1.1 Meta-Learning: Searching In The Model Space

The method described in this Section has been inspired by the fact that it is hard to find the optimal algorithm sequence in the menagerie of SBM methods. For example we never know whether, for a given dataset, if it is better to run optimization of the number of nearest neighbors followed by the selection of attributes procedure or vice versa until we apply both schemes. The sequence leading to the highest classification accuracy on the training or validation set should be selected as the most promising and the plain k-NN method with optimal parameters found should be performed on unseen cases.

The aim of the meta-learning is to allow the user to create a pool of methods belonging to the SBM framework and letting the system find the most promising combination. Of course it is impossible to simply try all variants because of the performance reasons (the calculations should not last longer than the acceptable amount of time). Because of this we decided to use a variant of the best first search method.

Which nodes of the search tree (actually none of the all best first search methods that are implemented in SBL is realized in the form of the tree), or simply the methods or their combinations, are visited and evaluated, depends on the so called ‘interaction’. Interaction is the policy how to combine models in order to create more complex models. Interaction can be encoded in each method so that it can not be changed or can be defined by the user. To illustrate what the interaction really is let us consider the following two models: the optimization of the number of nearest neighbors and the attribute selection method. The interaction in the first algorithm says: ‘If the attribute selection method is preceding the optimization of k in a model chain, optimize k  with the attributes found by the earlier method’. Interaction in the second algorithm tells us that if optimization of k is followed by the attribute selection, use the optimal k found earlier and search for attributes with this value of k preset. The user should be free to create his own interaction policy for each of the models. Note that, if the interaction is deliberately turned off for all the algorithms, the meta-learning algorithm reduces to the single-level ranking of basic models and  no composite models are created. If there is no interaction defined for a given pair of models, the system proceeds to the next model pair for which the interaction is defined. If the sequence consists of more than the two models, the parameters are sequentially passed from the first to the next model in the chain until the last one is reached. For greater performance the parameters passed are checked. If, for example, the preceding model is optimization of k, and the optimal number of nearest neighbors is the same as the preset  value of k in the current  model (the last in the chain), the interaction is turned off and the program proceeds to the next sequence. The number of evaluation levels is equal to the number of initial models (denoted by M) in the pool and on the l’th level the model sequences consisting of l initial algorithms are considered. The meta-models on the level l can be split into the best algorithm consisting of l - 1 basic models evaluated on the previous levels (this is so called the ‘best model’) and the ‘current models’ (on the level l  there may be maximum of M – l + 1 of such algorithms but this number is usually lower because not all the methods can interact with each other). The ‘final model’ that is evaluated is constructed by applying interaction between the current and the best model. The best model is constructed by gradually applying interaction from the model found as the most promising on the first level to the best method found on level two, etc. until the l – 1 model is reached. If the interaction is disabled for a particular combination of methods or there is no reason to pass the parameters because they are the same in both algorithms, the program proceeds to the next step.

The concept of the method combination but in the field of quantum chemistry had been considered by Diercksen in his experimental package OpenMol[]. Unfortunately all the ideas about combination of quantum chemistry computational engines remained on paper.

To present the algorithm of meta-learning, let us start with some definitions. M is the number of initial models in the pool as well as the total number of best first search levels. By l  we will denote the current value of the level on which the evaluation of the models takes place. The meta-learning algorithm proceeds as follows:

1. On the first level evaluate all the initial models from the pool (without any interaction) and note the accuracy on the training set of the best method.

2. For l = 2 to M:

a. Apply the interaction between the ‘best model’ and all the current methods (those methods from the pool that remained, i.e. every l’th model, in a loop, one at a time). In other words determine whether the both methods should interact and check if the relevant adaptive parameters that should be passed from the best model to a current model are the same.

b. If the interaction in the previous step is forbidden for the pair : best model – current model or the parameters agree go to step a, i.e. continue with the next current model. Otherwise create the final model by applying the interaction, evaluate it and go to step a to continue the loop.

c. Note the training accuracy of the best final method at the current level l and store the model parameters of this ‘current method’  that turned out to be the best at this particular level.

3. Select the best model with respect to the training accuracy on levels 1…M (if there are several sequences on a particular level that have the same training accuracy, select the first). If there is more than one the most promising method (on distinct levels) select the model of the lowest complexity (i.e. the one with the lower value of l) and perform the test on the unseen cases.

The verbatim output from the program SBL for the monk3 dataset has been shown below:

Loading training file.

~~~~~~~~~~~~~~~~~~~~~~

Original dimension: 7 (including class)

There are 7 attributes (including class).

There are 62 training vectors belonging to class      2. [ 50.82%]

There are 60 training vectors belonging to class      1. [ 49.18%]

There are 2 classes in the training data.

Loading test file.

~~~~~~~~~~~~~~~~~~

Original dimension: 7 (including class)

There are 7 attributes (including class).

There are 228 test vectors belonging to class      1. [ 52.78%]

There are      204 test vectors belonging to class      2. [ 47.22%]

There are 2 classes in the test data.

No reference model selected!

Models Selected:

 + 1

Model: k Nearest Neighbors

Training Accuracy: 86.89%

**************************************************

Results on test

**************************************************

k: 1

PCC: 90.97%

PWC: 9.03%

Number of test cases: 432

Number of discarded cases: 0

Number of classification errors: 39

Number of correctly classified cases: 393

Total number of impasses: 34

Percentage of total number of impasses: 7.87%

Number of correctly broken impasses: 25

Percentage of number of correctly broken impasses: 5.79%

Turned Off Attributes:

**************************************************

Confusion Matrix:

(Rows represent real class, columns: predicted class)

              1        2

   1 |       200       28 

   2 |        11      193 

Indexes of wrongly classified cases are given below:

 5 [] 13 [] 61 [] 69 [] 73 [] 74 [] 101 [] 102 [] 114 [] 116 [] 125 [] 126 [] 138 [] 139 [] 140 [] 149 [] 157 [] 165 [] 195 [] 203 [] 205 [] 206 [] 213 [] 214 [] 237 [] 269 [] 270 [] 309 [] 355 [] 357 [] 358 [] 361 [] 368 [] 381 [] 387 [] 388 [] 391 [] 392 [] 397 []

Models Selected:

 + 2

Model: k Nearest Neighbors with Attribute Selection Methods

Training Accuracy: 93.44%

**************************************************

Results on test

**************************************************

k: 1

PCC: 98.61%

PWC: 1.39%

Number of test cases: 432

Number of discarded cases: 0

Number of classification errors: 6

Number of correctly classified cases: 426

Total number of impasses: 6

Percentage of total number of impasses: 1.39%

Number of correctly broken impasses: 6

Percentage of number of correctly broken impasses: 1.39%

Turned Off Attributes: 1  3 

**************************************************

Confusion Matrix:

(Rows represent real class, columns: predicted class)

                 1        2

   1 |       222        6 

   2 |         0      204 

Indexes of wrongly classified cases are given below:

 69 [] 93 [] 213 [] 237 [] 357 [] 381 []

Models Selected:

 + 3

Model: Weighted k Nearest Neighbor Based On Searching In The Weights Space

Training Accuracy: 93.44%

**************************************************

Results on test

**************************************************

k: 1

PCC: 97.22%

PWC: 2.78%

Number of test cases: 432

Number of discarded cases: 0

Number of classification errors: 12

Number of correctly classified cases: 420

Total number of impasses: 0

Percentage of total number of impasses: 0.00%

Number of correctly broken impasses: 0

Percentage of number of correctly broken impasses: 0.00%

Turned Off Attributes:

Weights:  0.000000 1.000000 0.000000 0.000000 0.100000 0.000000

**************************************************

Confusion Matrix:

(Rows represent real class, columns: predicted class)

                 1        2

   1 |       216       12 

   2 |         0      204 

Indexes of wrongly classified cases are given below:

 101 [] 102 [] 125 [] 126 [] 245 [] 246 [] 269 [] 270 [] 389 [] 390 [] 413 [] 414 []

Models Selected:

 + 4

Model: k Nearest Neighbors With Optimization Of k

Training Accuracy: 88.52%

**************************************************

Results on test

**************************************************

k: 2

PCC: 91.67%

PWC: 8.33%

Number of test cases: 432

Number of discarded cases: 0

Number of classification errors: 36

Number of correctly classified cases: 396

Total number of impasses: 50

Percentage of total number of impasses: 11.57%

Number of correctly broken impasses: 35

Percentage of number of correctly broken impasses: 8.10%

Turned Off Attributes:

**************************************************

Confusion Matrix:

(Rows represent real class, columns: predicted class)

                 1        2

   1 |       202       26 

   2 |        10      194 

Indexes of wrongly classified cases are given below:

 13 [] 69 [] 73 [] 101 [] 102 [] 113 [] 114 [] 116 [] 125 [] 126 [] 130 [] 138 [] 139 [] 140 [] 149 [] 157 [] 165 [] 203 [] 205 [] 206 [] 213 [] 237 [] 245 [] 269 [] 270 [] 309 [] 349 [] 355 [] 357 [] 358 [] 379 [] 381 [] 382 [] 387 [] 388 [] 392 []

Models Selected:

 2 + 4

Training Accuracy: 94.26%

**************************************************

Results on test

**************************************************

k: 2

PCC: 95.83%

PWC: 4.17%

Number of test cases: 432

Number of discarded cases: 0

Number of classification errors: 18

Number of correctly classified cases: 414

Total number of impasses: 12

Percentage of total number of impasses: 2.78%

Number of correctly broken impasses: 6

Percentage of number of correctly broken impasses: 1.39%

Turned Off Attributes: 1  3 

**************************************************

Confusion Matrix:

(Rows represent real class, columns: predicted class)

                 1        2

   1 |       210       18 

   2 |         0      204 

Indexes of wrongly classified cases are given below:

 69 [] 93 [] 101 [] 102 [] 125 [] 126 [] 213 [] 237 [] 245 [] 246 [] 269 [] 270 [] 357 [] 381 [] 389 [] 390 [] 413 [] 414 []

Models Selected:

 2 4 + 3

Training Accuracy: 93.44%

**************************************************

Results on test

**************************************************

k: 2

PCC: 97.22%

PWC: 2.78%

Number of test cases: 432

Number of discarded cases: 0

Number of classification errors: 12

Number of correctly classified cases: 420

Total number of impasses: 0

Percentage of total number of impasses: 0.00%

Number of correctly broken impasses: 0

Percentage of number of correctly broken impasses: 0.00%

Turned Off Attributes:

Weights:  0.000000 1.000000 0.000000 0.000000 0.100000 0.000000

**************************************************

Confusion Matrix:

(Rows represent real class, columns: predicted class)

                 1        2

   1 |       216       12 

   2 |         0      204 

Indexes of wrongly classified cases are given below:

 101 [] 102 [] 125 [] 126 [] 245 [] 246 [] 269 [] 270 [] 389 [] 390 [] 413 [] 414 []

Models Selected:

 2 4 3 + 1

Training Accuracy: 93.44%

**************************************************

Results on test

**************************************************

k: 2

PCC: 97.22%

PWC: 2.78%

Number of test cases: 432

Number of discarded cases: 0

Number of classification errors: 12

Number of correctly classified cases: 420

Total number of impasses: 0

Percentage of total number of impasses: 0.00%

Number of correctly broken impasses: 0

Percentage of number of correctly broken impasses: 0.00%

Turned Off Attributes:

Weights: 0.000000 1.000000 0.000000 0.000000 0.100000 0.000000

**************************************************

Confusion Matrix:

(Rows represent real class, columns: predicted class)

                 1        2

   1 |       216       12 

   2 |         0      204 

Indexes of wrongly classified cases are given below:

 101 [] 102 [] 125 [] 126 [] 245 [] 246 [] 269 [] 270 [] 389 [] 390 [] 413 [] 414 []

Selected Model:

 2<k Nearest Neighbors with Attribute Selection Methods> + 4 <k Nearest Neighbors With Optimization Of k>

**************************************************

Results on test

**************************************************

k: 2

PCC: 95.83%

PWC: 4.17%

Number of test cases: 432

Number of discarded cases: 0

Number of classification errors: 18

Number of correctly classified cases: 414

Total number of impasses: 12

Percentage of total number of impasses: 2.78%

Number of correctly broken impasses: 6

Percentage of number of correctly broken impasses: 1.39%

Turned Off Attributes: 1  3 

**************************************************

Confusion Matrix:

(Rows represent real class, columns: predicted class)

                 1        2

   1 |       210       18 

   2 |         0      204 

Indexes of wrongly classified cases are given below:

 69 [] 93 [] 101 [] 102 [] 125 [] 126 [] 213 [] 237 [] 245 [] 246 [] 269 [] 270 [] 357 [] 381 [] 389 [] 390 [] 413 [] 414 []

We can see that despite the theoretical abilities of the method to achieve 98.61% on the test set the real result corresponding to the highest classification accuracy on the training set is  95.53%. The reason for this is the fact that optimal k on the training set is 2 whist on the test set k = 1 works better (we have to remember that monk3 is a rather small dataset and it is artificial). The interaction matrix for the above calculation has been defined as follows:

	The Current                Model

The 

Preceding

Model
	k-NN
	Attribute- selection-NN
	Weighted-NN (Search: Attribute Dropping)
	k-Optimization-NN (Range: 1…10)

	k-NN
	-
	-
	-
	-

	Attribute- Selection-NN
	k, selected attributes
	-
	k
	selected attributes

	Weighted-NN (Search: Attribute Dropping)
	k, weights
	-
	-
	weights

	k-Optimization-NN (Range: 1…10)
	optimal k
	optimal k
	optimal k
	-


Table 4.2‑1: The Interaction Matrix For  The Monk3 Sample Calculation.

If monk3 was a larger dataset we could use the validation set for verification of the generalization which should show that optimization of k in the final model should not be included. Note also that for a different settings of some or all initial models we may get a completely different results.

We have to note here, that the final result may strongly depend on the ordering of the initial algorithms. In the above example the attribute selection method and the weighted algorithm achieved the same accuracy of 93.44% on the training set. Since the attribute selection algorithm was stored before the weighted method in the initial pool, it has been selected as the algorithm to start from. If we swap these two methods the accuracy on the test set increases whist on the training set the final model achieves lower accuracy. Since we have to select the best algorithm by checking how it performs on the training set and we can not use the information obtained from the results on the test set the best result for the above sample calculation is 95.53% (see also the results for this dataset in …. 

To circumvent the problems with ordering of the models (if there are two or more with the same training accuracy on the particular level) we could  include them all in the search procedure. This would correspond to the variant of the beam search method which should give better results on unseen cases.

The natural extension of the interaction matrix in the above sample calculation for the monk3 dataset is to allow to inherit the selected attributes by the weighted method from the attribute selection method and to search for weights with this attributes turned off. As we can see the user has quite a lot of freedom in defining the interaction matrix and various settings can lead to a completely different results.

Another possible extension of the plain best-first search algorithm is swapping. Consider for example the sequence consisting of the weighted method followed by the similarity function optimization algorithm. The simplest interaction that can be defined for this ordered model pair is to inherit the weights (and perhaps the k) by the metric optimization routine from the preceding algorithm. But of course the weights found with the metric used in the weighted method do not have to be optimal for the metric found by the similarity function optimization routine. Therefore, if the size of the problem permits for it, the weighted method should be recomputed with the optimal measure. The user should be free to define his own swapping policy from the graphical user interface for each of the methods.

Another important issue is what to do with the multiple variants of the models. If we have to reduce the complexity of the algorithm as much as possible because of the size of the datasets, a good policy is to select the best variant of each of the methods in the pool independently and later use the appropriate settings in the pool. But a better solution is to put all the variants into the pool since it may happen that the variant of some method that performs worse on the first level, with combination with the rest of the methods in the pool will be a winner.

Another important issue is what to do if there are a couple of final models found by the search procedure and they all have the same training accuracy. We have said earlier that in this particular case the model of a lower complexity
 is selected. But what if there are a two or more models of the same complexity? All have the same training accuracy and the question is which model should be finally selected? The ranking list should be introduced containing models sequenced in the increasing order with respect to their complexity
 (for example the attribute selection method should be earlier in the chain than weighted methods since they have more adaptive parameters). The model that is finally selected is this of a lower complexity. 

� Here, by complexity we mean the number of composite models the final model contains, which is equivalent to the level on which the final model has been found.

� By complexity, we define here the number of adaptive parameters the model possesses.



