is easier to us human reasoning

While changing one weight at a time, C1 operations are required to examine all the

possible weight changes (-1 and +1) for all N weights of the hidden neuron:

 C1=2N (3.12)

 136

 The cost of changing two weights at a time is significantly higher. While changing
two weights at a time, only the weight combination (+1,+1) is checked. Thus, only

operations are required, where f is the number of features and α is a factor depending on the
number of features and their values. α expresses the fact that we do not try to change
simultaneously two weights of the same feature. If we assume, that different features have

lues, then approximately α≈((f-1)/f)2.

is method is shown in Fig. 3.4. The rules
obtaine

plest
SMLP-DS method with changing one weight at a time). Each weight (or feature) can be a
“parent node” or “child node” to each other weight (or feature). For that reason particular
nodes can be visited several times during the network training.

 C2=0.5·α·N·(N-1), where α≈((f-1)/f)2 (3.13)

similar number of possible va

Also a search strategy based on the beam search can be used. Beam search is a
method based on the breadth first search (chapter 2.2) and thus the method based on beam
search usually allows for obtaining very short rules without the need to search through the
entire solution space. The search strategy in th

d with this method frequently do not have higher accuracy on the training set than
rules obtained with other SMLP-DS training algorithms. Instead, they can have the simplest
form with a given accuracy. That in turn allows for achieving the highest accuracy on the test
set. The method can be used either at the weight level or at the feature level. Therefore, each
node in Fig. 3.4. can represent as well a single weight as a single feature (a group of weights
corresponding to all the values of a given feature that are determined using the sim

2 3

24 5 6

4 51

3

5 6 2

3 5

4 4 5

6

62

2

START

Fig. 3.4. A search strategy based on the beam search method with beam width B=2. The
solution contains nodes number 1, 3 and 5. Each node can represent either a network weight
or a feature, depending on the approach used.

The total number of possible rules CT using R out of N nodes is given be the following
equation:

!
)1)...(1(

R
RNNN

R
N +−−⎞⎛CT =⎟⎟

⎠
⎜⎜
⎝

= (3.14)

 137

The number of times a combination of nodes is calculated by the method based on the beam
search CBS is given by the following equation:

 ∑∑
= =

 VSS (chapter 2.3.2). The
effectiveness of the signal table used with SMLP is even higher than with NG and VSS,
especia

 standard MLP network), and the effectiveness of the signal
table grows with the number of weights.

Table 3.1. Number of operations with and without a signal table required for one training
cycle of SMLP-DS with changing one weight at a time. Ni, Nh, No – number of input, hidden
and output neurons respectively.

without signal table

−−+=
R

r

B

b
BS rbNNC

0 1

)((3.15)

where B is the beam width. Let N be 100, R be 5 and B be 5 then CT=7.5·107 and CBS=2·103.
Let N be 100, R be 13 and B be 13 then CT=7.5·1013 and CBS=1.5·104. Thus, although this
method requires much search, it is still a small fraction of the entire search space.

A good method to increase training speed is to use the signal table that has identical
construction and functionality as the signal table used with NG and

lly when step transfer functions are used. There are two reasons for that: first, only a
single layer of weights is optimized and second, the SMLP networks operating on discretized
features have more inputs than the standard MLP network (one input per each feature value,
versus one input per feature in the

type of operation training the entire
 network at once

training the network
neuron by neuron

with signal table

adding incoming signals 2[Nh(Ni+1)]2 + Nh2 2Nh(Ni+1)2 2Nh(Ni+1)
calculating neuron signals 2Nh(Nh+No)(Ni+1) 2Nh(Ni+1) 2Nh(Ni+1)

total number of operations 2{[Nh(Ni+1)]2 +Nh2

+Nh(Nh+No)(Ni+1)} 2Nh[Ni2+3Ni+2] 4Nh(Ni+1)

Table 3.2. Number of operations with and without a signal table required for one training
cycle of SMLP-DS with changing one weight at a time for the network structure 125-8-2
(Ni=125, Nh=8, No=2).

without signal table
type of operation training the entire

 network at once
training the network

neuron by neuron
with signal table

adding incoming signals 2032192 254016 2016
calculating neuron signals 20160 2016 2016
total number of operations 2052352 (100%) 256032 (12.5%) 4032 (0.20%)

With step tra ing signal requires

the same calculation time as calculating one neuron signal and therefore the operations in
Table 3.1 and 3.2 are summed together. The values in Table 3.1 and 3.2 are given for one
training vector with step transfer functions used by SMLP-DS algorithm. If the weights are
determined using more vectors in the training set, and usually they are, the values must be
multiplied by the number of training vectors. SMLP-VSS algorithm uses sigmoidal transfer

nsfer functions, we can assume that adding one incom

 138

functions and in this case the efficiency of signal tables decreases about 8-25% (greater
ecrease for smaller networks).

S with changing one or two weights at a time will be

lgorith

curs in any vector, than it is always represented by the input signal,
hich e

d

Several other aspects of SMLP-D

successively discussed in later chapters.

 3.2.4. Rule Extraction

Rules are extracted after the network is trained. Therefore, the rule extraction process
is exactly the same for SMLP networks trained with SMLP-DS and with SMLP-VSS
a m.

If a given value oc

w quals one. For all values, which do not exist in a given vector, the incoming signals
are zero. If a presence of a given value contributes to a given class (odor=A,L,N), the hidden
neuron weight will be positive. If the absence (color=R) - then the weight will be negative. If
the value is irrelevant to this class (color=B, odor=F) then the weight should be zero.

odor=A
odor=A

1
1

odor=L odor=L 11
1
1

odor=N odor=N1

color=R

color=R 1

-1

-1
=0.5

b=0.5

b=0.5

B

D edible

odor=F

odor=F

0

0

A edible

b=0.5 bC

0
color=B

color=B
0

 In general, the hidden neurons generate M-of-N rules (if M assumptions out of N are
satisfie

ule is generated. Either the M-of-N rules
r the AND/OR rules may describe a given problem more adequately and may be preferred in

a given
n

the M-of-N operation can be reduced to an AND operation. However, in practice it cannot be
done without considering the meaning of particular weights. An example is shown in Fig. 3.5.
The rule generated by the network is:

if (odor=A or odor=L or odor=N) and (not color=R) then edible

Fig. 3.5. Rules produced by hidden neurons.

d then the condition is true). If the sum of all N inputs of a hidden neuron exceeds its
bias, which has the value of M-0.5, then a logical r
o

 situation. When at least one of the N assumptions must be satisfied then the M-of-N
operation can be reduced to an OR operation. When all N assumptions must be satisfied the

 139

The rule is represented by the three neurons in Fig. 3.5-right. When the sum of the
signals incoming to neuron D (we assume that all neurons have step transfer functions)
exceeds its bias, then the rule is satisfied. However, a single feature can take only one value
for a given vector (for exam tan ke the and L) and
therefore ne gener imagine that every tim
values of th hidden neuron, first the values are grouped
together in ” neurons (B, C connected hid only via
single weights. The left side of Fig. 3.5. shows a diagram
C, D is represented by a single neuron A. The simplified diagram is ented in
the SMLP network. The simplified version can be used because only one value of a given
feature can occur simultaneously. Values within one feature are first joined with OR
operations and then the resultant feature values with M-of-N operations (which we try to
reduce to OR or AND operations whenever it simplifies the rules).

The output layer performs always OR operations,

rules. This structure leads to very straightforward and comprehensive crisp logical rules that
are extracted from the data by the analysis of the weights in the trained network, as shown in
Fig. 3.6. using the Xor example.

ple odor cannot simul
ates the OR rule. One can

eously ta value A
uron B
e same feature are connected to one

e when several

the “OR), that are to the den neuron (D)
 in which the network of neurons B,

 in fact implem

combining rule conditions into final

x=0

x=1

y=0

y=1

N[0,0]

N[0,1]

N[1,0]

N[1,2]

N[2,0]

N[0,2] N[1,1]

N[0,3] N[1,3]

N[2,1]

bias = 1.5

bias = 0.5

1

0
1

0

0
1
0

1

1

class 0

bi 5

bias = 1.5

bias = 1.5

bias = 1.5

1

0

0

1
1 1

class 1

Fig. 3.6. SMLP network trained on the Xor problem.

1
0

0
1 1

a 0.s =

 140

Partial rules given by the hidden layer:

N[1,0]: if x=0 and y=0 then class 0
N[1,2]: if x=1 and y=1 then class 0
N[1,1]:

Final rules given by the output layer:

-0.5, then without any incoming signals, the signal of the neuron equals one.
Thus,

Rules o

9< etal-length and 1.7<petal-width then Iris-Versicolor

Rules obtained with output neuron biases = -0.5:
if not petal-length>2.5 and not petal-length>4.9 then Iris-Setosa
if not petal-length<2.5 and not petal-length>4.9 and not petal-width>1.7 then Iris-Virginica
if not petal-length<2.5 and not 2.5<petal-length<4.9 and petal-width>1.7 then Iris-
Versico

 if x=0 and y=1 then class 1
N[1,3]: if x=1 and y=0 then class 1

N[2,0]: if N[1,0] or N[1,2] then class 0 <=> if (x=0 and y=0) or (x=1 and y=1) then class 0
N[2,1]: if N[1,1] or N[1,3] then class 1 <=> if (x=0 and y=1) or (x=1 and y=0) then class 1

 All zero weights in Fig. 3.6 could also take the value of –1, which in this case results
in exactly the same rules.

The biases of output neurons can be either -0.5 or +0.5. If the output neuron bias is
0.5, then without any incoming signals, the signal of the neuron equals zero. Thus, no data is
by default assigned to the class represented by the neuron. In this situation, the rules tend to
be built mostly in the positive form, because some conditions must occur to activate the
neuron. This configuration will be typically used in SMLP networks. However, if the output
neuron ias is b

all data is by default assigned to the class represented by this neuron. In such a
situation, the rules tend to be built mostly in the negative form, because some conditions must
not occur to deactivate the neuron.

Examples of rules extracted from the discretized (chapter 3.2.8) Iris dataset:

btained with output neuron biases = 0.5:

if petal-length<2.5 then Iris-Setosa
if 2.5<petal-length<4.9 and not 1.7<petal-width then Iris-Virginica
if 4. p

lor

Both sets of rules classify correctly 98% of instances. To simplify the set of rules, the
rules for one of the classes can be given by “else”.

Positive conditions lead usually to simpler rules, therefore the search strategy should
be arranged in such a way that negative weights in output neurons do not occur frequently.

 141

Table 3.3. Number and accuracy of rules for the Iris dataset obtained with various rule
extraction algorithms.

method number of
rules/prepositions/features

accuracy source

FuNN 9/26/4 95.7 [Kasabov 1996]
FuNN 14/28/4 95.7 [Kasabov 1996]

NefClass 7/28/4 96.7 [Nauck 1996]
NefClass 3/2/6 96.7 [Nauck 1996]
FuNe-I 7/-/3 96.0 [Halgamuge 1994]

C-MLP2LN 2/2/2 96.0 [UMK-KMK]
C-MLP2LN 2/3/2 98.0 [UMK-KMK]

SSV 2/3/2 98.0 [UMK-KMK]
SMLP 2/2/1 95.7 this work
SMLP 2/3/2 98.0 this work

3.2.5. SMLP-VSS Training Algorithm

 Sigmoidal transfer functions allow the network to use continuous error measures and
therefore eliminate the need for more complex search techniques (chapter 3.2.9 and 3.2.10).
The SMLP network can be modified so that it could use sigmoidal transfer functions and

SS as the training algorithm. VSS (Variable Step Search AlgV orithm) was introduced and
l in chapter 2.4.2 as a training method for standard MLP networks. V

s to
mpirically

the parameters explanation).

parameter default values for
standard MLP

default values for
SMLP network

described in detai SS can
 adjust be easily adapted to SMLP networks training by modifying the default parameter

hem to smaller weight values. The values presented in table 3.4. were et
determined on several datasets including those presented in chapter 3.2.12.

Table 3.4. Default VSS parameters with sigmoid slope=1 for standard MLP and SMLP
etworks (see chapter 2.4.2 for n

d0 0.2 0.1
d1 0.03 0.01
c1 0.33 0.22
c2 2.0 1.5

max_n 4 4
c3 0.3 0

max_w - 1.5

The SMLP network trained with VSS algorithm uses sigmoidal transfer functions as

well in the hidden as in output layer. At the beginning there is only one hidden neuron per
class, more hidden neurons will be added if it is required. Only the weights of the hidden
layer are optimized. At the beginning all the weights have the same values as at the beginning
of SMLP-DS training. The weights of the hidden neurons are zero and biases are 0.5, the first
weight of the output neuron is +1 and its bias is +0.5. If the further hidden neurons are added,

 142

the weights connecting them to the output neurons will be either +1 (to classify the
unclassified actual class vectors) or –1 (to classify the exceptions, i.e. vectors from other
classes that were wrongly classified by the first hidden neuron as the actual class instances).

The standard MSE function is used, however with an additional penalty term to
r +1.

iiivv w |)1)(1 (3.16)

nstant c can be used to regularize the complexity of the rules. With greater c
fewer

The regularization term is not added to the bias. This ensures that the bias can freely
ing cycle (for many datasets four training cycles
 to that added to weights, is added to the bias to

orce it to move to the nearest n-0.5 value, where n is any integer from one to the number
of featu

if n-1<bias<=n then bias=n-0.5, for n=1 to number of features

moid slopes and with the step transfer functions and then to decide which

enforce all the weights w of the hidden neurons to take the values –1, 0 o

 ∑∑ +−=
NwNv

wwcdesiredoutE 2 (|)(+−
== iv 01

where c is a constant, usually c=0.02÷0.08·Nv/Nw is an optimal value (Nv is the number of
training vectors Nw is the number of weights of the hidden neuron). The VSS algorithm starts
with the first guess of every weight change dw=0.1 and then it runs according to the diagram
shown in Fig. 2.22. At the beginning all the weights are in the basin of attraction w=0 of the
penalty term. If changing a given weight does not decrease the error than the weight stays at
zero. T e coh

weights leave the zero basin of attraction. Changing the weights value above +1 or
below -1 does not cause such significant error reduction as changing it from zero to one, first
because the regularization term is stronger in these areas and second, because the sigmoid is
not so steep as it is close to zero. In practice, the weights very rarely leave the +1 or –1 basin
of attraction.

take an optimal value. Only in the last train
are sufficient) a regularization term, similar
enf

res.

After the last training cycle the weights have usually the values –1±0.05, 0±0.05 and

+1±0.05 and bias has the value n-0.5±0.05. Then the weights are transformed in the following
way

if w<-0.5 then w=-1 (3.17)
if w>0.5 then w=+1
else w=0

While using the network on the test set, either the original sigmoidal neural transfer

functions can be used, or the sigmoid slopes can be increased, or the transfer functions can be
transposed to step functions thus converting the network to the SMLP-DS form. It can be
sometimes observed that after changing the transfer functions from sigmoids to step-like, the
number of misclassified vectors slightly changes. There is no clear rule if leaving the
sigmoidal transfer functions leads to better generalization on the test set. Sometimes it is so,
probably because the decision borders with sigmoidal transfer functions do not have to be
hyperrectangular and can better fit the data. But on the other hand sometimes just the
hyperrectangular decision borders may be required. They can also reduce the noise in data.
The best solution is to perform crossvalidation tests with the actual sigmoid sloped, with the
increased sig
functions will lead to the best results.

 143

The rules are extracted from the weight values, as discussed in chapter 3.2.4.
However, if the transfer functions are not transposed to step functions than the rules extracted
from the network will only approximately fit the mapping that the network performs. (Fuzzy
rules with sigmoidal membership functions may be more faithful to the original network
mapping.)

VSS performs better for SMLP networks than gradient-based algorithms for two

reasons. First, because it does not change all the weights at once, but weight by weight and if
hanging the previous weight already significantly reduces the error, than the next weight is

hich allows the weights to take optimal values very
uickly.

ter adding the second neuron,
s weights may take the same values as the first neuron weights. (In SMLP trained with step

transfer functions the risk does not exist.) The vectors of the actual class that were correctly
classified by the first hidden neuron can be removed from further training only in this case
when the first neuron did not classify any other classes vectors as the actual

o (3.18)

ber of hidden neurons per given class, v is
e vector number, Error(v, n) is the MSE error generated

etwork with n hidden neurons. This ensures that the next n
functions as the previous one.

.2.6. Step Versus Sigmoidal Transfer Function

 comparable accuracy. Step
nctions give only the information that is necessary to classify a vector. With step functions
hen a vector is classified correctly the error already equals zero a

conditions can decrease it, so the conditions do not come into the final rule.

ded for classification, provide
lso information about other feature values, specific to a given class but not required by the

rocess. With sigmoidal functions (without weight regularization), adding more
onditions to a rule may still decrease the network error, since the output signal is always

lower than 1 and always can be increased. Moreover, the number of additional conditions of
the rule may be regulated by the required output accuracy, assuming that output values above

c
not able to leave the zero basin of attraction. Thus, the network and the rules are kept simple.
The complexity of the rules can be tuned by the regularization constant c. And second, VSS
uses individual steps for each weight, w
q

 The possible risk of SMLP training with VSS is that af
it

,

 class vectors
(chapter 3.2.9.2). The regularization term in the error function cannot be increased to prevent
redundant neuron roles, because in this case it would also prevent other weights from leaving
the zero basin of attraction. Thus, the first term of the error function must be modified in such
a way that if a given vector is already classified correctly by the first neuron than the correct
classification of it by the next neuron will not change the error:

or n=2 to N d f
 if Accuracy(v, n-1)=100% than Error(v, n)=max(Error(v, n-1), Error(v, n))

here n is the current hidden neuron, N is the numw
th in response to vector v by the
n euron will not perform the same

s 3

In most cases step transfer functions are used with SMLP-DS training. In comparison
ith sigmoidal functions, they produce simpler rules usually ofw

fu
w nd no additional input

Sigmoidal functions, in addition to the information nee
a
classification p
c

 144

some threshold (e.g. 0.98) are considered as 1. For example, the rule for one class of the Iris
ataset obtained using step transfer functions is:

The rul

if p

inform
functio
additio
data. M has many features a single rule condition may

ork well due to accidental distribution of training data, so it may be better to use additional
onditions.

termine a hypersurface that separates vectors that belong
e maximal distance (maximal margin) from both classes.

he po

racted rules
depend

urposes can be assessed by
feature ranking and feature selection. In feature ranking, the predictive abilities (the
classifi

e information as the first one.
Then the space of the two features gives the same classification accuracy as the first feature
lone. At the same time, a feature that has a further, e.g. fourth, position in the ranking can be

a useful source of information, efficiently completing the information contained in the first
feature. Thus, the first and fourth feature may be the best choice and not the first and the
second one.

d

 if petal-length<2.5 then Iris-Setosa

e obtained with sigmoidal transfer functions has two conditions:

etal-length<2.5 and petal-width<0.8 Iris-Setosa

The second condition is not necessary for classification, but provides additional
ation about the data properties. The network can also be trained using step transfer
ns to extract logical rules, then the functions can be changed to sigmoids, and an
nal SMLP-DS training cycle can be run to provide some extra information about the
oreover, if the dataset is small and

w
c

The optimal cut-off points de
o two different classes and keeps tht

T ints are in this case about 2.5 for petal-length and about 0.8 for petal-width (Fig. 1.14-
left-top). That ensures the highest test accuracy and stability of the classifier.

3.2.7. Feature Selection

In datasets that contain many attributes, usually only some of them provide useful
information. Using all the attributes for the training of SMLP networks causes two problems.
First, the training time is unnecessarily long. Second, while changing one or two parameters
at a time with SMLP-DS, the order in which the weights are examined plays a role. If
uncontr lled, this effect can adversely influence the training, because the exto

 on the training process in an unforeseen way. On the other hand if the order is
controlled it can provide us with various sets of rules, thus enhancing our knowledge about
the dataset more than a single best optimized set of rules. However, with many attributes, it
gets difficult to extract the proper rules. This problem is dealt with using feature selection
based on the information included either in the single feature, or in a set of features.

 The usefulness of various features for classification p

cation accuracy obtained by using only this single feature) of each feature are assessed
and then the features are decreasingly ordered according to that assessment. Ranking is the
simplest method, however it does not always work well, because the independent assessment
of each feature is not always related to the assessment of the group of features. For example,
the second feature in the ranking may carry practically the sam

a

 145

 Feature selection methods assess various combinations of features, usually using some
iterative algorithms. Feature selection is computationally more costly than feature ranking but
can bri

 o assess the mutual information between the values of a given feature and the class
of insta

mportance of the feature:

 (3.19)
where p(Ci,X=x), i=1...K is the joint probability of finding the feature value X=x for vectors
X that belong to some class Ck (for discretized continuous features X=x means that the value
of feature X is in the interval x) and p(X=x) is the probability of finding vectors with the
feature value X=x, or within the interval x∈X. Low values I(C,X) indicate that vectors from a
single class dominate in some intervals, making the feature more valuable for prediction
[Duch 2003].

 Joint information may also be calculated for each discrete value of X or each interval
and weighted by the p(X=x) probability:

Inform

ng better results. Generally, the feature selectors can be divided into filters and
wrappers. Filters assess the usefulness of particular features independently of the
classification algorithm that will be used with the selected features. Wrappers cooperate with
particular classifiers and usually require multiply runs of the classification algorithm. Thus,
wrappers may be very costly and for that reasons frequently the results obtained with filters
are more effective.

T
nces, the feature must be discrete. If the feature is continuous, it must be discretized

(chapter 3.2.8) prior to using the filter.

 Information contained in the joint distribution of classes and features, summed over
all classes, gives an estimation of an i

),(lg),()(),(lg),(),(2
1

2
1

xXCpxXCpxXpdxxXCpxXCpXCI i
x

K

i
ii

K

i
i ===−≈==−= ∑ ∑∑∫

==

 ∑ ==−= xXCIxXpXCWI),()(),((3.20)
x

ation contained in the p(X=x) probability distribution plus the p(C) class distribution
minus the joint information I(C,X) is called “mutual information” or “information gain”

),()()(),(XCIXICIXCM I −+= (3.21)

Mutual information is equal to the expected value of the ratio of the joint to the product
probability distribution, known as Kullback-Leibler divergence:

 ()(,)(,) (,) || () ()
() ()I KL
p C XM C X E D p C X p C p X

p C p X
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 (3.22)

A feature is more important if its mutual information is larger.

 146

Several approaches to feature selections can be used with SMLP networks:

• use the information provided by some external filters

• first perform the feature ranking, based on the information contained in a single
feature and then add the features in the order in which they appear in the ranking

• add gradually features to the rule using a method based on the beam search

threshold value, the feature is
not added at this moment. However, the threshold is being gradually decreased during
the training, so the feature will have a chance to be included further in more specific

tances.

3.2.8. Feature Discretization

values
val

3.2.8.1

into int
wid
were m

frequen als can
be e
1R qua
because it considers also interaction between various features. However, frequently it is
ben

to cont
led him asets with more than 50 instances and three for smaller
datasets. Each interval is assigned to the class to which the majority of its vectors belong.

hen adjacent intervals assigned to the same class are joined.

• use all the features with the threshold t added to the error function. If including a

given feature does not decrease the error more than the

rules, which cover fewer ins

There are two objectives while discretizing continuous data: to have a few discrete
in order to obtain a simple network and simple rules, and to have enough discrete
fues or accurate rules and reliable classification results.

. Prior to Training Discretization

There are many discretization methods [Liu 2002], which divide the continuous data
ervals basing on various criteria for setting the split points. However, so far only equal

th and equal frequency discretization was used with SMLP. Then the adjacent intervals
erged and the split points of the most important features were fine-tuned.

Initially each continuous feature space is divided into n equal width or equal
cy intervals (n=10 is sufficient in most cases). The merging of adjacent interv

don in two ways: on-line during the training and before the training basing on the idea of
ntization method [Holte 1993]. The on-line method is in general more accurate,

eficial to reduce the number of intervals before the training.

Holte avoids large number of intervals by requiring all intervals (except the rightmost)
ain more than a predefined number of examples in the same class. Empirical evidence
 to a value of six for dat

T

 147

3.2.8.2. Run-time L-unit Based Discretization

The initial interval boundaries obtained from the prior-to-training discretization may
be tuned with L-units (logical units) using search techniques. An interval cut-off point in the
most significant feature is shifted and the training is performed. If the error decreases then the

ift was in a proper direction, otherwise it was in the wrong direction. The procedure may be
repeat are useless for
discrim s not influence training results)
are au

values re
neede ince discretization and
learni training set, not just on
the sin

sh
ed with each interval cut-off point for all features. Features that

ination of a given class (shifting the cut-off points doe
tomatically removed.

Continuous features are given to the inputs of L-units. Each L-unit passes only these

, which are within its discretization window, thus as many L-units per feature a
d as the required number of that feature discrete values. S

d on the wholeng are done in the same network, results depen
gle feature being discretized.

N1

N2

N0 N3 N[0,x]

w01
b1 w13

FC
FD.v1

b3w23
w02

b2

.7. L-unit (neurons N1,N2,N3) with the feature input (N0) and the SMLP networFig. 3 k input
neuro

and is u

13 1 23 2 3

d
2
lize

n (N[0,x]).

he continuous feature FC given to the neuron N0 (which has linear transfer function T
sed only to distribute the feature value to further neurons) is connected with weights

w01 and w02 to the neurons N1 and N2. A single N0 neuron is used by all L-units assigned to
the same continuous feature. The weights w01 and w02 have constant values set to +1. The
weights are not modified during the learning process. Neurons N1, N2 and N3 have step
transfer functions. The output signals of N1 and N2 can take values -1 or 1. The output signal
of N3 can take values 0 or +1 and it is passed to the corresponding input neuron of the SMLP
network (neuron N[0,x]). The L-unit realizes the following function:

 FD.v1=0.5+0.5·sign(w ·sign(FC-b)+w ·sign(FC-b)-b) (3.23)

Neuron N1 is activated if FC>b1. Neuron N2 is activated if FC>b2. If neurons N1 an

N2 are activated then their output signal is +1 otherwise it is –1. The biases b1 and b are
modified during network learning to optimally tune the cut-off points. Neuron N3 can rea
any superposition of the signals from neurons N1 and N2, depending on the weights w13 and
w23, which can take the values –1 or +1 and on the bias b3 value, as shown in Fig. 3.8.

 148

Fig. 3.8. Functions realized by L-units.

3.2.9. Advanced SMLP-DS Training Methodology

.2.9.1. The Training Algorithm

The SMLP-DS and SMLP-VSS algorithms are the basis of the SMLP training
rocess

3

p . The SMLP-DS algorithm will be used in the following training methodology:

1. Discretize continuous features.

 149

2. Sort features according to feature ranking or feature filter. While building the feature
ranking it may be required to tune precisely the discretization cut-off points using L-
units. Frequently low-ranking features can be rejected.

3. Build the network with one hidden neuron for a given class. If the class distribution is
highly asymmetric or there are more than two classes then it may be required to
assign appropriate weights to the classification errors made on different class

stances (to use the balanced accuracy).
4.

weights at a time does not work (and the network is still far from overfitting), three
eights can be changed, SMLP-VSS or genetic algorithms used, but it is most likely
at there is a problem with the consistency and reliability of the dataset itself.

6. If the error no longer decreases or the number of rule prepositions grows rapidly then
freeze the weights of this neuron, add the next hidden neuron and repeat points 4 and
5. If adding the next neuron does not change the situation then go to point 7.

7. If there are only two classes, then stop the training; the rules for the second class will
be given by “else”. If there are three classes, repeat steps 3-6 with the second class,
the rules for the third class will be given by “else”. If there are more than three
classes, then repeat steps 3-6 with every class, the “else” rule may be too difficult for
interpretation in this case.

3.2.9.2. Sample SMLP Training on the Mushrooms Dataset

The methodology will be discussed on the Mushrooms dataset example. The dataset
was constructed basing on mushroom records drawn from “The Audubon Society Field
Guide to North American Mushrooms” by G. H. Lincoff. This dataset includes descriptions
of samples corresponding to 23 species of mushrooms. Each species is identified as edible or
poisonous one. The guide clearly states that there is no simple rule for determining the
edibility of a mushroom. The dataset contains 8124 vectors, 4208 (51.8%) of them in the first
“edible” class and 3916 (48.2%) in the second “poisonous” class. The dataset contains the
following values of the 22 discrete features:

f1: cap-shape (bell=B, conical=C, convex=X, flat=F, knobbed=K, sunken=S)
f2: cap-surface (fibrous=F, grooves=G, scaly=Y, smooth=S)
f3: cap-color (brown=N, buff=B, cinnamon=C, gray=G, green=R, pink=P, purple=U, red=E,

white=W, yellow=Y)
f4: bruises (bruises=T, no=F)
f5: odor (almond=A, anise=L, creosote=C, fishy=Y, foul=F, musty=M, none=N, pungent=P,

spicy=S)
f6: gill-attachment (attached=A, descending=D, free=F, notched=N)
f7: gill-spacing (close=C, crowded=W, distant=D)
f8: gill-size (broad=B, narrow=N)
f9: gill-color (black=K, brown=N, buff=B, chocolate=H, gray=G, green=R, orange=O, pink=P,

purple=U, red=E, white=W, yellow=Y)
f10: stalk-shape (enlarging=E, tapering=T)
f11: stalk-root (bulbous=B, club=C, cup=U, equal=E, rhizomorphs=Z, rooted=R, missing=?)

in
Train the neuron changing one weight at a time starting from changing the weights of
the most important feature in the ranking. Tune precisely the discretization cut-off
points using L-units if necessary.

5. If the error does not decrease significantly then change two weights at a time. Tune
precisely the discretization cut-off points using L-units if necessary. If changing two

w
th

 150

f1
f13: stalk-surface-below-ring: (fibrous=F, scaly=Y, silky=K, smooth=S)
f14: stalk-color-above-ring: (brown=N, buff=B, C , pink=P,

red=E, white=W, yellow=Y)
f15: stalk-color-below-ring: (brown=N, buff=B, c =B, gray ge=O, pink=P,

red=E, whi
f16: veil-type: (partial=P, universal=U)
f17: veil-color: range=O, white=W, y Y)
f18: ring-numb
f19: ring-type: flaring=F, large=L, none=N, pendant=P,

sheathing=
f20: spore-print-color: (lack=K, brown=N, buff=B, chocolate=H, green=R, orange=O,

purple=U, white=W, yellow=Y)
f21: population: (abundant=A, clustered=C, numerous=N, scattered=S, several=V, solitary=Y)
f22: habitat: (gr s=M, paths=P, urban=U, waste=W, woods=D)

The features can take together 125 different values. Thus, the SMLP network must

have 125 inputs. The SMLP network can be trained for each class separately, since specific
hidden neurons are dedicated to particular classe Mushroo taset contains two
classes: edible and p his case, it is suf to train th ork for one class,
the rules for the other class will be given by the negation of the rules obtained for the trained
class. The network will be trained for the class pois Examining all features in the order
in which they appear in the original vectors and changing one weight at a time while training
the network with one hidden neuron gave the follow ation tha be satisfied for the
poisonous class:

if 0.5 < cap_shape(C G) + cap_sur + cap_color(B) - cap_color(G)
+ cap_color(P) - ca F) – odor(or(L) +odor(C) + odor(F)
+ odor(M) - odor(N) + odor(P) - gill_attachment(A) + gill_spacing(C) - gill_spacing(W)
 - gill_color(K) + gill_color(R) - gill_color(O) - gill_color(E) - gill_color(Y) - stalk_root(C)
 - stalk

_above_ring(O)

 then poisonous

s as edible, two edible
s poisonous, 3900 poisonous as poisonous and 16 poisonous as edible. This can be written in
e confusion matrix (chapter 3.2.12

E 4206 2

hich feature values positively contribute to that class (sign +) and which negatively
ign -), but it is very difficult to say what condition must exactly be satisfied to obtain the

sum of

2: stalk-surface-above-ring: (fibrous=F, scaly=Y, silky=K, smooth=S)

 cinnamon= , gray=G, orange=O

innamon =G, oran
te=W, yellow=Y)

 (brown=N, o ellow=
er: (none=N, one=O, two=T)
(cobwebby=C, evanescent=E,
S, zone=Z)

asses=G, leaves=L, meadow

s. The ms da
oisonous. It t ficient e netw

onous.

ing equ t must

) + cap_surface(face(S)
p_color(Y) + bruises(A) - od

_root(R) - stalk_surface_above_ring(Y) + stalk_surface_above_ring(K)
 - stalk_surface_below_ring(K) + stalk_color_above_ring(C) - stalk_color
 - stalk_color_above_ring(E) - stalk_color_below_ring(E) + stalk_color_below_ring(Y)
+ ring_type(E) - ring_type(F) + spore_print_color(R) + population(C) - population(N)
 - population(Y) - habitat(W)

which gives 99.78% accuracy and classifies 4206 of edible mushroom
a
th .1) form:

 E P

 P 16 3900

The main problem is that it is not easy to draw any conclusions from this rule. We can
only see w
(s

 incoming signals multiplied by their weights greater than 0.5. Because the rule is so
complex, it would not be a good idea to add the second neuron to further improve the training
accuracy (and complicate the rule even more).

 151

Weights that belong to the same feature and have the same sign are called “group of
weights”. If there are many negative and many positive groups of weights and the bias value
is lower then the number of positive weight groups minus 0.5, as in the rule above, then the
rule int

s of the same feature. In order to
obtain the “and” interpretation, the bias must take a higher value, equal to the number of
positiv les can be clearly
formulated according to the guidance above and frequently it is the case. If they cannot be,
then ups

ould be used or the functionality of the neuron should be split among more neurons (what

simplest rules
re usually obtained when the search through feature values is ordered according to the

 of
re are so many attributes,

ost of them are useless for classification. It is easiest to assess the information contained in

if odor=(C or Y or F or M or P or S) then poisonous

with the following confusion matrix:

 E P

6

Searching first through values of a single feature is advantageous because it usually

ain and the last 10 features in the ranking were discarded. This
ecision was based on the observation, that in datasets with many features, frequently most of

the features (the low . However, in more
omplex cases, rather a feature filter assessing the mutual feature information in connection

Together with, or alternative to sorting the features, the threshold t can be used to
keep the rules simple. The threshold is especially useful if the features are not sorted
according to a feature filter that includes correlations among features and this is the case in
the actual training, since only a simple feature ranking was used. At the beginning of the
training, the network has one hidden neuron with the error threshold t being arbitrary set to
20.

erpretation may be ambiguous. In general, when the bias value is M-0.5, the positive
weight groups are interpreted as M-of-N rules, where N is the number of groups of positive
weights. Any negative weight is interpreted as “and not”. Negative weights of some feature
values can be replaced by the positive weights of other value

e weight groups minus 0.5. The desired situation is when the ru

either the interpretation “and not” for negative and “M-of-N” for positive weight gro
sh
will be discussed later).

In general, the rules should be kept as clear and simple as possible. The

a
decreasing mutual information of the features. A good approach is to use some form
feature selection. This dataset has 22 attributes and usually if the
m
each single feature. Training the network on each feature separately gave the accuracies
shown in Table 3.5. Thus, automatically a very simple rule, which gives 98.52% accuracy,
was obtained:

 E 4208 0
 P 120 379

leads to the simplest and most comprehensive rules. Than the features were sorted according
to the decreasing information g
d

-ranking ones) are irrelevant for classification
c
with other features than a simple feature ranking is preferred. If the decision proved wrong in
a given case then the training would have to be repeated including all the features.

 152

Table 3.5. Information contained in single features of the Mushrooms dataset.

accura

acy-default
[%]

feature cy accur
[%]

odor 98.52 46.72
spore_print_color 86.80 35.00
gill_color 80.50 28.70
ring_type 77.54 25.74
stalk_surface_above_ring 77.45 25.65
stalk_surface_below_ring 76.61 24.81
gill_size 75.62 23.82
bruises 74.40 22.60
population 72.18 20.38
stalk_color_above_ring 71.64 19.84
stalk_color_below_ring 71.44 19.64
habitat 69.03 17.23
stalk_root 63.81 12.01
gill_spacing 61.59 9.79
cap_surface 59.52 7.72
cap_color 59.29 7.47
cap_shape 58.05 6.25
stalk_shape 55.29 3.49
ring_number 53.81 2.01
veil_color 51.89 0.09
gill_attachment 51.80 0
veil_type 51.80 0

After one epoch of training, changing one weight at a time some weights of the hidden

neuron took non-zero values and the neuron generated the following rule:

if odor=(C or Y or F or M or P or S) or spore_print_color=R or stalk_color_below_ring=Y
then poisonous

The rule gives 99.51% accuracy and the following confusion matrix:

E 4208 0
P 24 3892

ay

 E P

 The accuracy is a bit lower than previously (99.78%) but the rule is clear. Now we
must add the second hidden neuron for that class that will classify the vectors that were not
classified by the first neuron. Thus, the weights of the first neuron will no longer by
modified.

The vectors of the poisonous class that have already been correctly classified can be
removed from the further training. That is because hidden neurons work in parallel and these
vectors have already found their path through the first neuron, which they will use, no matter
what the weights of the second neuron will be. However, the correctly classified instances of
the edible class cannot be removed from the further training, because in this case it m

 153

happen, that the weights of the second neuron could take such values that would let the edible
class vectors pass through.

The training of the second neuron starts with bias=0.5 and changes one weight at a

time. However, since it did not work here, two weights had to be changed at a time. It does
not necessarily mean that results of similar quality could not be achieved changing only one
weight at a time, examining the weights in a different order.

After the training, the second neuron generated the following rule:

if 2 of (gill_size=N, stalk_surface_above_ring=K, population=C) then poisonous

Although the neuron classifies the data correctly, giving 100% accuracy together with the
first neuron, it generated the M-of-N (2-of-3) rule instead of the AND rule, as it was
expected. The rule is equivalent to the following disjunctive normal form rule:

if (gill_size=N and population=C) or (gill_size=N and stalk_surface_above_ring=K) or
(population=C and stalk_surface_above_ring=K) then poisonous

The rule can be decomposed into a minimal number of AND rules, by performing the training
in the f llowing way: first all pairs of weights are checked with the weights being set again to

 case, the rule is:

if gill_size=N and stalk_surface_above_ring=K then poisonous

if gill_size=N and population=C then poisonous

ered the remaining 8 vectors, achieving 100% accuracy on the training set. That
means that the third AND rule (population=C and stalk_surface_above_ring=K then
poison

o
zero before the next pair is examined. Then the best pair of weights is selected and it gives
the first AND rule. In this

The rule gives 99.90% accuracy and the following confusion matrix:

 E P
 E 4208 0
 P 8 3908

Then the third hidden neuron was added and trained changing two weights at a time. It
generated the following rule:

The rule cov

ous) covers either only the instances contained in the other rules or an empty set.

 154

Finally the following rules were obtained:

if odor=(C or Y or F or M or P or S)
or spore_print_color=R or stalk_color_below_ring=Y)
or (gill_size=N and stalk_ (%)
or (gill_size=N and population=C) us ()
else edible

The rules c written in the sh rm:

if no spore_pr r=R or or color
or 2 surface_a g=K, popul =C) then poisonous else
edible)

surface_above_ring=K)

(98.52%)
(99.41%
99.90
100% then poisono

an also be orter fo

t odor=(A or L or N) or int_colo stalk_ _below_ring=Y
 of (gill_size=N, stalk_ bove_rin ation

(100%

poisonous

gill_size=N

odor=F

odor=M

odor=P

odor=S

1
1

1

re_print_color=R

odor=Y
odor=C

1 1

spo

1

1

b=1.5

population=C
1

1
b=1.5

1
1

stalk_color_below_ring=Y

1 0.5

stalk_surf_above_ring=K

b=

b=0.5

gill_size=N

1

1

wo hidden neurons, it seems that with three
hidden neurons their form is more convenient. When at least four of these rules are used, than
the thi

, the computational cost of
such an approach is significantly higher. For datasets with relatively simply structure it is
usually sufficient to change one weight at a time.

1

Fig. 3.9. SMLP network obtained for the poisonous class of the Mushrooms dataset. Only
non-zero weights are shown.

Though the rules could be obtained with t

rd one is redundant, however it may be a compromise between the accuracy of the
fourth rule and the simplicity of the second one. The redundancy was not detected by the
training algorithm. It would have been detected, if the threshold t of the first neuron had been
set to a higher value. Then, the second neuron would have been added earlier and trained
changing two weights simultaneously. Changing two weights at a time sometimes allows for
extracting more accurate and simpler rules, but on the other hand

 155

edible

gill_size=N b=1.5

1

1

population=C

1

1

b=1.5

odor=N 1

spore_print_color=R

odor=L

odor=A

1 1

-1

stalk_color_below_ring=Y

-1
b=0.5

N

b=0.5above_ring=Kstalk_surf_

gill_size=

1

-1

-1

 netw r the edible class of -
zero weights are shown.

 the training performed on the Mushrooms dataset, already the first rule was not
satisfied by any edible mushrooms. But if the first neuron classified also some edible
mushrooms as poisonous, then the next hidden neuron should be added with a negative
weight

 odor

t neuron, but also the second and the
third n

 the Mushrooms dataset. Only non

Fig. 3.10. SMLP ork obtained fo

In

 (-1) to the output neuron. Then during the training, the neuron would learn to
recognize the edible mushrooms misclassified by the first one as poisonous. Thus, the first
neuron would provide a general rule and the second one an exception from that rule. There
can be several hidden neurons with –1 weight to the output neuron to classify exceptions, as
well as several hidden neurons with +1 weight to the output neuron to classify smaller
clusters of the actual class instances. For example, if the training of the Mushrooms dataset
starts from the edible class, than the first neuron generates the rule:

if =(A or L or N) and (not spore_print_color=R) and (not stalk_color_below_ring=Y)
then edible

However, the rule covers also 24 poisonous instances. Thus, the second neuron with –

1 weight to the output neuron must be added to generate the rule for the poisonous
mushrooms and if it does not cover all poisonous mushrooms covered by the first neuron –
than also the third neuron with –1 weight to the output neuron must be added (Fig. 3.10).
Thus, the poisonous class vectors will activate the firs

euron. That will result in no activation of the output neuron and thus in correct
classification.

 156

Table 3.6. Number and accuracy of rules for the Mushrooms dataset obtained with various
rule extraction algorithms.

method number of
rules/prepositions/features

accuracy source

RULENEG 300/8087/- 91.0 [Sestito 1994]
REAL 155/6603/- 98.0 [Craven 1996b]

DEDEC 26/26/- 99.8 [Tickle 1994]
RULEX 1/3/1 98.5 [Andrews 1994]

Successive Regulariz. 1/4/2 99.4 [Duch 1997b]
Successive Regulariz. 2/22/4 99.9 [Duch 1997b]
Successive Regulariz. 3/24/6 100 [Duch 1997b]

C-MLP2LN, SSV 1/3/1 98.5 [UMK-KMK]
C-MLP2LN, SSV 2/4/2 99.4 [UMK-KMK]
C-MLP2LN, SSV 3/7/4 99.9 [UMK-KMK]

SSV 4/9/5 100 [UMK-KMK]
C-MLP2LN 4/9/6 100 [UMK-KMK]

SMLP 1/3/1 98.5 this work
SMLP 2/4/2 99.4 this work
SMLP 3/5/3 99.7 this work
SMLP 3/7/4 99.9 this work
SMLP 4/12/6 100 this work
SMLP 4/9/5 100 this work
SMLP 3/8/5 100 this work

3.2.10. Comparison of SMLP and Standard MLP Networks

e with SMLP-DS is required if there is no smooth
ansition between two areas in the data and the error does not decrease until both weights are

nal data space with no smooth transitions, there
t once, but the need to change more than two weights has

 networks the problem is solved by
functions. If the training

moves in the proper direction, then even if the number of correctly classified vectors does not
actuall

discretized SMLP-DS network does not provide this possibility.

Let’s assume that the data has two features F1 and F2. The rule can be “class 1 if F1

and F2”. However, it is likely that in the areas, described by “F1 and not F2” or “not F1 and
F2” there will be more class 1 instances than in the area described by “not F1 and not F2”.
Thus, looking at the error surface for this problem there exist a smooth transition, or an
addition stair, that can be traversed changing only one weight at a time (additionally the bias
can be incremented form 0.5 to 1.5, but this does not require significant computational
effort). Changing two weights at a tim
tr
changed at once. Theoretically, in n-dimensio
may be a need to change n weights a
not been observed so far on real-world datasets.

In SMLP trained with VSS and in standard MLP

using a continuous error measure with continuous neural transfer

y grow, the error decreases. That allows for an easy training of MLP and SMLP
networks with VSS algorithms, which changes only one weight at a time. The fully

 157

Table 3.7. Comparison of MLP and SMLP networks.

 MLP SMLP

decision borders
of a single neuron any hypersurface hyperrectangle with sides parallel to

feature axes

desicion borders
of the network

any hypersurface combination with
a tendency for edge smoothing

any combination of hyperrectangles
with sides parallel to feature axes

required number
of hidden neurons

depending on decision borders, the number can be higher either in MLP
or in SMLP network

generalization abilities depending on decision borders, either in MLP or in SMLP network
can generalize better

information storing globally (difficult to say what
a single weight is responsible for)

locally (each weight is explicitely
assigned a specific role)

rule extraction complex and difficult simple and easy
constructive algorithm possible embeded in the model

required number
of training cycles at least several

one training cycle is frequently
enough, though more cycles can lead
to more efficiant rule sets

weight pruning possible unneeded (excessive connections
are not created)

The decision borders of SMLP network are hyperrectangular in the discretized search

space. Nevertheless, they do not have to be hyperrectangular in the original continuous search
space. For example, a new feature that is the sum or product of the some most important
continuous features can be created and its value first calculated in the original continuous
space and then discretized. Pao examined networks with additional inputs (called by him
functional link nets) [Pao 1989] of several kinds and found that the combination of some
inputs were frequently very useful.

Another method leading to decision borders, which are not parallel to the feature axes
in the original continuous space is PCA (Principal Component Analysis). PCA produces new
features that are weighted sums of the original features and that can be used in the feature
space in the same way, as PCA directions were used in the MLP weight space (chapter
1.2.3.2). Additional functional inputs or PCA can make the network training easier and
generalization better, but on the other hand the rules extracted from such networks may be
more difficult to understand and to draw conclusions.

The possibility of obtaining the rules enhances the value of a classifier, because the

user is provided not only with the final decision but also with the explanation how the
ecision was reached. The value of the classifier can be still more enhanced, when additional
formation about the probability of the decision being correct could be provided. In MLP

networks, th considered
roportional to this class output neuron signal (chapter 1.5-1.7).

d
in

e probability of a given vector being assigned to each class can be
p

 158

In SMLP networks the output signals are either 0 or 1 and the probability cannot be

btained directly. However, some additional information can be provided, such as the
ified by the same rule as the actual test vector, or

ass boundaries if the original features were

 coded into chromosomes and a standard genetic optimization can be
perform

3.2.11 SMLP Architectu

 the standard disjunctive normal
form o d too long rules. Then a better
solution m any neurons in a
single

The standard SMLP structure cannot perform this operation if (A, B) and (C, D) belong to
ifferent features, because it has not enough layers. T

which cannot be changed to AND operations by changing the bias of the neuron, because this
would not allow for adding any more partial rules joined with the OR operator. The solution
is to add locally one neuron in the layer between the hidden and output layer. Theoretically,
the dat

:
Layer[0] - provide feature values
Layer[1] - groups the values of the same feature together

ayer[3] - combines partial rules with AND operatio
Layer[4] - combines partial rules with OR operation into classes

he standard SMLP-DS and SMLP-VSS procedures can be used to train such a
network. It is a constructive solution and additional neurons are added only locally as needed.

e experiments with a v rk, which changes the number of

layers dynamically, adjusting its structure to the data, were performed. The network structure

o
crossvalidation accuracy for vectors class

e distance from the test vector to the clth
continuous.

 Theoretically it may happen that changing two weights at a time will not be sufficient
for SMLP-DS convergence. Then the natural solution is to use SMLP-VSS, nevertheless
some other training methods can also be considered. Changing three weights at time is very
costly - O(w3), and frequently genetic algorithms (chapter 2.1.2.4) may be able to find the
solution in fewer steps then changing three weights at a time through all the possible weight
triples (excluding obviously the same feature weights from a simultaneous change). The
network weights can be

ed. However, genetic algorithms change all the weights at once, therefore the signal
table cannot be used. Therefore, genetic algorithms will not necessarily be quicker than
changing three weights at a time, in spite of fewer steps.

. re Complex Rules for

It is not always the best idea to use the M-of-N or
f rules, since sometimes it may lead to too complex an

aybe to add a single neuron in an additional network layer than m
hidden layer. This problem may appear if the partial rules generated by particular

hidden neurons must joined with the AND operator, for example:

(A or B) and (C or D)

d he output layer performs OR operations,

a could be described by rules that could require n layers of neurons – then this
approach can be extended to n layers.

The layers perform the following operations

Layer[2] - generates partial rules
L n

T

Som ersion of SMLP netwo

 159

is shown in a five-layer layout in Fig. 3.11. The zero layer is derived from the first one, like
in Fig.

such data as Mushrooms). If proper rules still cannot
be generated within the actual network structure, even with many hidden neurons, then
Layer[2

. Another choice is to bribe the examiner. Thus, the
rule will be: if ((A=1) AND (2 of (B,C,D,E) = 1)) OR (bribe=1) then pass)

3.5-right, in order to make it clear how the operations are performed. The network has
initially three layers (Layer 0, 1 and 4), what is sufficient for such data as Iris. As long as one
hidden neuron is sufficient per given class, the hidden neuron performs the functions of both
the hidden and output neuron in the standard SMLP network. If proper rules cannot be
generated within the actual network structure, than Layer[3] with initially two neurons is
added for the actual class (required for

] with initially two neurons is added for the actual hidden (Layer[3]) neuron (For
example, a dataset that requires this layer may describe a student taking an exam. The exam
consists of 5 questions. In order to pass the exam, the student must answer question A and at
least two of the remaining four questions

Layer[0] Layer[1] Layer[2] Layer[3] Layer[4]
F0.v0

F1.v0

ss 1

F0.v1

F1.v1

F1.v2

class 0

F2.v0

F2.v1

F2.v2

cla
F3.v0

F3.v0

Fig. 3.11. A generalized SMLP network structure for complex data.

 160

3.2.12. Experimental Results and Rules Extracted from Data

3.2.12.1. Criteria of Classifier Quality

The first criterion, which as sesses the classifier quality, is the classification accuracy.
ther parameters include the complexity of the algorithm, convergence properties

m converges), stability measured by a change of results when
 located close to decision boundaries occurs, sensitivity,

specifi

 100 3 2 3

O
(percentage of runs the algorith
small perturbation of vectors

city, variance of results, comprehensibility of the rules, training times, memory
requirements and additional information that the classifiers give besides the predicted class
membership. All the above except for sensitivity and specificity were discussed in various
chapters of this thesis.

A confusion matrix C is a square matrix that describes the errors made by a classifier.

Each row i corresponds to a class the instances belong to and each column j to a class the
instances were classified to. Thus, the element cij indicates the number of instances belonging
to class Ci that were recognized as instances of class Cj. An example of a confusion matrix:

 i\j C1 C2 C3 C4

C1
 C2 2 80 0 4
 C3 0 2 60 2
 C4 0 6 2 70

Sensitivity describes the ability of a classifier F to detect a given class instances in the

dataset X. Sensitivity Se(Ci,F,X) is a conditional probability of an instance x∈X being
classified to class Ci by the classifier F, given that it really belongs to class Ci. and it can be
obtained from the confusion matrix:

 ∑
=

ij

ii
i c

cXFCSe),,((3.24)

j

Specificity describes the ability of a classifier F to reject the instances from other

classes. Specificity Sp(Ck,,F,X) is a conditional probability of an instance x∈X not being
classified to class Ck by the classifier F, given that it really does not belong to class Ck and it
can be obtained from the confusion matrix:

 ∑∑
∑∑

≠ki j

≠ ≠= ki kj
ij

k c

c
XFCSp),,(

ij
(3.25)

 161

Fig. 3.12. ROC Curve.

 the classifier performance and especially for the comparison of several
lassifiers [Mertz 1978]. Each point on the ROC curve corresponds to the mean sensitivity

and specificity of the classifier for all the classes. The sensitivity (Se) is on the vertical axis
nd 1-specificity (1-Sp) is on the horizontal axis. Bi

indicate higher quality of the classifier.

atrix:

Ċ1 0 3 2 3
 Ċ2 2 0 5 4
 Ċ3 2 2 0 2
 Ċ4 2 6 2 0

i

The ROC curves (Receiver Operator Characteristic) can be used for the visual
assessment of
c

a gger the areas under the ROC curve

In cases, where there are different costs of misclassifying different class instances, the
costs may be defined in the cost matrix Ċ. For example the cost of classifying a poisonous
mushroom as edible may be higher then the cost of misclassifying an edible mushroom as
poisonous. An example of a cost m

 i\j Ċ1 Ċ2 Ċ3 Ċ4

where is the original cla
minimize to total misclassification cost E expressed by sum of products of the appropriate
entries in the confusion matrix and in the cost matrix:

ss and j is the predicted class. The task in the N-class problem is to

 ∑∑
= =

=
N

i

N

j
ijijccE

1 1

& (3.26)

A comparison of all the parameters for so many algorithms would be very difficult,

especially that such parameters are only rarely available in the literature. Such a detailed
comparison was even not contained in Statlog, a large-scale European project comparing
classification algorithms [Statlog 1994], though much additional information can be found
there.

For the datasets on which the algorithms were compared in the Statlog project, usually
the longest training times were required by MLPs trained with backpropagation (MLP BP),

 162

SOM, ALLOC80, SMART, AC2 and cascade correlation networks. As it can be concluded
from the presented results (and as it is known from the experience with the Ghostminer
program [Ghostminer], where the incNet network is implemented), the training times of the
incNet network, which performed well in some cases, are several ranks of orders longer than

at of VSS, NG and SMLP. FSM performs best when it is used as a committee of networks,
hich makes the complexity of the model higher. PVM performs a complete search through

ore for bigger dataset it is a very costly method.

In cases where the user must understand decisions of the classifier, the
h ven a more important factor than a very high accuracy on

NG and VSS are not self-standing classifiers but only training algorithms for MLP
ith the underlying architecture, because their

rma LP network. NG and VSS should be rather
are have been in chapter 2.4.5. It should

e the only
ore

s frequently
eded ta discretization, which removed much noise from the

Results obtained with NG, VSS and SMLP are compared to the best classification

ethods that can be found in the literature. The classification algorithms compared here were
ortly introduced in chapter 3.1. Datasets selected for this comparison have been analyzed

by many methods and crossvalidation or test accuracies obtained with the methods are
available in the literature. Only the methods for which the results were available in the
appropriate form are included in comparison. For example, several authors tested their
methods on the original dataset divided into a separate training set and test set. In this case,
the results strongly depend on the method (which was usually not reported) of dividing the
dataset into the training and test set. Thus, because of different testing conditions the results
cannot be compared with other methods, where crossvalidation was used and therefore they
are not included in comparisons.

One should remember that the testing procedure is frequently not performed correctly.

“The next point is that a real test set is a dataset that the classifier has never seen before. A
frequent practice is however, to train the classifier on one set and then check its performance
on another set (called by us “test set”). If the results are not satisfactory, then we change
something in the algorithm and once again train it one the first set and test it on the second
set. And so on. By such modifications we adjust the algorithm to the only test set we have. So
the “test set” is really no longer a test set, but rather the second training set. Then we boast
that our algorithm achieved 100% accuracy on the test set. In this context, it is rather
advocated to use crossvalidation. Since with crossvalidation we have 10 different training and
test sets, moreover they are different at each run of the algorithm, thus the algorithm is less
prone to adjusting to a given test set.” (Norbert Jankowski at Bioinformatics Workshop,
Toruń, 03 July 2004).

th
w
the solution space and theref

compre ensibility of rules can be e
the test set (chapter 3.1.4).

networks and must be evaluated together w
perfo nce is bound by the limitation of M
comp d with other MLP training algorithms, and they
be also pointed out that the MLP trainings were performed on raw data, wher
preprocessing was standardization of continuous features. Many other classifiers used m
sophisticated data preparation techniques. For example, the classification wa
prec by feature selection and da
data and reduced the search space.

3.2.12.2. Testing Procedure

m
sh

 163

If the data preprocessing is performed on the entire set, the crossvalidation results will
e overestimated. On the one hand, this would allow assessing the performance on the

classifi

 the
parame This allows for testing the entire model and
all the presented in this thesis were conducted in this way.

sonable that for dataset with unequal class distribution rather the balanced
accuracy should be maximized. (Also the accuracy given by the misclassification cost matrix
can be) However, in the methods available for comparison, always the standard
accurac ized and reported. Therefore, to ensure the proper comparison with other

sults also the standard accuracy was maximized in my tests. The balanced accuracies
present

curacies that allowed for the highest
test accuracies (chapter 2.6.1 – Fig. 2.48-right) and not the highest accuracies possible to
obtain on the training set. It is almost always possible to obtain 100% accuracy on the
training set (exc nt classes), but

atically.

 The 10-fold crossvalidation wa n 10 ti (together 100 trainings and 100 tests). If
the test set was used, the training and test w rform ly ecause
SMLP is a deterministic method and 10 times for NG and VSS starting from different
rand ghts.

 standard deviation of th t ac y wi si was
calculated as

b
er alone, but on the other hand, the classifier will never be used alone in cases, where

the data must be preprocessed. Thus, in crossvalidation tests, all the preprocessing of data,
such as normalization, discretization or feature selection should be performed only on the
training partition of the set. Then the validation partition should be transformed using

ters determined on the training partition.
experiments

It seems rea

maximized.
y was maxim

re
ed in the tables were calculated using the equation (1.25).

 The rules extracted from SMLP networks were always obtained on the entire training
set. The accuracy of rules on the training and on the test set (if test set is available) is given.
Moreover, the stability of rules and accuracy in crossvalidation tests are discussed. The
accuracies on training dataset (or on the training partition of the dataset for crossvalidation)
given in the tables for SMLP, NG and VSS are those ac

luding the cases, where two identical vectors belong to differe
such networks generalize poor and the test accuracy falls down dram

s ru mes
as pe ed on once for SMLP, b

om wei

The e tes curac thin a ngle crossvalidation

()∑
=

=
2

10
1

iaccstdS (3.27)

where the crossvalidation accuracy th of ly ors in the
valid to the n r of v tors in alid

− acc
100

10 i

acc is e tiora tcorrec classified vect
ation part of the dataset umbe ec the v ation part and acc is the

quotient of the total num of corre lass ector he
num the dataset.

we e m curacies of the whole crossvalidations
was

ber ct cly ified v s tin experiment to the 10-fold
ber of vectors in

The standard deviation bet
calculated as

en th ean ac

 164

 ()∑
=

−=
i

accacvstdCv (3.28)

where the crossvalidation accuracy acv is the ratio of correctly classified vectors in the single
10-fold crossv tio e nu of ve in the ng set

The standard deviation provides not only infor n abou r stability but
perhaps even m inistic
method and for the same training and test sets always gives the sam
the standard deviations for SMLP are some s as hi 10%. there are 100
vectors in the training set and the classifier classifies 75% of y and always
classifies th e wron no ma hat is the division between the training and
test set. In the best case, the vectors can be distributed in this way, that in half of the
crossvalidation sets 7 of them are classified correctly and in the o en the within
rossvalidation standard deviation stdS will be 5.27% and there is no way to decrease it. But
is does not tell us anything about the classifier stability. The between crossvalidation

standard deviation stdCv also will never be zero even for a deterministic classifier, because
there a

n
f the whole crossvalidations

10 21
1

i10

alida n to th mber ctors traini .

matio t the classifie
ore information about the dataset properties. SMLP is a fully determ

e results. Nevertheless,
time gh as For example,

them correctl
e same v ctors gly tter w

ther half 8. Th
c
th

re different vectors in particular training and test crossvalidation partitions, however
this value can be used to assess how much a particular result can differ from the mean value
and in this aim it is provided in the tables. The standard deviation can be used as an absolute
classifier stability measure only if all the trainings and tests are carried out on the same two
sets.

Symbols used in the tables:

TS – separate test set
10CV – 10-fold crossvalidation
5CV – 5-fold crossvalidation
12CV – 12-fold crossvalidation
L1O – leave one out
1ch – one weight was changed at a time
2
B

ch – two weights were changed at a time
S – method based on beam search at feature level

sdtS – standard deviation of each test accuracy within a single crossvalidatio
StdCv – standard deviation between the mean accuracies o
x-x-x – structure of the network (number of neurons in the successive layers)
tc – number of training cycles
CN – number of networks in a committee
r – value of a regularization term in the error function ∑∑∑ +−=

i
i

v c
cvcv wrsdE 22

,,)(

FG, FR , FT ,R – gaussian, rectangular, triangular and rotation of transfer functions

 165

3.2.12.

: MBAP
: MBAA

f6: HNEP

Logical rules were obtained with 1 hidden neuron per class. With more hidden

neurons per class more detailed rules are obtained, covering correctly more training vectors,
however they already overfit the data (using t ore complex rules leads to lower accuracy
in crossvalidation tests), thus it is not advocated to use them. Although the best result quoted
in Table 3.8 was found by the IncNet neural n

e accuracy was higher in the test than on training set
us the best stable solution in this case is that of PVM.

3. Appendicitis

The dataset was donated by prof. Shalom Weiss from Rutgers University. The
purpose of the analysis is to predict whether the patient suffers from appendicitis. There are
106 vectors, 21 (19.8%) in the first (no-appendicitis) class and 85 (80.2%) in the second
(appendicitis) class. The dataset contains 7 continuous features, values of medical tests:

f1: WBC1
f2: MNEP
f3: MNEA
f4
f5

f7: HNEA

he m

etwork with 30 neurons, this was obtained with
a high crossvalidation variance and th
th

Table 3.8. Classification results for the Appendicitis dataset.

method training
%

test
%

test
method source

in
30

.1 90.9 10CV [Jankowski 2003] cNet (1100 epochs, 90
 neurons)

PVM 91.5 89.6 L1O [UMK-KMK]
SS .3 88.7 L1O [Grąbczewski 2003] V – beam search 94
SSV 94.3 88.7 L1O [Grąbczewski 2003]
6-NN - 88.0 10CV [UMK-KMK]
FS - 87.6 10CV [Adamczak 2001] M (FG+R+CN=20)
FS - 86.2 10CV [Adamczak 2001] M (FG+R)
M - 83.9 10CV [UMK-KMK] LP BP
CART 90.6 84.9 L1O [UMK-KMK]
Naive Bayes 88.7 83.0 10CV [UMK-KMK]
C-MLP2LN, 1 neuron 91.5 - L1O [UMK-KMK]
C-MLP2LN, 2 neurons 94.3 - L1O [UMK-KMK]
default 80.2
NG (7-1, 10tc) 89.6 87.5 10CV this work
VSS (7-1, 5tc, r=0.2) 89.8 88.0 10CV this work
SMLP-DS (35-1-1, 1ch, 5ed) 92.2 88.2 10CV this work
SMLP-VSS (35-1-1, 5ed) 90.8 87.3 10CV this work

 166

Table 3.9. Additional para eters o pp s

method %test %stdCv

%stdS %test
bala

m
co ix

m f the A endiciti dataset training.

nced
ean values in
nfusion matr

NG 87.5 0.6 11.1 77 .3 12.7 8.3
5.0 80.0

VSS 88.0 0.7 8.7 76.8
1

 12.2 8.8
3.9 81.

SMLP 88.2
DS

1.1 9.6 74 .1

 .5 10.9 9
2.4 82.6

SMLP
VSS

87.3 1.2 10.8 73.6
3.2 81.8
10.7 10.3

Before each crossvalidation run, the cut- f po d ing each

feature into 5 equal width intervals. Thus, in particular crossvalidation runs they could
slightly differ from the values presented in the rules. There was no f ation of the
cut-off point opti ion ttemp but it not i sults). The
weights were changed one at a time or two at a time with SMLP-DS or SMLP-VSS was used;
all the meth uce ilar cy. D nding which weight was changed as first,
different rule btai

Rule 1: if h 0 th -app itis el pendi
(accuracy: 88.7%, sensitivity: 61.9%, specificity: 95.5%)

ule 2: if mnea<6670 then no-appendicitis else appendicitis
(accura

ule 5: if (wbc1<8500 or mnep<66) and mbap<12.1 then no-appendicitis else appendicitis
.8%)

e of the data and depending on

ber of instances. Combining
these rules, additional inform

itis (accuracy 89.2%)
 if (hnea>5570 and mnea>6670) then appendicitis
 if (hnea<5570 xor mnea<6670) then P(no-appendicitis) = P(appendicitis)=0.5

of ints were etermined by divid

urther optimiz
s (The mizat was a ted did mprove the re

ods prod
s e o

d sim
ned:

accura epe
wer

nea<557 en no endic se ap citis

R
cy: 87.7%, sensitivity: 71.4%, specificity: 91.8%)

Rule 3: if wbc1<8500 then no-appendicitis else appendicitis
(accuracy: 87.7%, sensitivity: 57.1%, specificity: 94.1%)

Rule 4: if mnea<6670 and mbap<12.1 then no-appendicitis else appendicitis
(accuracy: 91.58%, sensitivity: 61.9%, specificity: 98.8%)

R
(accuracy: 92.5%, sensitivity: 66.7%, specificity: 98

The, rules represent alternative ways to understand the structur
the costs of medical tests experts may prefer one rule to the others. In crossvalidation tests,
one of the above rules or another rule combining two features was generated.

Three different rules (1,2,3) cover almost the same num

ation can be obtained:

Rule 6: if (hnea<5570 and mnea<6670) then no-appendic

 167

Although the total accuracy of rule 6 is slightly lower than that of rule 4 and 5, it
probably better describes the properties of this dataset, providing more information about the
structure of the data, as can be seen in Fig. 3.13. A forest of SMLP networks trained with
different order of weight examination and feature selection methods can be created to provide
sets of equivalent rules, so that more information about the data can be obtained or the form
of rules that experts find more interesting can
areas where crisp rules overlap. The value of the membership function of such a point can be
proportional either to the probability density for a given class in this area or to the distance
from that point to the decision border.

 be chosen. Fuzzy rules can describe points in

Fig. 3.13. The Appendicitis dataset with decision borders. Projection into two-feature space.

in Breast Cancer

 l Size
 f Cell Shape

 tin

3.2.12.4. Wiscons

This dataset was obtained from the University of Wisconsin Hospitals, Madison from
Dr. William H. Wolberg and is publicly available at UCI [Mertz 1998]. The purpose of the
analysis is to predict whether the patient suffers from a benign or malignant breast cancer.
There are 699 vectors, 458 (65.5%) in the first class (benign) and 241 (34.5%) in the second
class (malignant). The first feature is a record label, the remaining 9 features have been
discretized into 10 bins:

f1: Sample code number
f2: Clump Thickness

 f3: Uniformity of Cel
 f4: Uniformity o
 f5: Marginal Adhesion
 f6: Single Epithelial Cell Size
 f7: Bare Nuclei
 f8: Bland Chroma
 f9: Normal Nucleoli
 f10: Mitoses

 168

Table 3.10. Classification results for the Wisconsin Breast Cancer dataset.

m test
%

test
method source

ethod training
%

IncNet (3000 epochs, 40
n

97.6 97.1 10CV [Jankowski 1999]
eurons)

3 97.1 10CV [UMK-KMK] -NN, Manhattan -
2 - 96.9 10CV [UMK-KMK] 0-NN, Euclides
FDA - 96.7 10CV [Ster 1996]
M - 96.7 10CV [Ster 1996] LP BP
F - 96.6 10CV [Adamczak 2001] SM (FG+R+CN=30)
LVQ - 96.6 10CV [Ster 1996]
Naive Bayes - 96.4 10CV [UMK-KMK]
SSV ski 2003] - 96.3 10CV [Grąbczew
LDA - 96.0 ter 1996] 10CV [S
QUEST - 95.9 10CV [Lim 2000]
FSM (FR) 10 [A- 95.4 CV damczak 2001]
C4.5 - 94.7 10CV [Zarndt 1995]
CART - 93.5 10CV [Zarndt 1995]
default 65.5
NG (10-2-1, 6tc, r=0.5) 10 th97.2 96.9 CV is work
VSS (10-2-1, 4tc, r=0.5) 10 th97.2 96.8 CV is work
SMLP-DS (97-1-1, 1ch-BS) .9 10 th97 97.1 CV is work
SMLP-VSS 10 th97.8 97.1 CV is work

ional parame of the nsin B t Can

t %stdCv %stdS %test
balanced

m
co

Table 3.11. Addit t ers Wisco reas cer dataset training.

method %tes

ean values in
nfusion matrix

NG 96.9 960.69 1.9 .6 446.7 11.3
10.5 230.5

VSS 96.8 96

0.20 1.7 .6 445.3 12.7
9.7 231.3

SMLP 97.1 0.23 96
 12.3 228.7 DS

2.0 .6 449.9 8.1

SMLP 97.1
VSS 8.1 232.9

 97 6

0.58 2.0 .0 445.4 12.

All rules were found using one hidden neuron and changing one weight at a time with

SMLP-DS. The single zero weights surrounded by two +1 or two –1 weights of the same
feature were autom lly replaced by +1 or –1 weights respectively to remove the
discontinuity. The third rule was found using beam search at feature level with changing one
weight at a time.

if f3 <3.5 then benign else malignant
(accuracy: 92.7%, ity: 96.9%, specificity: 84.7%)

atica

sensitiv

 169

if f2<6.5 and f3<3 b l ig
(accuracy: 95.1%, se vity: 96.7%, specificity: 92.1%)

if f2<6.5 and f7<3.5 and f9<2.5 then benign else malignant
(accuracy: 98.0%, sensitivity: 98.9%, specificity: 96.3%) This rule is very stable, it is
generat

.5 then enign e se mal nant
nsiti

ed in almost every crossvalidation run giving on average 97.9% accuracy on the
training partition and 97.1% on the test partition of the dataset.

It is worthwhile to note that the rules found here are both simpler and more accurate

than those found by CART, C4.5 and SSV decision trees.

In the coordinate system of sum S and normalized product NP of all the features
except the first one (which is the sample code number), two clusters of data corresponding to
classes are clearly visible (Fig. 3.14). The visible separation in the space between the two
lasses leaves 20 vectors on the wrong side, which gives 97.14% accuracy. The best c

classifiers are asymptotically approaching this level.

Fig. 3.14. Projection of the Wisconsin Breast Cancer dataset into the normalized product NP
and sum S coordinate system. (NP=const·(f2·...·f10)1/9 , 1/9 is used in the power exponent, because there
are 9 features, const is a normalization factor, to make the mean value of NP equal to the mean value of S.)

3.2.12.5. Thyroid

The dataset is publicly available at UCI [Mertz 1998]. The purpose of the analysis is
to predict whether the patient suffers from primary hypothyroid, compensated hypothyroid or
is healthy (no hypothyroid) given the results of various medical tests carried out on the
patient. The training set contains 3772 vectors: 93 (2.5%) in the first class (primary
hypothyroid) and 191 (5.1%) in the second class (compensated hypothyroid) and 3488
(92.4%) in the third class (no hypothyroid). The test set contains 3428 vectors: 73 (2.1%) in

 170

the first class and 177 (5.2%) in the second class and 3178 (92.7%) vectors in the third class.
he dataset contains 21 features, 6 continuous and 15 binary:

ary)
 id-surgery (binary)
 h iodine 131- (binary)
 othyroid (binary)
 yroid (binary)
 with lithium (binary)

 ry (binary)
 ical symptoms (binary)

f17: TSH level (continuous)
f18: T3 level (continuous)

 f19

 FTI level (continu

Table 3.12. C icatio lts for roi

d ining st thod e

T
f1: age (continuous)

 f2: sex (binary)
 f3: treatment with thyroxine (binary)
 f4: previous treatment with thyroxine (binary)
 f5: treatment with antithyroid (binary)
 f6: sick (binary)
 f7: pregnant (bin

f8: thyro
f9: treatment wit
f10: test for hyp
f11: test for hyperth
f12: treatment
f13: goiltre (binary)
f14: tumor (binary)
f15: hypopituita
f16: psycholog

: TT4 level (continuous)
 f20: T4U level (continuous)

f21: ous)

lassif n resu the Thy d dataset.

metho tra te test me sourc
PVM 99.79 .33 99 TS [Weiss 1990]
SSV 99.79 .33] 99 TS [Grąbczewski 2003
incNet (200 000 epochs, 9.68 .24 999]
9 neurons)

9 99 TS [Jankowski 1

C4.5 - .2] 99 TS [Zarndt 1995
FSM (FR+CN=20) - .1 001] 99 TS [Adamczak 2
QUEST - .1 99 TS [Lim 2000]
CART - .1] 99 TS [Zarndt 1995
C-MLP2LN 9.86 .07 TS [UMK-KMK] 9 99
FSM (FR) - .0 ak 2001] 99 TS [Adamcz
ID3 - .7 95] 98 TS [Zarndt 19
cascade correlation 100 .48 ann 1993] 98 TS [Schiffm
MLP + BP + genetic opt. .4 .4 ann 1993] 99 98 TS [Schiffm
1-NN, Euclides 98.4 97.7 TS [UMK-KMK]
3-NN, Euclides 98.7 97.9 TS [UMK-KMK]
MLP + BP 99.1 97.6 TS [Schiffmann 1993]
Naive Bayes 97.03 96.06 TS [UMK-KMK]
LDA - 93.81 TS [Lim 2000]
CAL5 - 92.74 TS [Lim 2000]
default 92.40
VSS (21-6-3, 40tc) 99.68 98.95 TS this work
SMLP-DS 2x(x-1-1, 1ch) 99.79 99.33 TS this work

 171

 Table 3.13. Additional parameters of the Thyroid dataset training.

method %test %std %test m
test balanced

ean values in
confusion matrix

VSS 98.95 0.12 97.84 68 1 4
test 0 175 2

 28 1 3149

SMLP
D

trai

99.79 0.00 99.23
 19
 3

S
ning

91 0 2
0
3

1 0
 3482

SM
D
test

99. .00 88 0
 17

10 11 3157

LP
S

33 0 98. 71
0

 2
7 0

First the continuous features were discretized. Then instead of a simple feature

ranking, a f ilter based on SSV criterion [Gr
determined the following feature order according to decreasing m ation: TSH,
th-surgery, FTI, on-thyroxine, TT4, pregnant I131_treatment, query-hyperthyroid, lithium,
tumor and other features on further positions. The network training was performed on the two
first classes separately using initially the balanced error and adjusting the cut-off points after
each training cycles. Afterwards the error was changed to the standard error (that mainly

ifted the cut-off point value for the TSH feature). The following rules were found changing
ne weight at a time with one hidden neuron per class:

 TSH>0.0061 and FTI<0.0647 and th-surgery=no then primary hypothyroid
raining: sensitivity: 97.85%, specificity: 99.92%, test: sensitivity: 97.26%, specificity: 99.70 %)
 TSH>0.0061 and FTI>0.0647 and TT4<0.15 and on-thyroxine=no and th-surgery=no

raining: sensitivity: 100%, specificity: 99.92%, test: sensitivity: 100%, specificity: 99.66%)

 are almost ideally hyperrectangular and therefore the SMLP
network can obtain very high accuracy with only one hidden neuron per class. The standard
MLP n s with sigmoidal transfer functions to
approx acy.

eature f ąbczewski 2003] was used. The filter
utual inform

,

sh
o

if
(t
if
then compensated hypothyroid
(t
else no hypothyroid
(training: sensitivity: 99.83%, specificity: 99.30%, test: sensitivity: 99.34%, specificity: 99.20%)

(training accuracy: 99.79%, test accuracy: 99.33%)

The decision borders

etwork requires much more hidden neuron
imate the decision borders with comparable accur

 172

3.2.12.6.

om the University Medical Center, Institute of
Oncology, Ljubljana, Yugoslavia was donated by M. Zwitter and M. Soklic and is publicly
available at UCI [Mertz 1998]. The purpose of the analysis is to predict whether the patient
suffer nt or no-recurre breas er. T 2 (70.2%) in
the fir ss and 8 (29.8% the s (re dataset
contains 9 discrete features, some of them were originally continuous but are available only
in the discretized f :

nopause
mor-size

ed-nodes
e-caps

gree-malignant
east
east-quad
radiation

able 3.14. Classification sults f Ljub ea aset.

me trainin te test

Ljubljana Breast Cancer

This breast cancer database fr

s from recurre nt t canc here are 86 vectors, 201
st (no-recurrent) cla 5) in econd current) class. The

orm
f1: age
f2: me
f3: tu
f4: involv
f5: nod
f6: de
f7: br
f8: br
f9: ir

T re or the ljana Br st Cancer dat

thod g st method source
C-MLP2LN 78.0 77.4 10CV [UMK-KMK]
PV 77.4 77.1 10CV M [Weiss 1990]
MM - 75 10CV 95] L .3 [Zarndt 19
C4 - 73 10CV 95] .5 .9 [Zarndt 19
ML - 73 1 95] P BP .5 0CV [Zarndt 19
SS - 72 10CV ski 2003] V .7 [Grąbczew
AQ15 - 72.0 10CV [Statlog 1994]
FSM (FG+R) - 71.6 10CV [Adamczak 2001]
CART - 71.4 10CV [Zarndt 1995]
CN2 - 70.7 10CV [Zarndt 1995]
Naive B ayes - 69.3 10CV [Zarndt 1995]
ID3 66.2 - 10CV [Zarndt 1995]
default 70.2
NG (51-2-1, 6tc, r=0.35) 7 78.0 5.9 10CV this work
VSS (51-2-1, 3tc, r=0.5) 78.8 76.0 10CV this work
SMLP-DS , 2 7 (51-1 ch) 78.0 6.0 10CV this work
SMLP-VSS (51-1) 78.9 75.7 10CV this work

The rules for the Ljubljana Breast Cancer dataset were obtained with one hidden
neuron per c n ne w at a with S DS a -VSS.

if degree-malignant<3 than no-recurrent else recurrent
(accuracy: 72.0%, sensitivity: 80.1%, specificity: 52.9%)

if node

ity: 30.6%)

lass, cha ging o eight time MLP- nd with SMLP

-caps=no and degree-malignant=2 than no-recurrent else recurrent
(accuracy: 75.5%, sensitivity: 94.5%, specific

 173

if involved-nodes>2 and degree-malignant>2 than recurrent else no-recurrent
(accuracy: 76.2%, sensitivity: 31.8%, specificity: 95.0%)

Table 3.15. Additional parameters of the Ljubljana Breast Cancer dataset training.

method %test %stdCv

%stdS %test
balanced

mean values in
confusion matrix

NG 75.9 0.28 7.2 61.1 20.8 64.2
4.6 196.4

VSS 76.0 0.25 6.3 60.2 18.0 67.0
1.7 199.3

SMLP 76.0 0.45 8.0 61.4 21.8 63.2
DS 5.6 195.4

SMLP 75.7 0.92 8.3 60.5 19.6 6
VSS

5.4
4.0 197.0

sure (continuous)

phic results (3 discrete values)
ieved (continuous)

ngina (binary)
duced by exercise relative to rest (continuous)

 peak exercise ST segment (discrete)
f12: ca - number of major vessels colored by fluoroscopy (3 discrete values)
f13: thal (discrete)

3.2.12.7. Cleveland Heart Disease

 This dataset comes from the Cleveland Clinic Foundation and is publicly available
form the machine learning database repository at UCI [Mertz 1998]. The purpose of the
analysis is to predict the presence or absence of the heart disease given the results of various
medical tests carried out on a patient. There are 303 vectors, 165 (54.5%) in the first class
(healthy) and 138 (45.5%) in the second class (sick). The dataset contains 13 features:

f1: age (continuous)
f2: sex (binary)
f3: CP- chest pain type (4 discrete values)
f4: restbps - resting blood pres
f5: chol - serum cholesterol in mg/dl (continuous)
f6: fbs - fasting blood sugar > 120 mg/dl (binary)
f7: restecg - resting electrocardiogra
f8: thalach - maximum heart rate ach
f9: exang - exercise induced a
f10: oldpeak - ST depression in
f11: slope of the

 174

Table 3.16. Classification results for the Cleveland Heart Disease dataset.
d g t

 so

metho trainin
%

tes
%

test
 method urce

LDA - 5 84. 10CV [Ster 1996]
FDA - 2 84. 10CV [Ster 1996]
Naive Bayes - 83.4 10CV [UMK-KMK]
FSM (FT+CN=20) - 2 1] 83. 10CV [Adamczak 200
LVQ - 9 82. 10CV [Ster 1996]
FSM (FG+R) - 5 1] 82. 10CV [Adamczak 200
SVM - 5 81. 5CV [Bennet 1997]
kNN - 5 81. 10CV [Ster 1996]
MLP BP - 3 81. 10CV [Ster 1996]
CART - 8 80. 10CV [Ster 1996]
SSV - 7] 79. 10CV [Grąbczewski 2003
RBF - 1 79. 10CV [UMK-KMK]
ASR - 4 78. 10CV [Ster 1996]
C4.5 - 8 77. 5CV [Bennet 1997]
QDA - 4 75. 10CV [Ster 1996]
LFC - 1 75. 10CV [Ster 1996]
ASI - 4 74. 10CV [Ster 1996]
OC1 - 7 71. 5CV [Bennet 1997]
1R - 0 71. 10CV [UMK-KMK]
FOIL - 4 66. 10CV [UMK-KMK]
default 3 54.1
NG (24-2-1, 8tc, r=0.5) 0 86.9 85. 10CV this work
VSS (24-2-1, 3tc, r=0.7) 1 87.7 86. 10CV this work
SMLP-DS (28-1-1, 1ch) 5 84.5 81. 10CV this work
SMLP-VSS (28-1-1) 5 87.2 85. 10CV this work

Table 3.17. Additional pa rs of levelan t Di et training.

 %stdCv %stdS %test
ba

m in
co trix

ramete the C d Hear sease datas

method %test
 lanced

ean values
nfusion ma

NG 85.0 0.44 5.5 84.6 145.8 19.2
26.4 111.6

VSS 86.1 0.30 5.1 85.7 149.2 15.8
26.4 111.6

SMLP 81.5 1.6 7.4
DS

81.1 142.2 22.8
33.2 104.8

SMLP 85.5 0.57 6.0 85.0
VSS

149.8 15.2
28.8 109.2

Seven of the vectors originally contained one missing feature value, which was

replaced by the average value for their class.

 175

First the SMLP network was trained on each feature separately to build feature
ranking. Various discretization methods gave various information gain of the continuous
features, however the differences were not enough big to change any feature position in the

nking. The first seven features were: thal (76.90%), cp (75.91%), ca (74.92%), exang
.64%), slope (69.31%). Then the features were

g to the ranking. One hidden neuron was used in all trainings. The
llowing rules were obtained with SMLP-DS changing one weight at time as well as with

 thal<>2 then healthy else sick
ccuracy: 76.9%, sensitivity: 79.4%, specificity: 73.9%) This rule is very stable, it is

enerated in each crossvalidation run giving on average 75.3% accuracy on the test part of
e dataset.

d ca=0 then healthy else sick
ccura

em posed here is to predict whether a patient would test positive for diabetes given
 num

 the first class (no diabetes) and 268 (34.9%) in the second class
(diabetes). The dataset is rather difficult to classify. The class value is really a binarised form
of another attribute, which is itself highly indicative of certain types of diabetes but does not
have a one-to one correspondence with the medical condition of being diabetic. The feature
f1 is discrete, the other 7 features are continuous:

f1: number of times pregnant
f2: plasma glucose concentration in an oral glucose tolerance test
f3: diastolic blood pressure (mm/Hg)
f4: triceps skin fold thickness (mm)
f5: 2-hour serum insulin (mu U/ml)
f6: body mass index (kg/m2)
f7: diabetes pedigree function
f8: age (years)

ra
(71.95%), oldpeak (70.30%), thalach (69
reordered accordin
fo
SMLP-VSS:

if
(a
g
th

f thal<>2 and cp<>2 ani

(a cy: 85.5%, sensitivity: 89.7%, specificity: 80.4%) This rule is relatively stable, it is
generated (sometimes slightly modified) in most of crossvalidation runs.

3.2.12.8. Pima Indians Diabetes

This dataset was constructed by a selection from a larger database held by the
National Institute of Diabetes and Digestive and Kidney Diseases. It is publicly available
from the machine learning database repository at UCI [Mertz 1998]. The patients represented
in this dataset are females at least 21 years old of Pima Indian heritage living near Phoenix.

he problT
a ber of physiological measurements and medical test results. This as a two-class
problem with class value 1 being interpreted as “tested positive for diabetes”. The dataset has
768 vectors, 500 (65.1%) in

 176

Tab

le 3.18. Classification results for the Diabetes dataset.

method training test test method source
logDA - 77.7 12CV [Statlog 1994]
DIPOL92 - 77.6 12CV [Statlog 1994]
incNet (5000 epochs,
100 neurons)

77.2 77.6 10CV [Jankowski 1999]

LDA - 77.5 12CV [Statlog 1994]
SMART - 76.8 12CV [Statlog 1994]
QUEST - 76.7 12CV [Lim 2000]
RBF - 75.7 12CV [Statlog 1994]
FSM (FT+CN=20) - 75.6 10CV [Adamczak 2001]
ITRULE - 75.5 12CV [Statlog 1994]
MML - 75.5 10CV [Zarndt 1995]
FSM (FT) - 75.2 10CV [Adamczak 2001]
MLP BP - 75.2 12CV [Statlog 1994]
CAL5 - 75.0 12CV [Statlog 1994]
SSV - 74.8 12CV [Grąbczewski 2003]
CART - 74.7 10CV [Zarndt 1995]
CASTLE - 74.2 12CV [Statlog 1994]
Naive Bayes - 73.8 12CV [Statlog 1994]
QDA - 73.8 12CV [Statlog 1994]
C4.5 - 73.0 12CV [Zarndt 1995]
LVQ - 72.8 12CV [Statlog 1994]
SOM - 72.7 12CV [Statlog 1994]
AC2 - 72.4 12CV [Statlog 1994]
NewID - 71.1 12CV [Statlog 1994]
CN2 - 71.1 12CV [Statlog 1994]
ALLOC80 - 69.9 12CV [Statlog 1994]
kNN - 67.6 12CV [Statlog 1994]
default 65.1
NG (8-2-1, 5tc, r=0.5) 77.8 77.0 10CV this work
VSS (8-2-1, 3tc, r=0.5) 78.2 77.3 10CV this work
SMLP-VSS (40-1, 3tc,
r=0.5)

78.6 76.8 10CV this work

Table 3.19. Additional parameters of the Diabetes dataset training.

method %test %stdCv %stdS %test mean values in
 balanced confusion matrix

NG 77.0 0.40 4.2 72.6 155.6 112.4
64.0 436.0

VSS 77.3 0.26 4.8 72.9 156.0 112.0
62.2 437.8

SMLP
VSS

76.8 0.30 4.1 72.0 151.0 117.0
61.6 438.4

 177

The first four features in the fe
 (66.3%). The following rules were

ature ranking are: f2 (75.0%), f1 (67.8%), f8 (66.9%),
 obtained with one hidden neuron changing one weight

 a time with SMLP-DS:

if f2
(accu

(accu

been
oss es in a comprehensive way. The training algorithms are
uch simpler than the gradient-based algorithms. Due to the perceptron properties, the rules

is usually preferred, M-of-N rules are reduced to AND + OR operations whenever possible.

sets the algorithms are
mple and computationally efficient. It cannot be said that the only criterion of the rule

Som which better reflect the data structure may be
referred, although their accuracy is lower. It is possible to obtain several sets of rules by the
odification of network parameters and training process. A forest of SMLP networks can be
ilt to give users the possibility of choosing sets of rules that are most suitable for their
rpose.

It seems that the search-based approach to logical rule extractions has a large potential
worth further investigation.

f6
at

>157 then no-diabetes else diabetes
racy: 75.0%)

if f1>6.85 and f2<157 and f6>42 and 49<f8<70 then no-diabetes else diabetes

racy: 80.6%)

3.2.13. Conclusions

A neural network approach to classification and rule extraction, called SMLP has
 proposed. The model combines the advantages of MLP neural networks with the
ibility of extracting simple rulp

m
given by hidden neurons are in the M-of-N form. Since the prepositional form of logical rules

As the experiments showed, the accuracy of results on the popular benchmark data
is comparable with the best results obtained from other methods, while

si
quality is the classification accuracy either using crossvalidation or a separate test set.

etimes rules which are simpler or
p
m
bu
pu

 178

4. Summary

Several properties of MLP networks were examined, including the properties of MLP
error surfaces, learning trajectories, trends of weight changes and neuron signals. The PCA-

their p ced search

directio

ing algorithms were

algorith
which in particular do not have to be differentiable. The algorithms were tested on many

present ability of finding

stabilit
improving network generalization were discussed.

gical rule extraction from MLP network with quantized

SMLP
the dir odified version of variable step search algorithms. Several

applied from data using MLP

optimiz

5. F

• Se

• Find a m

by

• I have no plans concerning rule extraction systems, since the above-mentioned topics

ex

based visualizations of many MLP error surfaces were presented and the factors influencing
roperties were discussed. The possibility of training network in the redu

space was discussed. The properties of error surface sections in different layer weight
ns and in different phases of training were examined.

Basing on the conclusions from this research, two new MLP learn

developed: numerical gradient (NG) and variable step search algorithm (VSS). The
ms do not impose any restrictions on network structure and neural transfer functions,

datasets and a comparison including many factors with other MLP learning algorithm was
ed on several datasets. Especially VSS algorithm proved to have the

good solutions, with very low network error at a low computational effort and with high
y of the achieved results. Several methods of reducing the computational costs and

A search-based approach to lo

parameters was presented. The logical rules are extracted from data by the analysis of the
network weights. Two search-based algorithms from SMLP networks were proposed:
ect search method and a m

additional aspects of these algorithms were discussed and possible solutions were proposed.

It should finally be concluded that the search-based algorithms can be successfully
 for multilayer perceptron training and for logical rule extraction

networks. The proposed solutions in many aspects performed better than gradient-based
ation algorithms.

uture Work

arch for other interesting projections of MLP error surface that will reveal more error
surface properties, maybe some kinds of kernel PCA or other non-linear projections.

• Apply VSS also to MLP trained for regression problems.

ore effective sequence of examining the weight changes in VSS.

• Analyze MLP decision borders and the ways to influence them more precisely than only

 minimizing the global error measure.

seem more interesting to me and moreover very many people work nowadays on rule
traction systems. So I leave this topic for them and wish them good luck.

 179

6. List of Publications

. Kordos, W. Duch, “Search-based Training for Lo• M gical Rule Extraction by Multilayer

In 003, pp. 86-89

• M
of the Joint Int. Conf. on Artificial Neural Networks (ICANN) and Int. Conf. on Neural

• M urface”, 7th Int. Conf.

ane, Poland, June 2004,

th

th

In

Perceptron”, Proc. of the Joint Int. Conf. on Artificial Neural Networks (ICANN) and
t. Conf. on Neural Information Processing (ICONIP), Istanbul, June 2

. Kordos, W. Duch, “Multilayer Perceptron Trained with Numerical Gradient”, Proc.

Information Processing (ICONIP), Istanbul, June 2003, pp. 106-109

. Kordos, W. Duch, “On Some Factors Influencing MLP Error S
on Artificial Intelligence and Soft Computing (ICAISC), Zakop
pp. 217-222

• M. Kordos, W. Duch, “Variable Step Search Algorithm for MLP Training”, Proc. of the
 IASTED Int. 8 Conf. on Artificial Intelligence and Soft Computing, Marbella, Spain,

September 2004, pp. 215-220

. Kordos, W.• M Duch, “A Survey of Factors Influencing MLP Error Surface”, Control
and Cybernetics, vol. 33, no. 4, 2004

• M. Kordos, “Directions in Multilayer Perceptron Weight Space”, 4 Warsaw
International Seminar on Soft Computing, Warsaw, October 25, 2004

• M. Kordos, “Search-based Approach to Multilayer Perceptron Training”, Studia

formatica, vol. 26, no. 1 (62), 2005

 180

7. References

czak 2000] R. Adamczak, W. Duch, “Neural Networks for Structure-activity
Relationship Problmes”

[Adam

[Ajith , “Cerebral Quotient of Neuro Fuzzy Techniques – Hype or

[Altma , F. Varetto, “Corporate Distress Diagnosis:

p. 9-12

Knowledge-Based

east Square Method”, IEEE Transactions on Signal

[Battiti with the Reactive Tabu

[Benne
 MAth Report, Rensselaer Polytechnic Institute, Troy, NY

-95), Baden-

[Bielec
 Detection”, 7 Int. Conf. on Artificial Intelligence and Soft Computing

[Bilski
 Networks”, 6 Int. Conf. on Neural Networks and Soft Computing,

[Bilski the RLS algorithms”, 7 Int. Conf. on

[Blum

”, European Journal

[Breim

rsity of Massachusetts

[Adamczak 2001] R. Adamczak, “Zastosowanie Sieci Neuronowych do Klasyfikacji Danych
Doświadczalnych”, PhD Thesis, Uniwersytet Mikołaja Kopernika, Toruń

[Acid 1991] S. Acid et. al., “CASTLE: Casual structures from inductive learning. Release
2.0”, Report No. 91-4-3, University of Granada
2002] Ajith Abraham
Hallelujah?”, http://www.bytesforall.org/8th/abraham_bytes.pdf
n 1994] E. I. Altman, G. Marco
Comparisons using linear discriminant analysis and neural networks (the Italian
experience)”, J. Bank. Finance vol. 18, pp. 505-529

[Andrews 1994] R. Andrews, S. Geva, “Rule Extraction from a Constrained Error
Backpropagation MLP”, 5th Aust. Conf. Neural Networks, p

[Andrews 1995] R. Andrews, J. Diederich, A. Tickle, “Survey and Critique of Techniques for
Extracting Rules from Trained Artificial Neural Networks”,
Systems, 8(6): 373-384

[Atkosoft 1997] Atkosoft S. A., “Survey on Visualization Methods and Software Tools”,
SUP.COM 96/Lot 30 Part A

[Azimi 1992] R. Azimi-Dadjahi, R. J. Liou, “Fast Learning Process of Multilayer Neural
Networks Using Recursive L
Processing, vol. 40, no. 2
 1995] R. Battiti, G. Tecchiolli, “Training Neural Nets
Search”, Transactions on Neural Networks, vol. 6, pp. 1185-1200
t 1997] K. P. Bennet, J. A. Blue, “A Support Vector Approach to Decision Trees”,
RPI

[Berthold 1995] M. R. Berthold, K. P. Huber, “Extraction of Soft Rules from RecBF
Networks” International Symposium on Intelligent Data Analysis (IDA
Baden, Germany, August 1995
ki 2004] A. Bielecki, P. Hajto, “A Neural-Based Agent for IP Traffic Scanning and
Worm th

(ICAISC), Zakopane, Poland, June 2004, pp. 816-822
 2002] J. Bilski, L. Rutkowski, “Numerically Robust Learning Algorithms for Feed
Forward Neural th

Zakopane, Poland, June 2002, pp. 149-154
 2004] J. Bilski, “Momentum Modification of th

Neural Networks and Soft Computing, Zakopane, Poland, June 2004, pp. 151-157
1989] E. K. Blum, “Approximation of Boolean Functions by Sigmoidal Networks:
Part I: XOR and other two-variable functions”, Neural Computation, vol. 1, pp. 532-
540

[Brenda 2002] Brenda Mak, Toshinori Munukata, “Rule Extraction from Expert Heuristics:
A comparative study of rough sets with neural networks and ID3
of Operational Research, 136, pp. 212-229
an 1984] L. Breiman et. al. “Classification and Regression Trees”, Wadsworth,
Belmont, CA

[Brodley 1992] C. E. Brodley, P. E. Utgoff, “Multivariate versus univariate decision trees”,
Institute Raport 92-8, Department of Computer Science, Unive

 181

[Bullinaria 2002] John A. Bullinaria, “Introduction to Neural Networks”,
http://www.cs.bham.ac.uk/~jxb/inn.html
e 1993] W. Buntine, “Learning classification trees”, Artifical Intelligence Frontie[Buntin rs in

82-201
[Busse dge discovery system”, Rough Sets

[Buzing 2001] Pieter Buzing, “Hybrid Systems: Two Examples of the Combination of Rule-

[Chakraborty 2004] Debrup Chakraborty and Nikhil R. Pal, “A Neuro-Fuzzy Scheme for

[Cicho czące się”, WNT, Warszawa

[Coetze 1997] F. M. Coetze, V. L. Stonick, “488 Solutions to the XOR Problem”, Advances

1364

ol. 8, pp.

[Declo

[Delphi] http://www.borland.com/delphi/

[Denni l Methods for Unconstrained

[Duch apping

[Duch of Crisp Logical Rules Using Constrained

al Networks, Bruge, pp. 109-114

9

rveys 2, pp. 163-212

Statistics, Chapman & Hall, London, pp. 1
 1999] J. W. Grzymała-Busse, “LERS – a knowle
in Knowledge Discovery, Physica-Verlag, Heidelberg, pp. 562-565

Based Systems and Neural Nets”, March 2001, http://www.cs.vu.nl/~pcbuzing/
Articles/hybrid.doc

Simultaneous Feature Selection and Fuzzy Rule-Based Classification”, IEEE
Transactions on Neural Networks, vol. 15, no. 1, January 2004

sz 2000] P. Cichosz, “Systemy u
[Clark 1987] P. Clark, T. Niblett, “Induction in Noisy Domains”, Progress in Machine

Learning, pp. 11-30, Bled, Yugoslavia, Sigma Press, 1987
[Clark 1989] P. Clark, T. Niblett, “The CN2 induction algorithm”, Machine Learning 3(4),

pp. 261-283

in Neural Information Processing Systems, vol. 9, pp. 410-416, Cambridge, MA, MIT
Press, 1997

[Cottrell 1995] M. Cottrell et. al., “Neural Modeling for Time Series: a statistical stepwise
method for weight elimination”, IEEE Transactions on Neural Networks 6(6), pp.
1355-

[Craven 1996a] M. W. Craven, “ Extracting Comprehensible Models from Trained Neural
Networks”, PhD Thesis, University of Wisconsin

[Craven 1996b] M. W. Cranven, J. W. Shavlik, “Extracting tree-structured representation of
trained networks”, Advances in Neural Information Processing Systems, v
24-30

edt 1996] L. Decloedt, F. Osorio, B. Amy, ”RULE-OUT Method: A new approach for
knowledge explication from trained ANN”, Rule Extraction from Trained Artificial
Neural NEtworks Workshop, pp. 34-42, Queensland University of Technology

[Denker 1987] J. Denker et. al., “Large automatic learning, rule extraction and
generalization”, Complex Systems, 1:887-922
s 1983] J. E. Dennis, R. B. Schnabel, “Numerica
Optimization and Nonlinear Equations”, Englewood Cliffs, NJ: Prentice-Hall
1997] W. Duch, R. Adamczak, “New Developments in Feature Space M
Model”, Third Conference on Neural Networks and their Applications, pp.65-70,
Kule
1997b] W. Duch, et. al., “Extraction
Backpropagation Networks – Comparison of Two Approaches”, The European
Symposium on Artificial Neur

[Duch 1999a] W. Duch, J. Korczak, “Optimization and global minimization methods
suitable for neural networks”, KMK UMK Technical Report 1/9

[Duch 1999b] W. Duch, N, Jankowski, “Survey of Neural Transfer Functions”, Neural
Computing Su

[Duch 1999c] W. Duch, K. Grąbczewski, “Searching for optimal MLP”, The Fourth
Conference on Neural Networks and Their Applications, Zakopane, May 1999, pp.
65-70

 182

[Duch 2000] W. Duch, J. Korbicz, L. Rutkowski, R. Tadeusiewicz, “Sieci Neuronowe”,
Exit, Warszawa

[Duch 2001] W. Duch, R. Adamczak, K. Grąbczewski, “A New Methodology of Extraction,
Optimization and Application of Crisp and Fuzzy Logical Rules”, IEEE Transactions

[Duch ilters”, Proc. of Int. Conf. on

[Duch ion of Hidden Node Activity in Neural Networks”, 7

[Duch “Support Vector Neural Training”, IEEE Transactions on Neural

thods for

[Duch ltilayer Perceptrons”, IEEE

[Duch tions, and multi-layer

[Duda 2 “Pattern Classification”, New York, Wisley

e Applications”

tworks, 6(6), pp. 771-783, 1993
s”,

[Freund 1997] Y. Freund, R. E. Schapire, “A Decision Theoretic Generalization of On-line

[Fu 19

ng Analog Multilayer Perceptron”, Proc.

[Gallagher 2000] M. Gallagher, “Multi-layer Perceptron Error Surfaces: Visualization,

[Gallag
 IEEE Transactions on Systems, Man and

[Garris
ns”, Image Processing, vol. 3, no. 8

on Neural Networks 12, pp. 277-307
2003b] W. Duch et. al., “Feature Selection and Ranking F
Artificial Neural Networks (ICANN), Istanbul, June 2003, pp. 251-254
2004a] W. Duch, “Visualizat th

Int. Conf. on Artificial Intelligence and Soft Computing (ICAISC), Zakopane, Poland,
June 2004, pp. 38-49
2004b] W. Duch,
Networks, accepted November 2004

[Duch 2004c] W. Duch, R. Setiono, J. Żurada, “Computational Intelligence Me
Rule-Based Data Understanding”, Proceedings of the IEEE, May 2004
2005] W. Duch, “Internal Representations of Mu
Transactions on Neural Networks, submitted January 2005
2005b] W. Duch, “Uncertainty of data, fuzzy membership func
perceptrons”, IEEE Transactions on Neural Networks 16(1): 10-23
001] R. O. Duda, P. E. Hart, D. G. Stork,

[Engel 1988] J. Engel, “Teaching feed-forward neural networks by simmulaated annealing”,
complex systems 2, pp. 641-648

[Fang 1999] Fang Wang et al. “Neural Network Structures and Training Algorithms for RF
and Microwav

[Fahlman 1991] S. E. Fahlman, C. Lebiere, “The Cascade correlation learning architecture”,
Neural Information Processing Systems, vol. 2, pp. 524-523

[Fahlman 1998] S. E. Fahlman, “Faster Learning Variations of Backpropagation: an
empirical study”, Connectionist Models Summer School, Morgan Kaufmann, pp. 38-
51

[Finnhoff 1993] W. Finnhoff, F. Hergert, H. G. Zimmermann, “Improving Model Detection
by Nonconvergent Methods”, Neural Ne

[Fisher 1936] R. A. Fisher, “The use of multiple measurements in taxonomic problem
reprinted in Contributions to Mathematical Statistics, John Wiley & Sons, New Yok,
1950

Learning and an Application to Boosting”, Journal of Computer and System Sciences,
55(1):119-139

94], L. Fu, ”Rule generation from neural networks”, IEEE Transactions on Systems,
Man and Cybernetics, vol. 28(8), pp. 1114-24

[Gabriel 2003] J. Gabriel, R. C. Gomes, Sanjit. K. Mitra, “Low-Complexity Image
Compression Without A/D Conversion Usi
European Conference on Circuit Theory and Design (ECCTD), pp. III.281-III.284,
Krakow, Poland, September 2003

Structure and Modeling”, PhD Thesis, University of Queensland
her 2003] M. Gallagher, T. Downs, “Visualization of Learning in Multi-layer
Perceptron Networks using PCA”,
Cybernetics – part B: Cybernetics, vol. 33, pp. 215-221
 1998] M. S. Garris, C. L. Wilson, J. L. Blue, “Neural network-based systems for
handprint OCR applicatio

 183

[Gaweda 2000] A. E. Gaweda, R. Setiono, J. M. Zurada, “Rule Extraction from Feedforward
Neural Network for Function Approximation th”, 5 National Conference on Neural

[Ghostm ta mining software,

[Goldberg 1989] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine

[Goodm

29-132

[Gori 1992] M. Gori, A. Tesi, “On the Problem of Local Minima in Backpropagation”, IEEE

[Grąbc
na podstawie baz danych”, PhD Thesis, IBS PAN,

[Grinst

y Sets and Systems, vol. 65, pp. 1-12,

[Hame he 6th

[Hame Local Minima: A case study in neural

[Hamil
versity, 1996

s.uregina.ca/~hamilton/

[Hamm
LA'02), June

[Harold
 Computation, IOP Publishing Ltd and Oxford University Press, 1997

dvances in Neural Information Processing Systems 5,

[Haykin 1994] S. Haykin, “Neural networks: a comprehensive foundations”, New York:

[Hayva rial”,

[Hayva ja, “Independent Component Analysis”,

[Hayw
ined ANN by stepwise negation”, Neurocomputing Res. Centre,

Queensland Univ., Technical Report, 1996
[Hecht 1990] R. Hecht-Nielsen, “Neurocomputing”, Adison-Wesley, Reading, MA, 1990

Networks And Soft Computing, Zakopane, Poland, June 6-10, 2000, pp. 311-316
iner] GhostMiner da

http://www.fqspl.com.pl/?a=product_view&id=2

Learning”, Addison-Wesley
an 1989] R. M. Goodman, P. Smyth, “The induction of probabilistic rule sets – the

ITRULE algorithm”, The 6th International Workshop on Machine Learning, San
Mateo, CA, pp. 1

[Gorban 1999] A. N. Gorban et. al., “Generation of Explicit Knowledge from Empirical Data
through Pruning of Trainable Neural Networks”, International Joint Conference on
Neural Networks (IJCNN '99)

Transactions on Pattern Analysis and Machine Intelligence, PAMI-14, pp.76-86, 1992
zewski 2003] K. Grąbczewski, “Zastosowanie kryterium separowalności do
generowania reguł klasyfikacji
Warszawa, 2003
ein 2001] G. Grinstein, M. Trutschl, U. Cvek, “High-Dimensional Visualizations”, 7th
Data Mining Conference-KDD, 2001

[Halgamuge 1994] S. K. Halgamuge, B. J. McNeil, “Neural Networks in Designing Fuzzy
Systems for Real World Applications”, Fuzz
1994

y 1995] L. G. C. Hamey, “The Structure of Neural Network Error Surfaces”, T
Australian Conference on Neural Networks, University of Sydney, pp. 197-200, 1995

y 1998 89] L. G. C. Hamey, “XOR Has No
network error surface analysis”, Neural Networks, 11(4), pp. 669-681, 1998
ton 1996] H. J. Hamilton, N. Shan, N. Cercone, “RIAC: a rule induction algorithm
based on approximate classification”, Tech. Rep. CS 96-06, Regina Uni

[Hamilton 2002] H. J. Hamilton, “Knowledge Discovery in Databases“, Department of
Computer Science, University of Regina, http://www2.c
courses/831
 2002] L. Hamm, B. Wade Brorsen, “Global Optimization Methods”, The 2002
International Conference on Machine Learning and Applications (ICM
2002, Monte Carlo Resort, Las Vegas, Nevada, USA
 1997] Harold Szu, Masud Cader, “Stochastic Neural Networks”, Handbook of
Neural

[Hassibi 1993] B. Hassibi, D. G. Stock, “Second order derivatives for network pruning;
Optimal brain surgeon”, A
Morgan Kaufmann, pp. 164-171, 1993

MacMillian Publishing, 1994
rinen 1999] A. Hyvarinen, E. Oja, “Independent Component Analysis: A Tuto
http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb, 1999
rinen 2001] A. Hyvarinen, J. Karhunen, E. O
Wiley, 2001

ard 1996] R. Hayward, C. Ho-Stuart, J. Diederich, E. Prop, “RULENEG: Extracting
rules from a tra

 184

[Hen 2002] Yu Hen Hu, Jenq-Neng Hwang, “Handbook of Neural Network Signal
Processing”, CRC Press, 2002
ns 1982] J. Hermans et. al., “Manual [Herma for the ALLOC80 discriminant analysis

[Hinton
tributed Processing, vol. 1, pp. 77-109, 1986

[Hollm g”, http://www.cis.hut.fi/~jhollmen

[Ho Tu wledge Discovery and Data Mining”,

[Hush

[Jain 1998] L. C. Jain, N. M. Martin, “Fusion of Neural Networks, Fuzzy Systems and

[Jankow
ika,

[Jankowski 2003] N. Jankowski, “Ontogeniczne sieci neuronowe. O sieciach zmieniających

[Kalma
[Karbo using artificial

[Karras
efect Detection in Manufacturing Using Novel Multidimensional

[Kasab ral Networks, Fuzzy Systems and

[Kasab Rule Extraction from

ystems”

te Sensing,

[Kegl 2
nsactions on Pattern Analysis ans Machine Intelligence, vol. 22,

program”, Leiden, The Netherlands, 1982
 1986] G. E. Hinton, J. L. McClelland, D. E. Rumelhart, “Distributed Presentations”,
Parallel Dis

[Hoffmann 2002] F. Hoffmann et. al., “Comparing a Genetic Fuzzy and a Neurofuzzy
Clasifier for Credit Scoring”

[Horikawa 1993] Y. Horikawa, “Landscapes of Basins of Local Minima in the XOR
Problem”, International Joint Conference on Neural Networks, vol. 2, pp. 1667-1680,
New York, 1993

[Holland 1992] J. Holand, “Adaptation in Natural and Artificial Systems”. MIT Press, 1992
en 1996] J, Hollmen, “Process Modelin

[Holte 1993] R. C. Holte, “Very simple classification rules perform well on most comonly
used datasets”, Machine Learning, 11, pp. 63-91, 1993
 Bao 2002] HO Tu Bao, “Introduction to Kno
ttp://www.netnam.vn/unescocourse/knowlegde/know_frm.htm
1993] D. Hush, B. Horne, “Progress in Supervised Neural Networks”, IEEE Signal
Processing Magazine, 01/1993, pp. 8-39

[Islam 2003] M. Tanvir Islam, Yoichi Okabe, “Moderatism Based Gradient Learning Rules
For Training Multilayer Neural Networks”, ICANN 2003, pp. 94-97

[Jacobson] H. Jacobson, “Rule Extraction from Recurrent Neural Networks: A Taxonomy
and Review”

Genetic Algorithms: Industrial Applications”, CRC Press, 1998
ski 1999] N. Jankowski, “Ontogeniczne Sieci Neuronowe w Zastosowanie do

Klasyfikacji Danych Medycznych”, PhD thesis, Uniwersytet Mikołaja Kopern
Toruń 1999

swoją strukturę”, Exit, Warszawa 2003
n 2001] D. Kalman, “A Singular Valuable Decomposition: The SVD of a Matrix”
wski 1999] T. Karbowski, “Automatic mammographic screening
neural networks”, Proc. 4th Conf. Neural Networks and their Applications, Zakopane
1999
 2001] D. A Karras, S. A Karkanis, D. K Iakovidis, D. E Maroulis, B. G. Mertzios,
“Improved D
Wavelet Feature Extraction Involving Vector Quantization And PCA Techniques”, 8th
Panhellenic Conference on Informatics, Nicosia, Cyprus, November 2001
ov 1996] N. Kasabov, “Foundations of Neu
Knowledge Engineering”, MIT Press, 1996
ov 1999] N. Kasabov, B. Woodford, “Rule Insertion and
Evolving Fuzzy Neural Networks: Algorithms and Applications for Building
Adaptive, Intelligent Expert S

[Kavzoglu 1999] T. Kavzoglu, “Pruning artificial neural networks: an example using land
cover classification of multi-sensor images”, International Journal of Remo
vol. 20, no. 14, pp. 2787-2803, 1999
000] B. Kegl, A. Krzyżak, T. Linder, K. Zeger, “Learning and Design of Principal
Curves”, IEEE Tra
no. 2, 2000, pp. 281-297

 185

[Kirkpatrick 1983] S. Kirkpatrick, C. D. Gellat, M. P. Vecchi, “Optimization by Simmulated
Annealing”, Science, 220, pp. 671-680, 1983

[Kohon

anbul, June

[Kordo erical

 Istanbul, June 2003, pp. 106-

-222

ence and Soft Computing,

[Kordo
ernetics, vol. 33, no. 4, 2004

 Warsaw, October 25, 2004

ting (ICAISC), Zakopane, Poland, June 2004, pp. 444-449

[Le Cu ces:

ateo, CA, Morgan Kaufmann, 1991

, Oregon

[Leino ysis: An Overview”,

[Levin
ion Processing, vol. 6, 1994

[Kohonen 1984] T. Kohonen, “Self-Organization and Associative Memory”, Springer-
Verlag, Berlin, 1984
en 1990] T. Kohonen, “Statistical pattern recognition revisited”, Elsevier Science
Publishers, North Holland, 1990

[Kordos 2003a] M. Kordos, W. Duch, “Search-based Training for Logical Rule Extraction by
Multilayer Perceptron”, Proc. of the Joint Int. Conf. on Artificial Neural Networks
(ICANN) and Int. Conf. on Neural Information Processing (ICONIP), Ist
2003, pp. 86-89
s 2003b] M. Kordos, W. Duch, “Multilayer Perceptron Trained with Num
Gradient”, Proc. of the Joint Int. Conf. on Artificial Neural Networks (ICANN) and
Int. Conf. on Neural Information Processing (ICONIP),
109

[Kordos 2004a] M. Kordos, W. Duch, “On Some Factors Influencing MLP Error Surface”,
7th Int. Conf. on Artificial Intelligence and Soft Computing (ICAISC), Zakopane,
Poland, June 2004, pp. 217

[Kordos 2004b] M. Kordos, W. Duch, “Variable Step Search Algorithm for MLP Training”,
Proc. of the 8th IASTED Int. Conf. on Artificial Intellig
Marbella, Spain, September 2004, pp. 215-220
s 2004c] M. Kordos, W. Duch, “A Survey of Factors Influencing MLP Error Surface”,
Control and Cyb

[Kordos 2004d] M. Kordos, “Directions in Multilayer Perceptron Weight Space”, 4th
Warsaw International Seminar on Soft Computing,

[Kordos 2005] M. Kordos, “Search-based Approach to Multilayer Perceptron Training”,
Studia Informatica, vol. 26, no. 1 (62), 2005

[Kwaśnicka 2004] H. Kwaśnicka, M. Paradowski, “Selection Pressure and Efficiency of
Neural Network Architecture Evolving”, 7th Int. Conf. on Artificial Intelligence and
Soft Compu

[Le Cun 1990] Y. Le Cun, John S. Denker, Sara A. Solla, “Optimal Brain Damage”,
Advances in Neural Information Processing Systems II, 1990
n 1991] Y. Le Cun, I. Kanter, S. A. Solla, “Second Order Properties of Error Surfa
Learning Time and Generalization”, Advances in Neural Information Processing
Systems, vol. 3, pp. 918-924. San M

[Le Cun 1998] Y. Le Cun et. al., “Efficient Backprop”, Neural Networks: Tricks of the
Trade, vol. 1524 of Lecture Notes in Computer Science, chapter 1, pp. 9-50, Springer,
1998

[Lee 1993] Lee S., Choi Y., “Unconstrained handwritten zip code recognition”. proc.
WCNN, Portland

[Lehr 1996] M. Lehr, “Scaled Stochastic Methods for Training Neural Networks”, PhD
Thesis, Stanford University, 1996

 2004] Antti Leino, “Independent Component Anal
http://www.cs.helsinki.fi/u/salmenki/ lda-seminaari04/ica-paper.pdf, April 2004

 1994] A. U. Levin et. al., “Fast Pruning Using Principal Components”, Advances in
Neural Informat

[Lewis 2000] R. J. Lewis, “An Introduction to Classification and Regression Tree (CART)
Analysis”, Annual Meeting of the Society for Academic Emergency Medicine, San
Fransisco, 2000

 186

[Lim 2000] T. S. Lim, W. Y. Loh, Y. S. Shih, “A comparison of prediction accuracy,
complexity and training time of thirty-three old and new classification algorithms”,
Machine Learning, 40, pp. 203-228, 2000

[Lisboa 1991] P. J. G. Lisboa, S. J. Perentonis, “Complete Solution of the Local Minima in
the XOR Problem”, Network: Computation in Neural Systems, vol. 2, no. 1, pp. 119-

[Liu 2002] Huan Liu et. al., “Discretization: An Enabling Technique”, Data Mining and

[Loh 1
al of the American Statistical

[Loh 1 n Methods for Classification Trees”,

[Lozow urada, “Symbolic Rule Representation

rks”, pp. 94-99, Washington, June 1996

j, Gliwice 2001

[Malhe
ks”, Proc. of The 8 IASTED Int. Conf. on Artificial

[Mandi lution of Neural Networks”,

[Marko xtraction From Neural

[Markowska 2004] U. Markowska-Kaczmar, P. Wnuk-Lipiński, “Rule Extraction From

oft Computing (ICAISC), Zakopane, Poland, June 2004,

[Marks parison Based

[Marquardt 1963] D. Marquardt, “An algorithm for least-squares estimation of nonlinear

[Matthe works”,

[McCu as imminent in nervous

[McKe
g Problem for Feed-forward Neural Nets”, Neural Networks, vol. 10(8), pp.

[Mertz 1998] C. J. Mertz, C. L. Blake, UCI Repository of Machine Learning Databases,
http://www.ics.uci.edu/~mlearn/MLRepository.html

124, 1991

Knowledge Discovery, 6, pp. 393-423, 2002
988] W. Y. Loh, N. Vanichsetakul, “Tree-structured classification via generalized
discriminant analysis (with discussion)”, Journ
Association, 83, pp. 715-728, 1988
997] W. Y. Loh, S. Y. Shih, “Split Selectio
Statistica Sinica, 7, pp. 815-840, 1997
ski 1996a] A. Lozowski, T. J. Cholewo, J. M. Ż
in Neural Network Models”, 2nd Conference on Neural Networks and Their
Application, vol. 2, pp. 300-305, Szczyrk 1996

[Lozowski 1996b] A. Lozowski, T. J. Cholewo, J. M. Żurada, “Crisp Rule Extraction from
Perceptron Network Classifiers”, The IEEE International Conference on Neural
Netwo

[Łęski 2001] J. Łęski, “Ordered Weighted Generalized Conditional Possibilistic Clustering”,
Zbiory Rozmyte i ich Zastosowanie, Wyd. Politechniki Śląskie

[Łęski 2002] J. Łęski, N. Henzel, “An ε-insensitive Learning in Neuro-Fuzzy Modeling”, 6th
Int. Conf. on Neural Networks and Soft Computing, Zakopane, Poland, June 2002,
pp. 531-536
iro 2004] R. Malheiro et. al., “A Prototype for Classification of Classical Music
Using Neural Networ th

Intelligence and Soft Computing, Marbella, Spain, September 2004, pp. 294-299
scher 1993] M. Mandischer, “Representation and Evo
Artificial Neural Nets and Genetic Algorithms, pp. 643-649, 1993
wska 2002] U. Markowska-Kaczmar, M. Chumieja, “Rule E
Networks with Evolutionary Algorithms”, 6th Int. Conf. on Artificial Intelligence and
Soft Computing (ICAISC), Zakopane, Poland, June 2002, pp.370-37

Neural Networks by Genetic Algorithms with Pareto Optimization”, 7th Int. Conf. on
Artificial Intelligence and S
pp. 450-455
 1999] R. E. Marks, “Genetic Algorithms and Neural Networks: A com
on the Repeated Prisoner’s Dilemma”, in “Computational Techniques for Modelling
Learning in Economics”, Springer Verlag 1999

parameters”, SIAM J. Appl. Math., 1963, vol. 11, pp. 431-441
ws 2000] J. Matthews, “Using Genetic Algorithms with Neural Net
http:\\www.generation5\org
lloch 1943] W. McCulloch, W. Pitts. “A logical calculus if ide
activity”, Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943
own 1997] J. J. McKeown, F. Stella, G. Hall, “Some Numerical Aspects of the
Trainin
1455-1463, 1997.

 187

[Michalewicz 2003] Z. Michalewicz, “Algorytmy genetyczne + struktury danych = programy
ewolucyjne”, WNT, 2003

[Michalski 1986] R. S. Michalski, I. Mozetic, J.Hong, N. Lavrac, “The Multi-Purpose
Incremental Learning System AQ15 and its Testing Application to Three Medical

[Micha Bloedorn, “Inductive learning

ity, Fairfax, 1995

[Mölle sed

[Mulaw WNT, 1997

5, 1997

[Nauck 1996] D. Nauck, R. Kruse, “Designing Neuro-fuzzy Systems through

[Nauck 1999] D. Nauck, “Design and Implementation of Neuro-Fuzzy Data Analysis Tool in

[Naud ethods for the Visualization of

[Neum rithms for Rule

[Ng 2004] Sin-Chung Ng, Chi-Chung Cheung, Shu-Hung Leung, “Magnified Gradient

432

,

[Osows

 International Conference on Computational

[Pennin
http://www.dcs.shef.ac.uk/teaching/eproj/ug2003

[Pincho 1993] A. J. Pincho, “Modelling non-linear edge-detectors using artificial neural

Domains”, The 5th National Conference on Artificial Intelligence, pp. 1041-1045,
Philadelphia, PA, Morgan Kaufmann, 1986
lski 1995] R. S. Michalski, J. Wnek, K. Kaufman, E.
system AQ15c: The method and user’s guide”, Reports of the machine learning and
Inference Laboratory MLI 95-4, George Mason Univers

[Mitra 2002] Sushmite Mitra et. al., “Data Mining in Soft Computing Framework: A
Survey”, IEEE Transactions on Neural Networks, vol. 13, no. 1, January 2002

r 1993] M. F. Moller, “A Scaled Conjugate Gradient Algorithm for Fast Supervi
Learning”, Neural Networks, vol. 6, pp. 525-533, 1993
ka 1997] J. Mulawka, “Systemy ekspertowe”,

[Müller 1997] W. Müller, F. Wysotzki, “The decision-tree algorithm CAL5 based on a
statistical approach to its splitting algorithm”, Machine Learning and Statistics: The
Interface, pp. 45-6

[Murthy 1997] S. K. Murthy, “On Growing Better Decision Trees from Data”, PhD thesis,
The John Hopkins University, Baltimore, Maryland, 1997

Backpropagation”, Fuzzy Modelling: Paradigms and Practice, Kluwer, Boston, pp.
203-228, 1996

Java”, Technische Universitat Brauschweig, 1999
2001] A. Naud, “Neural and Statistical M

Multidimensional Data”, PhD thesis, Uniwersytet Mikołaja Kopernika, Toruń 2001
ann 1998] J. Neumann, “Classification and Evaluation of Algo
Extraction from Artificial Neural Networks”, PhD Summer Project, University of
Edingurgh

Function With Deterministic Weight Modification in Adaptive Learning”, IEEE
Transactions on Neural Networks, vol. 15, no. 6, November 2004, pp. 1411-1

[NN Tolbox 2004] Neural Network Toolbox v.4.0.1 User’s Guide for Matlab R14,
http://www.mathworks.com, 2004

[Nunez 2002] H. Nunez, C, Angulo, A. Catala, “Rule extraction from support vector
machines”, European Symposium on Artificial Neural Networks, Bruges, Belgium
2002, pp. 107-112
ki 1996] S. Osowski, “Sieci Neuronowe w Ujęciu Algorytmicznym”, WNT,
Warszawa 1996

[Palade 2001] V. Palade, D. C. Neagu, R. J. Patton, “Interpretation of Trained Neural
Networks by Rule Extraction”,
Intelligence, 7th Fuzzy Days in Dortmund, October 1-3, 2001
gton 2003] M. Pennington, “C4.5 Rule Preceded by an Artificial Neural Network
Ensembly for Medical Diagnosis”,
/pdf/u0mp.htm

networks”, Int. Conf. IEEE Engineering in Medicine and Biology Society, San Diego,
vol. 15, pp. 306-307, 1993

 188

[Press 1992] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, “Numerical
Recipes in C”, Press Syndicate of The University of Cambridge, 1992,
http://www.library.cornell.edu/nr/cbookcpdf.html

[Quinla rgan Kaufmann,

[Ranga 2004] N. N. R. Ranga Suri, Dipti Deodhare, P. Nagabhushan, “Parallel Levenberg-

[Ranganathan 2004] A. Ranganathan, “The Levenberg-Marquardt Algorithm”,

[Riedm rning algorithm”,

[Rivest e-Based

[Rosen rmation
storage and organization in the brain”, Phychological Review, vol. 65, pp. 386-408,
1958

[Raghupathi 1996] Raghupathi, Schkade, Raju, “A Neural Network Approach to Bankruptcy

[Rume “Parallel Distributed Processing:
Explorations in the Microstructure of Cognition”, vol. 1, MIT Press, Cambridge, 1986

[Rumelhart 1986b] D. E. Rumelhart et al., “Learning Internal Representations by Error

[Rutko
y rozmyte”, PWN, Warszawa 1997

[Rutkowski 2003] L. Rutkowski, K. Cpalka, “Flexible Neuro-Fuzzy Systems”, IEEE
Transactions on Neural Networks, vol. 14, no. 3, pp. 545-574

[Saarinen 1993] S. Saarinen, R. Bramley, G. Cybenko, “Ill-conditioning in Neural Network

[Schalkoff 1992] R. Schalkoff, “Pattern Recognition: Statistical, Structural and Neural
Approaches”, Wiley, 1992

[Schiffmann 1993] W. Schiffmann, M. Joost, R. Werner, “Comparison of Optimized
Backpropagation Algorithms”, ESANN’93, Brussels, pp. 97-104, 1993

[Schmi t 2002] V. A. Schmidt, C. L. Philip Chen, “Using the Aggregate Feedforward Neural
Network for Rule Extraction”, International Journal of Fuzzy Systems, vol. 4, no. 3,
September 2002

[Setiono 1995] R. Setiono, H. Liu, ”Understanding neural networks via rule extraction”, the
14th Int. Joint Conf. on Artificial Intelligence, pp. 480-485, Montreal, Canada

[Setiono 2000a] R. Setiono, “Extracting M-of-N rules from trained neural networks”, IEEE
Transactions on Neural Networks, vol. 11, no. 2, pp. 512-519

[Setiono 2000b] R. Setiono and W.K. Leow, “FERNN: An algorithm for Fast Extraction of
Rules from Neural Networks”, Journal of Applied Intelligence, vol. 12, no. 1/2, pp.
15-25

[Shang 1996] Y. Shang, B.W. Wah, “Global Optimization for Neural Network Training”,
IEEE Computer, 29, pp. 45-54, 1996

[Quinlan 1986] J. R. Quinlan, “Inducion of Decision Trees“, Machine Learning 1/1986, pp.
81-106
n 1993] J. R. Quinlan, “C4.5: Programs for Machine Learning“, Mo
1993

Marquardt-based Neural Network Training on Linux Cluster – A Case Study”,
http://www.ee.iitb.ac.in/~icvgip/PAPERS/248.pdf

http://www.cc.gatech.edu/people/home/ananth
iller 1992] M. Riedmiller, H. Braun, “RPROP – a fast adaptive lea
Technical Report, University Karlsruhe, 1992
 2002] F. Rivest, “Knowledge Transfer in Neural Networks: Knowledg
Cascade-Correlation”, MSc Thesis, MCGill University, Montreal, 2002
blatt 1958] F. Rosenblatt, “The perceptron: a probabilistic model for info

Prediction”, NN in Finance and Investing, pp. 227-241, 1996
lhart 1986] D. E. Rumelhart, J. L. MacClelland,

Backpropagation”, Parallel Distributed Processing, vol. 1, pp. 318-362, MIT Press,
Cambridge, MA, 1986
wska 1997] D. Rutkowska, M. Piliński, L. Rutkowski, “Sieci neuronowe, algorytmy
genetyczne i system

Training Problems”, SIAM Journal of Scientific Computing, vol. 14(3), pp. 693-714,
1993

d

 189

 190

[Singh 2001] Samer Singh, “Quantifying Structural Time Varying Changes in Helical Data”,
Neural Computing and Applications, vol. 10, issue 2, pp. 148-154, 2001

[Sordo 2002] M. Sordo, ”Introduction to Neural Networks in Healthcare”, OpenClinical,
2002

[Spaanenburg 2003] L. Spaanenburg et. al., “Natural learning of neural networks by
reconfiguration”, SPIE Int. Symp. on Microtechnologies for the new Millennium,
Maspalomas, Gran Canaria, Spain, pp. 273-284, 2003

[Statlog 1994] D. Michie, D. J. Spiegelhalter, C. C. Taylor, “Machine Learning, neural and
statistical classification”, Elis Horwood, London, 1994

[Seiffert 2001] U. Seiffert, “Multiple Layer Perceptron Training Using Genetic Algorithm”,
Proc. of the 9P

th
P European Symposium on Artificial Neural Networks ESANN 2001,

Bruges, Belgium, April 25-27, 2001, pp. 159-164, D-Facto, Evere, Belgium, 2001
[Solla 1988] S. A. Solla et. al., “Accelerated Learning in Layered Neural Networks”,

Complex Systems, vol. 2, pp. 625-640, 1988
[Sontag 1989] E. D. Sontag, H. J. Sussman, “Backpropagation Can Give Rise to Spurious

Local Minima Even for Networks Without Hidden Layers”, Complex Systems, vol. 3,
pp. 91-106, 1989

[Sprinkhuizen 1996] I. G. Sprinkhuizen-Kuyper, E. J. W. Boers, “The error surface of the
simplest XOR network has only global minima”, Neural Computation, vol. 8, pp.
1301-1320, 1996

[Sprinkhuizen 1998] I. G. Sprinkhuizen-Kuyper, E. J. W. Boers, “The error surface of the 2-
2-1 XOR network: the finite stationary points”, Neural Networks, vol. 11(4), pp. 683-
690, 1998

[Ster 1996] B. Ster, A Dobnikar, “Neural Networks in medical diagnosis: Comparison with
other methods”, EANN ’96, pp. 427-430, 1996

[Sussman 1992] H. J. Sussmann, “Uniqueness of the weights for minimal feedforward nets
with a given input-output map”, Neural Networks, 5:589-593, 1992

[Taha 1996] I. Taha, J. Gosh, ”Three techniques for extracting rules from feedforward
networks”, Intelligent Engineering Systems Through Artificial Neural Networks, vol.
6, pp. 23-28

[Towell 1991] G. Towell, ”Symbolic Knowledge and Neural Networks: Insertion,
Refinement and Extraction”, PhD Thesis, University of Wisconsin, Madison

[Thrun 1995] S. Thrun, “Extracting Rules from Artificial Neural Networks with Distributed
representation”, “Advances in Neural Information Processing Systems”, 7, 1995

[Tznankou 2001] E. Micheli-Tzanakou (ed) “Supervised and Unsupervised Pattern
Recognition: Feature Extraction and Computational Intelligence”, CRC Press 2001

[Ultsch 1995] A. Ultsch. D. Korus, T. O. Kleine, “Integration of Neural Networks and
Knowledge-Based Systems in Medicine”, 5P

th
P Conf. on Artificial Intelligence in

Medicine Europe, Pavia, Italy 1995, pp. 425-426
[UMK-KMK] Katedra Metod Komputerowych Uniwersytetu Mikołaja Kopernika w Toruniu,

http://www.phys.uni.torun.pl/kmk
[Unnikrishnan 1994] K. P. Unnikrishnan, K. P. Venugopal, “Alopex: A Correlation-Based

Learning Algorithm for Feed-Forward and Recurrent Neural Networks”, Neural
Computations, 6, pp. 469-490, 1994

[Vapnik 1995] V. Vapnik, “The Nature of Statistical Learning Theory”, Springer-Verlag,
New York, 1995

[Verma 1999] B. Verma, B. Blummenstain, S. Kulkarni, “A New Compression Technique
Using an Artificial Neural Network”, Journal of Intelligent Systems, 9, pp. 39-53,
1999

 191

[Weigend 1990] A. S. Weigend, D. E. Rumelhart, B. A. Huberman, “Back-propagation,
Weight Elimination and Time Series Prediction”, Connectionist Model Summer
School, Morgan Kaufmann, pp. 65-80, 1990

[Weigend 1991] A. S. Weigend, D. E. Rumelhart, B. A. Huberman, “Generalization by
Weight Elimination with Application in Forecasting”, Advances in Neural
Information Processing Systems, San Mateo, CA, pp. 875-882, 1991

[Weir 2000] M. K. Weir, J. P. Lewis, G. Milligan, “Using Tangent Hyperplanes to Direct
Neural Training”

[Weiss 1990] S. M. Weiss, I. Kapouleas, “An empirical comparison of pattern Recognition,
neural nets and machine learning classification methods”, Reading in Machine
Learning, Morgan Kauffman Publ, CA, 1990

[Wejchert 1991] J. Wejchert, G. Tesauro, “Visualizing Processes in Neural Networks”, IBM
Journal of Research and Developement, 35(1/2), pp. 244-253, 1991

[Werbos 1974] P. Werbos, “Beyond regression: new tools for prediction and analysis in the
behavioral science”, Doctoral Dissertation, Harward, Cambridge, MA, 1974

[Wilson 2003] D. Randal Wilson, Tony R. Martinez, “The Inefficiency of Batch Training for
Gradient Descent Learning”, Neural Networks, vol. 16, pp. 1429-1451, 2003

[Yang 2003] Jing Yang et. al., “Visual Hierarchical Dimension Reduction for Exploration of
High Dimensional Datasets”, Joint Eurographics - IEEE TCVG Symposium on
Visualization, 2003

[Yao 2003] J. T. Yao, “Knowledge Based Descriptive Neural Network”,
http://www2.cs.uregina.ca/~jtyao/Papers/1215.pdf

[Yoon 1994] B. Yoon, R. Lacher, ”Extracting rules by destructive learning”, The IEEE Int.
Conf. on Neural Networks, vol. 3, pp. 1766-71

[Zarate 2004] L. Zarate et. al. “Sensitivity Analysis Obtained Through Artificial Neural
Networks – Application in Solar Energy Systems”, Proc. of The 8 P

th
P IASTED Int.

Conf. on Artificial Intelligence and Soft Computing, Marbella, Spain, September
2004, pp. 289-293

[Zarndt 1995] F. Zarndt, “A comprehensive case study: An examination of machine learning
and connectionists algorithms”, MSc Thesis, Department of Computer Science,
Brigham Young University, 1995

[Zhang 2000] G. P. Zhang, “Neural Networks for Classification: A Survey”, IEEE
Transactions on Neural Networks, vol. 30, no. 4, November 2000

[Zhengz 1998] Z. Zheng, G. I. Webb, “Multiply Boosting: A Combination of Boosting and
Bagging”, The 4P

th
P International Conference on Parallel and Distributed Processing

Techniques and Applications, pp. 1133-1140, CSREA Press, 1998

	Supervisor: prof. Włodzisław Duch
	Part 1
	Properties of Multilayer Perceptrons

	1.3. Visualization and Properties of MLP Learning Trajecto
	1.5. Neural Activity and Data Spaces
	1.6. Standard and Balanced Classification Accuracy
	Part 2
	In the case of neural network training with GA, the fitness
	2.2. Basis of Search Algorithms

	2.2.1. Depth-First Search
	The depth-first search algorithm searches through the tree s
	The Depth-First Algorithm:
	Fig. 2.1. The Depth-First Search. The numbers inside the nod

	2.2.2. Breadth-First Search
	Fig. 2.2. The Breadth-First Search. The numbers inside the n
	The Breadth-First Algorithm:
	The Hill Climbing Algorithm:
	Fig. 2.3. The Hill Climbing Search. The numbers inside the n

	2.2.4. Beam Search
	The Beam Search Algorithm:

	2.2.5. Best-First Search
	The Best-First Algorithm:

	3.1.2.2. Validity Interval Analysis (VIA)
	3.1.2.3. TREPAN
	3.1.2.9. RULEX
	3.1.2.10. NeuroRule and M-of-N3
	3.1.5. Other Algorithms Used in Comparison of Experimental R

	3.2.1. Introduction
	3.2.2. SMLP Network Structure
	3.2.4. Rule Extraction
	3.2.6. Step Versus Sigmoidal Transfer Functions
	3.2.8.1. Prior to Training Discretization
	3.2.8.2. Run-time L-unit Based Discretization

	3.2.9. Advanced SMLP-DS Training Methodology
	3.2.11. SMLP Architecture for Complex Rules
	3.2.13. Conclusions
	It seems that the search-based approach to logical rule extr

	5. Future Work
	Search for other interesting projections of MLP error surfac
	Apply VSS also to MLP trained for regression problems.
	Find a more effective sequence of examining the weight chang
	Analyze MLP decision borders and the ways to influence them
	I have no plans concerning rule extraction systems, since th
	6. List of Publications
	7. References
	[Ho Tu Bao 2002] HO Tu Bao, “Introduction to Knowledge Disco

