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Abstract

Similarity-based methods (SBM) are generalization of the minimal distance (MD) methods, which form a basis of several machine learning and pattern recognition algorithms. Investigation of similarity leads to a fruitful framework in which many classification, approximation and association methods are accommodated. Probability p(C|X; M) of assigning class C to an unknown (query) vector X, given a classification model M, depends on adaptive parameters and procedures used in construction of the model. In this thesis systematic description of choices available for model building is described and the tests on real and artificial datasets are performed indicating that SBM models achieve very high classification accuracies on unseen cases, comparable to and often higher than the results obtained with other well known computational intelligence methods. New models that had been implemented and tested include new methods for attribute weighting and their selection, automatic metric optimization, selection of reference instances and the meta-learning model which is built on top of the implemented algorithms. All the implemented methods extend the k-NN kernel with support for impasse breaking. Also the technicalities such as the description of the kernel algorithm details have been included in this thesis. The main contribution of the author to the field is the program SBL encompassing all the proposed new algorithms. Despite the fact that SBL has been developed for 6 years, it is still in its early stage of development but is equipped with a graphical user interface so that even novice users should not have problems with running their own calculations. We have to note here that work on the program consumed 95% of the time reserved for research and hence many methods belonging to the framework of similarity based methods could not have been implemented and tested.
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Glossary

N – number of attributes in a problem domain (dimension of the space).

X - attribute vector, (usually a test vector – an element of a test set).

Xj​ – an attribute, j = 1…N, a component of X

Y – attribute vector, (usually a training vector – an element of a training set).

Yj – an attribute, j = 1…N, a component of Y

Chapter 1 
Introduction

1.1 Learning From Examples

The algorithms presented in this thesis, constituting a part of a general Similarity Based Methods Framework, belong to the field of machine learning. This area of computational intelligence is concerned with the question of how to construct programs that automatically improve with experience. A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. Since we will be dealing in this thesis exclusively with classification of data the example of handwriting recognition learning problem illustrates the key issues of both classification and learning:

· Task T: recognizing and classifying handwritten letters within images

· Performance measure P: percent of letter images correctly classified

· Training experience E: a database of handwritten letters with given names (labels).

1.2 The Classification Problem

One of the most frequent tasks conducted by humans in various circumstances is classification. The number of categories into which we classify objects may vary. For example, a human may be classified by his family into two categories: sick or healthy. Based on this initial classification the person may be sent to a medical doctor who can classify him/her as suffering from one of the diseases known to the doctor.

Every classification process is based on some properties of the object being categorized. Frequently one has to perform some measurements of the object properties (called further attributes). For example, standard medical tests include the measurement of temperature, blood pressure, etc. Obviously the importance of various attributes for the result of particular classification depends on the classification purpose. In medical tests the color of the patient’s hair has rarely any meaning. Evaluation of the relevance of the attributes belongs to the field of selection and reduction of information, which is closely related to classification methods.

The intensive development of digital measurement systems and the advent of computers to process this data have created the possibility for automatic classification. It turned out that the machines can be used in categorization process in many domains and often they are much superior to humans in their prediction ability, not to mention the speed with which they operate. The examples may include analysis of the sonar data, electrocardiograms, electroencephalograms, seismic activity, and digital images of various origins, such as fingerprints, medical images, etc., analysis of physical spectra, chromosomes, elementary-particle events and traces, speech recognition, printed or handwritten text … 

In general the field of data classification draws heavily on statistics, data analysis, pattern recognition and computational intelligence. In a classification research there are two general sub-branches that are intensively investigated. The first domain is development of new algorithms for data classification and determination of their properties, such as their classification (prediction) abilities. The second sub-field is data preprocessing to which information selection and reduction belongs. The main scope of this work is in the first area, however some contributions had been made also to the second sub-branch.

1.3 The Issues in Data Classification

To successfully perform data classification we have to perform some or all of the following steps:

1. Prepare pre-classified database (so called training library).

2. Pre-process the data.

3. Select the best learning algorithm for a particular data.

4. Apply the learned optimal algorithm to unseen (new) cases for which classification labels are unknown.

We will briefly discuss the issues listed above.

1.3.1 Preparation of the Pre-Classified Database

This step requires interaction with the domain experts. The data is organized as a matrix of symbols or numbers where rows constitute cases and there should be relatively low (at least to compare with the number of cases) number of columns, each constituting an important, from a diagnostic point of view, attribute characterizing these cases. Attributes may be divided into two types: numerical and symbolic, and numerical attributes can be divided further into continuous and discrete. The example of a continuous attribute is for example a temperature of the patient, and the example of a discrete attribute is patient’s age. Color is an example of a symbolic attribute. Attributes can take various values, depending on their origin, and these values are called features. For example ‘red’ is a feature of the attribute ‘color’. Symbolic features are usually converted to discrete numerical features since many computational intelligence algorithms can operate only on numbers. Usually there is infinite number of possible conversions. Smart way of handling symbolic features is also in part a contribution of the author of this thesis to the field (Duch W., Grudziński K. and Stawski G. 2000) TA \l "(Duch W., Grudziński K. and Stawski G. 2000) Symbolic features in neural networks. 5th Conference on Neural Networks and Soft Computing, Zakopane, pp 180-185" \s "(Duch W., Grudziński K. and Stawski G. 2000)" \c 5 .

1.3.2 Data Pre-Processing

The main topics in data pre-processing are:

· Attribute selection.

· Attribute composition (aggregation).

· Missing value completion.

· Data transformations.

Attribute selection amounts to deleting non-predictive columns in a database. It can be done by a knowledge engineer (domain expert) or automatically by a classification algorithm itself. Selection is a special case of scaling attribute values, with the scaling factors equal to 0 or 1.  
Sometimes good results are obtained by replacing a group of mutually dependent attributes by a new single attribute. This is the subject of data aggregation. 

In some applications certain features may not be available for particular cases. There may be various reasons for this: for example some of the medical tests may be very expensive to perform and they are conducted only depending on the results of the other tests. Handling missing values is a subject of missing data completion methods.

Some algorithms, particularly similarity-based methods, may need normalized data for best results. If they are not normalized, distance measures will overweight those features that have larger values. A binary 0 or 1 value should not compute distance on the same scale as age in years. There are many ways of normalizing data. Here are two most commonly used normalization techniques:

· Data normalization.

· Data standardization (standard deviation transformation).

In data normalization, the measured values can be scaled to a specific range, for example, -1 to 1.
If by v(i,j) we denote the feature value for case i and attribute j, then standardization transformation is given by the formulae:



[image: image1.wmf]s

=

'

(,)-

(,)

v

vijv

vij


where 
[image: image2.wmf]v

 is the average of all values occurring in a j’th column of training data and 
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 is the standard deviation of all features in this column. Please note that to classify a test set one usually takes the values of average and deviations computed for the training set but if a set of data is given for test it may be of advantage to use it for standardization. 

1.3.3 Selection of the Best Learning Algorithm for a Particular Data

Despite many numerical experiments testing various algorithms on a large number of datasets that had been carried out by many researchers, no single algorithm was found to outperform others on arbitrary type of data. Therefore usually a good idea is to select the best algorithm for a given data. It is clear that some merit of competence of machine learning algorithms must be established, so that the best model can be chosen to have a highest chance to be the most promising on unseen (unlabeled) data. 

In the domain of data classification, a simplest measure of competence is given by percent of cases from the training library that are correctly classified.  Large database of pre-classified cases can be divided into two sets: one set on which the classification algorithms are trained, and another one on which they will be tested. Since the test partition contains pre-classified cases, the answers of the learning system can be confronted with the class labels provided by the domain experts. If the database is rather small, in order not to loose important information, we cannot afford to benchmark our system on a separate partition. In such a case a cross-validation test should be performed. The idea of cross-validation is very simple: we divide the training library T into n distinct subsets T1, T2,…, Tn  trying to preserve the size (and sometimes class distribution – this is so called stratified cross-validation) in each partition. Then, we perform training and test procedure, training system on n – 1 partitions T2 ( T3 ( … (…Tn and testing on T1. We store training and test results for the selected partitions. Next we take the partition T2 for test and T1 ( T3 (…( Tn for training. We repeat the process of constructing training and test set n times according to the rule presented above. Finally the average classification accuracy is computed using all test partitions. 

If the size of the problem permits it, the cross-validation procedure should be repeated several times, each time assuring that different divisions into training and testing partitions are made (this process is  called randomization). Except for average cross-validation classification accuracy we should also compute the variance that tells us about stability of the model. Stability is defined as sensitivity of a learning system to perturbation of the training samples – i.e. the influence of perturbations on classification accuracy. The larger variance – the more unstable is the model studied.  A special term, called leave-one-out cross-validation is reserved for N-fold cross-validation where N is the number of cases.

The selection of the most optimal model for a particular data must be done on a different, separate set of data to avoid overfitting, i.e. changing the model into a lookup system that works well only on the training data. Cross-validation is also a method of learning. Nearest neighbor and decision tree methods employ this technique, carried out on a training partition, to select the most optimal values of adaptive parameters by choosing the model with highest cross-validation accuracy.

1.4 Instance Based Learning

All the algorithms presented in this thesis are extensions of the k-Nearest Neighbor method. This method, described later, belongs to the instance based learning branch, which is a sub-field of case based learning. In case based learning one operates on objects (cases) that may have different representation. Instance based learning is used mainly for classification tasks with a very simple representation of cases in form of vectors of numbers or symbols. What is typical of this field and makes it entirely different from some other sub-fields of case based learning, is the lack of employment of domain knowledge. Similarity to past cases is used to find the solution (class) of a new vector, and this distinguishes this approach from other classification methods.
1.5 An Overview of the Instance Based Algorithms 

In this section we review, without getting into technical details, the most popular instance based learning algorithms. This section draws heavily on (Wettschereck D. 1995) TA \l "(Wettschereck D. 1995) A Study of Distance-Based Machine Learning Algorithms. PhD Thesis, Oregon State Univesrsity." \s "(Wettschereck D. 1995)" \c 5  

1.5.1 The Nearest Neighbor and k-Nearest Neighbor Algorithms

One of the most popular algorithms in machine learning is the nearest neighbor and the k-nearest neighbor method (Fix E. and Hodges J.L. Jr. 1951) TA \l "(Fix E. and Hodges J.L. Jr. 1951) Discriminatory analysis, nonparametric discrimination consistency properties. Technical Report 4, Randolph Field, TX: US Air Force, School of Avaiation Medicine." \s "(Fix E. and Hodges J.L. Jr. 1951)" \c 5 , (Sebestyen G.S. 1962) TA \l "(Sebestyen G.S. 1962) Decision-making process in pattern recognition. New York, NY: The Macmillan Company." \s "(Sebestyen G.S. 1962)" \c 5 , (Cover T. and Hart P. 1967) TA \l "(Cover T. and Hart P. 1967) Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory 13, pp. 21-27." \s "(Cover T. and Hart P. 1967)" \c 5 , (Cover T. 1968) TA \l "(Cover T. 1968) Estimation by the nearest neighbor rule. IEEE Transactions on Information Theory 14, pp. 50-55." \s "(Cover T. 1968)" \c 5 , (Duda R. and Hart P. 1973) TA \l "(Duda R. and Hart P. 1973) Pattern Classification and Scene Analysis. John Wiley & Sons." \s "(Duda R. and Hart P. 1973)" \c 5 , (Cost S. and Salzberg S. 1993) TA \l "(Cost S. and Salzberg S. 1993) A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning 10, pp. 57-78." \s "(Cost S. and Salzberg S. 1993)" \c 5 , (Dasarathy B.V. 1991) TA \l "(Dasarathy B.V. 1991) Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press." \s "(Dasarathy B.V. 1991)" \c 5 . The entire training set is stored in memory. To classify a new example the distance is computed between the example and each stored training case, and the query instance is assigned to the class of the nearest neighbor. More generally, the k nearest neighbors are found and the class of the new example is computed using the majority rule, i.e. the new example is assigned to the class that is most frequent among the k neighbors. 

Ties: it may happen that no class has majority among the k neighbors. Such situations are called ties or impasses. Ties may be broken in many different ways. Originally, they were broken in favor of the class with the smallest index among the ties. The optimal value of k can be estimated via cross-validation. If there are several ks corresponding to the same peak cross-validation accuracy, the lowest k is selected. Such situations are also called ties.

1.5.2 Weighted Vote k-Nearest Neighbor

This algorithm is identical to the k-nearest neighbor algorithm as described in the previous section with one exception. The votes of the k nearest neighbors of a query sample are given weights inversely proportional to their distances. Variations of this method have been discussed since Dudani’s initial paper (Dudani S.A. 1975) TA \l "(Dudani S.A. 1975) The distance-weighted k-nearest-neighbor rule. IEEE Transcactions on Systems, Man, and Cybernetics 6(4), pp. 325-327." \s "(Dudani S.A. 1975)" \c 5 . Wolpert introduced a weighted vote k-NN algorithm which he termed HERBIE (Wolpert D. 1989) TA \l "(Wolpert D. 1989) Constructing a generalizer superior to NETtalk via mathematical theory of generalization. Neural Networks 3, pp. 445-452." \s "(Wolpert D. 1989)" \c 5  and Aha discussed a simple form of this method in his dissertation (Aha D.W. 1990) TA \l "(Aha D.W. 1990) A study of instance-based algorithms for supervised learning tasks. Technical Report TR-90-42, University of California, Irvine, CA." \s "(Aha D.W. 1990)" \c 5 .

1.5.3 Nested Generalized Exemplar Theory

Salzberg (Salzberg S. 1991) TA \l "(Salzberg S. 1991) A nearest hyperrectangle learning method. Machine Learning 6, pp. 277-309." \s "(Salzberg S. 1991)" \c 5  described a family of learning algorithms based on nested generalized exemplars (NGE). In NGE, an exemplar is a single training example and a generalized exemplar is an axis-parallel hyper-rectangle that may cover several training examples. These hyper-rectangles may overlap or nest. The NGE algorithm grows the hyper-rectangles incrementally as training examples are processed.

Once the generalized exemplars are learned, a test sample can be classified by computing the distance between the query and the generalized exemplars. If an example is contained inside a generalized exemplar, the distance to that exemplar is zero; otherwise the distance between the example and the generalized exemplar is its (weighted) Euclidean distance to the closest side of the exemplar. The class of the nearest generalized exemplar is output as the predicted class of the test example.

1.5.4 Variable Kernel Similarity Metric Learning

Lowe (Lowe D.G. 1994) TA \l "(Lowe D.G. 1994) Similarity metric learning for a variable-kernel classifier. Neural Computation." \s "(Lowe D.G. 1994)" \c 5  suggests placing a Gaussian kernel over each query to determine its output. The k neighbors nearest to the query are determined (Lowe uses k = 10). The average distance of the query to its k/2 nearest neighbors is used to determine the width of the Gaussian at each query point. Each neighbor’s distance from the query is passed through the Gaussian kernel to obtain the weight of that neighbors vote when the query’s class is determined. Lowe uses a gradient descent method to learn the scaling factors (attribute weights), and a single global scaling factor to scale the width of each of the Gaussians.

1.5.5 Learning Vector Quantization

Learning Vector Quantization (LVQ) algorithms are supervised learning algorithms developed by Kohonen (Kohonen T. 1990a) TA \l "(Kohonen T. 1990a) The self-organiznig map. Proceedings of the IEEE, 78(9), pp. 1464-1480." \s "(Kohonen T. 1990a)" \c 5 , (Kohonen T. 1990b) TA \l "(Kohonen T. 1990b) Improved versions of learning vector quantization. Proceedings of the International Joint Conference on Neural Networks I, pp 545-550." \s "(Kohonen T. 1990b)" \c 5 . The class of an instance is determined by its nearest neighbor (codebook vector) within the feature map. LVQ differs from simple nearest neighbor classification in that supervised learning is employed to find good location of the codebook vectors. Generally the number of the codebook vectors is chosen to be smaller than the number of training samples. The classification procedure employed by LVQ is identical to that of the first-nearest neighbor algorithm.

1.5.6 Radial Basis Function networks

The task of learning from examples can be seen as finding an interpolation or approximation function that maps a point in the n-dimensional input space onto a point in the m-dimensional output space. In other words, the learning algorithm must find a function f with 
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In the case of interpolation, one basis function (generally nonlinear) is centered at each training point, and the output is computed as a weighted sum of these basis functions. Broomhead and Lowe (Broomhead D.S. and Lowe D. 1988) TA \l "(Broomhead D.S. and Lowe D. 1988) Multivariable functional interpolation and adaptive networks. Complex Systems 2, pp. 321-355." \s "(Broomhead D.S. and Lowe D. 1988)" \c 5  reviewed the relation between the multivariable functional interpolation and adaptive networks. They argued that interpolation often overfits the data and that better generalization could be achieved by using fewer basis functions that there are data points. In that case, the training data is only approximated.

The Framework for Similarity Based Methods

1.6 Introduction

In pattern recognition the nearest-neighbor methods (Krishnaiah and Kanal 1982) are examples of similarity-based TA \l “Krishnaiah P.R. and Kanal L.N, EDS, (1982) Handbook of statistics 2: classification, pattern recognition and reduction of dimensionality. North Holland, Amsterdam 1982” \s “(Krishnaiah and Kanal 1982)” \c 5  TC “[Duch W 1998]” \f C \l “1” 

 TC “[Duch W 1998]” \f C \l “1”  methods. In statistics many clusterization methods belong to this group. In artificial intelligence the instance-based reasoning, memory-based reasoning and case-based reasoning (Mitchell 1997) TA \l “Mitchell T.M. (1997) Machine Learning. McGraw-Hill 1997” \s “(Mitchell 1997)” \c 5  evaluate similarity to a set of prototype objects. In neural networks many models are in fact variants of SBM. As a step towards a general computational intelligence theory integrating many learning methods within a single framework various procedures and choices involved in creating similarity-based models are described in this chapter. This overview draws heavily on  TA \l “Duch W (1998) A framework for similarity-based methods, Intelligent Information Systems VII, Malbork, Poland, pp. 288-291” \s “(Duch W 1998)” \c 5 (Duch W 1998) and (Duch W 20 TA \l “Duch W (2000) Similarity based methods: a general framework for classification, approximation and association, Control and Cybernetics 29(4) pp 1-30” \s “(Duch W 2000)” \c 5 00). SBM models operate on the same principle: given a set of objects create a set of reference objects {R} and introduce a similarity measure allowing to relate new query object X to the reference ones.

Four basic problems that such models may solve are: assign X to predetermined specific classes, map X to some numerical values, complete missing features of X or create clusters that are in some respect homogeneous. The first of these, supervised classification, has perhaps the widest applications and therefore the outline of the SBM framework is presented from this perspective. Mapping problems – approximation and extrapolation – may be treated as classification with an infinite number of classes. Selecting a set of the most similar reference vectors to a given vector X a number of interpolation procedures may be applied to synthesize an approximate mapping. The same is true in the third case, completion of missing values. Known elements of the object X are used to find similar reference vectors and the missing parts are completed using approximation or classification procedures. SBM may thus serve as a basis for associative memories. Finally clusterization or unsupervised classification problems require evaluation of similarity and thus also belong to the SBM. All of these methods may be useful in control problems.

A review of many approaches to classification and comparison of performance of 20 methods on 20 real-world has been done within the StatLog European Community project (Michie et al. 1994). More recently the accuracy of 24 neural-based, pattern recognition and statistical classification systems has been compared on 11 large datasets by Rhower and Morciniec TA \l “Michie D, Spiegelhalter D.J. and C.C. Taylor (1994) Machine learning, neural and statistical classification. Elis Horwood, London 1994” \s “(Michie et al. 1994)” \c 5  (Rhower and Morciniec 1996) TA \l “Rhower R. and Morciniec M. (1996) A Theoretical and Experimental Account of n-tuple Classifier Performance. Neural Computation 8, 657-670” \s “(Rhower and Morciniec 1996)” \c 5 . No consistent trends have been observed in the results of these large-scale studies. For each classifier one may find a real-world dataset for which the results will be excellent and another one for which the results will be quite bad. Therefore in real world applications a good strategy is to find the best classifier that works for a given data. Frequently simple methods, such as the nearest-neighbor methods or n-tuple methods are among the best. Starting from the simplest classification methods one should add different optimization parameters and procedures developing the model in the most promising direction in the space of all possible models belonging to the SBM framework.

Some of the best classification algorithms applicable to pattern recognition problems are based on k-nearest neighbor (k-NN) rule (Krishnaiah and Kanal 1982) TA \s “(Krishnaiah and Kanal 1982)” . Each training vector is labeled by the class it belongs to and is treated as a reference vector. During classification k nearest reference vectors to the unknown (query) vector X are found, and the class of vector X is determined by a ‘majority rule’. The probability of assigning a vector X to a class C​​​​​​i,​ i =1…K is p(Ci |X;k) = Ni/k, where Ni is the number of the nearest vectors belonging to the Ci class, 
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 If k = 1 a single nearest neighbor determines the class of an unknown vector, i.e. p(Ci |X;k) = 0 or 1
. The asymptotic error rate of the k-NN classifier in the limit of large k and large number of reference cases becomes equal to the optimal Bayesian values (Krishnaiah and Kanal 1982) TA \s “(Krishnaiah and Kanal 1982)” . In real situations the number of reference vectors is limited and small values of k may work better, therefore k should be optimized for each dataset.

Because the k-NN method is so simple it is frequently used as a standard reference for other classificators (surprisingly, very few computer programs for this method are around). Assuming that we have only one test (query) vector computational complexity of the actual classification is high, demanding for n reference cases calculation of ~n2 distances and finding k smallest distances among them (see Section 3.1.1). Although Laaksonen and Oja  (Laaksonen and Oja 1996) claim that “For realistic pattern space dimensions, it is hard to find any variation of the rule that would be significantly lighter than the brute force method” various hierarchical  TA \l “Laaksonen J. and Oja E. (1996) Classification with Learning k-Nearest Neighbors. In: Proc. of ICNN’96, Washington, D.C., pp. 1480-1483” \s “(Laaksonen and Oja 1996)” \c 5 schemes of partitioning the data space or hierarchical clusterization are quite effective in reducing the complexity of search from O(n2) to O(n log n). Even without any speedup of computations datasets with several thousand of training and test patterns do not present any problems on modern personal computers. Nearest neighbor methods are especially suitable for complex applications, where large training datasets are available. They are also used in the case-based expert systems as an alternative to rule-based systems
.

Although the SBM framework is very rich TA \l “Floreen P. (1991) The convergence of Hamming memory networks. IEEE Transactions Neural Networks 2, 449-457” \s “(Floreen 1991)” \c 5  most of the proposed methods have not been yet implemented and tested so in this chapter we will concentrate on presentation of these parts of the general framework in which the author of this thesis played a major role and which have found its reflection in the implemented by the author software. We will leave the discussion on description of the implemented algorithms to Chapter 3. Elaborating on the methods that had not been implemented had had little sense since we cannot be sure whether they would have worked at all and certainly the implementation details would have been different from those that could be presented here.

1.7 A Framework for the Similarity-Based Methods

Below N is the number of attributes, K is the number of classes, and vectors are in bold faces while vector components are in italics.

The following steps may be distinguished in the supervised classification problem based on similarity estimations:

1. Given a set of objects (cases) {Op}, p = 1…n and their symbolic labels C(Op), define useful numerical attributes Xjp​ = Xj(Op), j = 1…N characterizing these objects. This preprocessing step involves computing various characteristics of images, spatio-temporal patterns, replacing symbolic features by numerical values etc.

2. Find a measure suitable for evaluation of similarity or dissimilarity of objects represented by vectors in the attribute space, D(X,Y).

3. Create a reference (or prototype) vectors R in the attribute space using the similarity measure and the training set  = {Xp}.

4. Define a function or a procedure to estimate the probability p(Ci|X;M), i = 1…K of assigning vector X to class Ci . The set of reference vectors, similarity measure, the attribute space and the procedures employed to compute probability define the classification model M .

5. Define a cost function E[;M] measuring the performance accuracy of the system on a training set  of vectors; a validation set  composed of cases that are not used directly to optimize the model M may also be defined and performance E[;M] measuring generalization abilities of the model assessed.

6. Optimize the model Ma until the cost function E[;Ma] reaches minimum on the set T or the function E[;M a ] on the validation set .

7. If the model produced so far is not sufficiently accurate, add new procedures/parameters create more complex model M​​​​​a  + 1.

8. If a single model is not sufficient create several local models Ma( l ) and use an interpolation procedure to select the best model or combine results of a committee of models.

All these steps are mutually dependent and involve many choices described below in some details. The final classification model M is built by selecting a combination of all available elements and procedures. A general similarity-based classification model may include all or some of the following elements:
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where:

· X(O) is the mapping defining the attribute space and selecting relevant attributes;

· 
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 is a function that combines similarities of attributes to compute similarities of vectors; if the similarity function selected has metric properties the SBM may be called the minimal distance (MD) method.

· k is the number of reference vectors taken into account in the neighborhood of X;

· {R} is a set of reference vectors created from the set of training vectors  = {Xp} by some selection and optimization procedure;

· E[;M] or E[,M] is a total cost function that is minimized at the training stage; it may include a misclassification risk matrix R(Ci,Cj), i, j =1…K;

Various choices of parameters and procedures in the context of network computations leads to a large number of similarity-based classification methods. Parameters of each model are optimized and a search is made (either manually or automatically through the meta-learning procedure) in the space of all models M​a for the simplest and most accurate model that accounts for the data. Optimization should be done using validation sets to improve generalization. Starting from the simplest model, such as the nearest neighbor model, qualitatively new “optimization channel” is opened by adding the most promising new extension – a set of parameters or a procedure that leads to greatest improvements. Once the new model is established and optimized all extensions of the model are created and tested and a better model selected. The model may be more or less complex than the previous one (since attribute selection or selection of reference cases may simplify the model). The search in the space of all SBM models is stopped when the methods from the initial pool of models run out.

Steps involved in setting up a SBM model are presented below in a detailed way. Examples of well-known classification models and new methods that result form the SBM framework are given in the next section.

1.7.1 Attribute Space and Similarity of Features

Frequently the database contains a numerical description of the objects and the preprocessing step involves only rescaling or standardization of the input data. Attributes used should allow assigning a new vector X to one of the classes with high reliability. The number of attributes created by X(O) mapping should be as small as possible to avoid the “course of dimensionality” (Bishop 1995) TA \l “Bishop C.M. (1995) Neural Networks for Pattern Recognition. Oxford University Press” \s “(Bishop 1995)” \c 5 . 

In some methods attribute Xj taking the symbolic value 
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 that may be defined as follows. Define a characteristic class function Γ​m(X) = 1 if X Cm, otherwise Γ​m(X) = 0. The vector X with attribute 
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 The ratio of these two numbers estimates the probability 
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 that given the symbolic value 
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of attribute X​j the whole vector belongs to the class C​m​​. Symbolic features that have similar probabilities should have high similarity:
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where is an arbitrary exponent. Similarity of the two symbolic values of feature X​j​ is the highest (or dissimilarity is lowest, 
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 predict the same probabilities. The generalized Value-Difference Metric (VDM)  (Stanfill C. and Waltz D. 1986) TA \l "(Stanfill C. and Waltz D. 1986) Toward memory- based reasoning. Comunications of the ACM, Vol. 29, December 1986, pp. 1213-1228." \s "(Stanfill C. and Waltz D. 1986)" \c 5  for vectors with symbolic values is defined as:
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Since many classification methods that are not suitable for computing the VDM distance directly require numerical inputs it is convenient to replace symbolic with numeric values. Replacing symbolic attribute Xj with K-dimensional vector of probabilities 
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, i = 1…K allows to compute the same similarity values:
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Thus j(,is a Minkowski’s distance function in K-dimensional space. Note that for two classes p(C1|X) + p(C​2|X) = 1 only one probability p(C​1|X) is sufficient to compute similarity:
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The number of numerical attributes is the same as the number of symbolic ones. For more than two classes (K > 2) the absolute value in the sum above makes it difficult to use only K – 1 probabilities. In this case to avoid growth of the dimension of the attribute space the Value-Difference Metric Eq. (1.2)

 should be used directly if possible, or other methods that do not preserve probabilistic estimations of similarity may be used (Aha 1998) GOTOBUTTON ZEqnNum524233  \* MERGEFORMAT , (Grąbczewski and Duch 1999) TA \l “Grąbczewski K. and Duch  W.  (1999) A general purpose separability criterion for classification systems. 4th Conf. on Neural Networks and Their Applications, Zakopane, pp. 203-208” \s “(Grąbczewski and Duch 1999)” \c 5 .

1.7.2 Similarity Measures and Attribute Scaling (Weighting)
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	A simple difference
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	an absolute value of the difference
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	renormalized difference
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	standardized difference
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	overlap difference
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Table 2.2‑1: One-dimensional attribute similarity functions.

Calculation of similarities is most often reduced to the Euclidean metric for continuous inputs and Hamming (odnośnik do Appendix) metric for binary inputs. In a more general approach let us first define one-dimensional attribute similarity functions j(X​j,Yj), for example see  Table 2.2‑1, where in the last Table entry Kronecker delta is used. Attribute similarity may also be computed as the probabilistic value differences, Eq. (1.2)

. Similarity is defined in this case via a data-dependent matrix with the number of rows equal to the number of classes and the number of columns equal to the number of attributes. Generalization for continuous values requires a set of probability density functions pij(x), with i=1…K, j =1…N. This distance function may be used for symbolic values and combined with other distance functions for continuous attributes.

Generalized Minkowski’s metric involves two exponents, and although frequently a single exponent is used. Typical distance function compute:
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Scaling factors multiplying one-dimensional similarity functions allow to include different contributions of different attributes and are very useful global parameters. Minkowski’s distance with the scaling factors is defined as:
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Euclidean metric corresponds to and Manhattan metric to .In fact the unit contour is a circle for Euclidean, a square with vertices in (0, 1) and (0), approaching a square with vertices at (1,1)for large  and a concave 4-arm star for  going to zero see Appendix ...). Methods of selecting optimal scaling factors for attributes were reviewed by Wettschereck et al. (Wettschereck D., Aha D.W., and  Mohri T. 1997) TA \l “Wettschereck D., Aha D.W., and  Mohri T. (1997) A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms. Artificial Intelligence Review 11, 273-314” \s “(Wettschereck D., Aha D.W., and  Mohri T. 1997)” \c 5 , where a five-dimensional framework to characterize different methods of scaling attributes has been proposed. Scaling is the simplest way of preprocessing the attributes. The scaling factors facilitate attribute selection in an automatic way. Admitting only sj = 0,1 allows for simplified optimization of the scaling factors for attribute selection.

Using the scalar product and the norm:
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several other distance functions are defined:
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	Cosine distance
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	Dice distance
	 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.15)


	
[image: image39.wmf]22

|

(,)1

|

J

D

=-

+-

XY

XY

XYXY



	Jacard distance
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	Canberra distance
	 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.17)


	
[image: image41.wmf](,)

(,)

jjj

GC

jjj

XY

D

XY

D

=

D-


	Generalized Canberra distance
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	Chebychev distance
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Additional parameters that may be introduced in similarity measures are either global or local (different for each reference vector). In some applications (for example in psychology) similarities are not symmetric. 
Calculation of distances may also be parameterized in a different way around each reference vector, providing a large number of adaptive parameters. 
1.7.3 Attribute Selection

Scaling factors in the similarity function Eq.  MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.20)
 

 allow for attribute selection and attribute scaling but since the global optimum of a cost function may be difficult to find (Duch W. and Grudziński K. 1999) GOTOBUTTON ZEqnNum109142  \* MERGEFORMAT  simpler attribute selection procedure may be useful. Many methods of attribute selection and estimation of optimal scaling factors for attributes were reviewed by Wettschereck et al. (Wettschereck D., Aha D.W., and Mohri T. 1997) TA \s “(Wettschereck D., Aha D.W., and  Mohri T. 1997)”  TA \l “Chiu D.K.Y. and Kavanaugh F.E. (1997) The ck-nearest neighbor distance network: a network using class boundary feature distances. ICONIP’97, New Zealand. pp 535-538” \s “(Chiu D.K.Y. and Kavanaugh F.E. 1997)” \c 5 . These methods either iteratively optimize the scaling factors on the performance basis or assign fixed scaling factors calculating mutual information between the values of features and the class of training samples or by summing probabilities (estimated using frequencies) of training vectors with non-zero values of features for a given class (per category feature importance). These scaling factors after binarization are used to select attributes.

Several simple attribute selection procedures have been developed and tested specifically for the similarity-based methods (Duch W. and Grudziński K. 1999) TA \s “(Duch W. and Grudziński K. 1999)” . In the attribute-dropping algorithm attributes are removed consecutively, one at a time, and the best-first search (BFS) strategy is used. The cross-validation
 test is performed on the training file and the change in the accuracy noted. Attribute leading to the highest improvement of classification accuracy on the training file is selected as the least important and removed from the input set. If there is no improvement the attribute that leads to a minimal degradation is selected. At each step all the remaining attributes are evaluated.

The ranking of attributes is done at lower cost. Assuming that attributes are independent and the effects of attribute removal are additive only one test for each attribute is done to determine the ranking. An alternative is to perform the BFS attribute-dropping algorithm using only a subset of those attributes that may be removed without the degradation of accuracy. Other search strategies, such as the beam search, may be used if the number of attributes is not too large.

Search strategies may also be used for attribute weighting. The cost function is simply the number of classification errors. Since attributes have real-valued weights they have to be initially quantized, either with fixed precision or precision that is steadily increased during the progress of the search procedure. Three such methods have been developed (Duch W. and Grudziński K. 1999) TA \s “(Duch W. and Grudziński K. 1999)” : adding attributes starting from a single one, dropping attributes starting from all attributes and tuning the scaling factors, using the search procedure with systematic increase of the precision of the scaling factors’ quantization Non-gradient optimization methods that may be used for optimization of discontinuous cost function are expensive and may require a large number of evaluations of the function for convergence. However a threshold defined as a relatively small number of iterations for training can be introduced after reaching which the test is performed. Such a not completely trained model permits to avoid overfitting. The number of iterations after which the model is tested can be optimized on the validation file.

1.7.4 Selection of Reference Vectors

SBM models may use all training data as the reference vectors. Reducing the size of the reference set leads to models of lower complexity, speeds-up classification and minimizes the memory requirements (this is important not only in real-time applications – optimization of some parameters may require many evaluations of the cost function). It also may help to improve generalization capabilities of the classification system, especially for noisy data. Moreover, eliminating redundant cases and leaving only the most interesting prototypes may sometimes allow understanding the structure of the data providing an alternative to the rule-based classifiers. Systems designed for the on-line learning, where the number of incoming vectors may in principle be infinite must use partial memory (Michalski R. 1999) TA \l “Michalski R. (1999) AQ-PM: A System for Partial Memory Learning. Intelligent Information Systems VII, Ustroń, Poland, 1999, pp. 70-79” \s “(Michalski R. 1999)” \c 5 , selecting the best prototypes. 

In the SBL-PM (Similarity-Based-Learner – Partial Memory) algorithm (Grudziński K. and Duch W. 2000) TA \l “Grudziński K. and Duch W. (2000) SBL-PM: A Simple Algorithm for Selection of Reference Instances for Similarity-Based Methods, Intelligent Information Systems IIS’2000, Physica-Verlag (Springer), pp. 99-108” \s “(Grudziński K. and Duch W. 2000)” \c 5  training vectors are sequentially removed and the prediction accuracy of the system on the whole training set is calculated after each removal. If the accuracy drops below a user-defined threshold, relative to the result of the leave-one-out test on the whole training set, the removed case is placed in the reference set; otherwise it is eliminated. Unfortunately because of the high computational costs this method may be used only for a relatively small datasets or with classification models which training is inexpensive. More sophisticated methods, for example GIGA, using genetic algorithm for the selection of the reference set (Fuchs M. 1996) TA \l "(Fuchs M. 1996) Optimized nearest-neighbor classifiers using generated instances. LSA-96-02E Technical Report, Learning Systems and Applications Group, University of Kaiserslautern, Germany" \s "(Fuchs M. 1996)" \c 5 , have even higher computational demands, but the results are not necessarily better.

In the on-line version of the method the system has to decide whether a new training case, coming from the input stream, should be added to the reference set (partial memory of past cases). An obvious approach, used in the IB2 procedure (Aha D., Kibler D., Albert. M 1991) TA \l “Aha D., Kibler D., Albert. M (1991) Instance-based learning algorithms. Machine Learning 6: 37-66” \s “(Aha D., Kibler D., Albert. M 1991)” \c 5  is to check whether each new instance received is correctly classified using the reference set obtained so far and add it to this set only if it leads to an error.

1.7.5 Optimalization of Additional Parameters

In the case of methods based on the k-NN kernel good results are obtained by optimization of k and similarity functions on the training set. SBL simply automatically applies different k from the given by the user range or similarity function from the pool of selected by the user ones.

Ensemble of Models and Stabilization of Results

Ensembles of models serve to creation of more stable
 and accurate classifiers (Breiman L. 1998) TA \l “Breiman L. (1998) Bias-Variance, regularization, instability and stabilization. In: C. Bishop, ed. Neural Networks and Machine Learning. Springer 1998.” \s “(Breiman L. 1998)” \c 5 . The most common flavor of ensembles is majority committees: the training phase of the system
 is repeated several times and the predicted class is computed by applying majority rule (predicted class obtained from each of the models of a query sample is remembered and the most common class is taken in the classification process). Since attribute scaling methods based on minimization are stochastic models and have usually high variance it was natural to start to experiment with committees of these algorithms. The author has also introduced a new method of stabilization called scaling factors averaging. The idea is to retrain the weighted model several times and use average of the scaling factors in each dimension at final stage. The reason for the excellent results this method gives is however not completely understood and this algorithm in not completely scientifically justified.

1.7.6 Meta-Learning: Searching in a Model Space

The meta-learning method has been inspired by the fact that it is hard to find the optimal algorithm sequence in the menagerie of SBM methods. For example we never know whether, for a given dataset, if it is better to run optimization of the number of nearest neighbors followed by the selection of attributes procedure or vice versa until we apply both schemes. The sequence leading to the highest classification accuracy on the training or validation set should be selected as the most promising and the plain k-NN method with optimal parameters found should be performed on unseen cases.

The aim of meta-learning is to allow the user to create a pool of methods belonging to the SBM framework and letting the system find the most promising combination. Unlike in most of the similar approaches in other domains where genetic optimization is most often employed we decided to use search strategies, which are far less computationally expensive.
 TA \s “(Wettschereck D., Aha D.W., and  Mohri T. 1997)” 
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The Details of the Implemented Algorithms

In this Chapter the algorithms that are available in the SBL package are presented. We would attract the reader’s attention especially to the description of the kernel algorithm. Despite the fact that the idea behind k-NN method is very simple there are some subtle points one should be aware of. One of them is situation when to a query (unknown, test) case correspond several training instances with the same distance but different class labels. Another tricky point is breaking of the impasses (situations where the majority class cannot be computed). We discuss them in Section 3. The rest of the Section 3 is devoted to each of the algorithms that lay the foundation of this thesis.  TA \l “Simard P. LeCun Y. and Denker J. (1993) Efficient pattern recognition using a new transformation distance. Advances in Neural Information Processing Systems 5 (NIPS’5), San Mateo, CA, pp. 50-58” \s “(Simard P. LeCun Y. and Denker J. 1993)” \c 5 
1.8 The Kernel Algorithm

Let us denote by k the number of nearest neighbors given. For each test case, the so-called, ‘true’ or ‘real’ k (kREAL) does not have to be equal to k.  

1.8.1 The Brute-Force Kernel Algorithm

The Kernel algorithm, in the simplest (brute-force) form, proceeds as follows:

1. For each case Xi from the test set Q (i = 1…N), 
a. Compute all the distances D(Xi,Yj) from Xi to all the instances Yj from the training set T (j = 1…M) using some similarity measure,

b. Find k nearest neighbors to Xi among Yj
c. Perform the classification step for Xi, update the number of wrongly/correctly classified cases and number of impasses.

2. Report the results.

1.8.2 The Smart Distance Calculation Algorithm

Before presenting the details of the classification step (1.c above) a simple way to speed up calculation of the distances (step 1.a above) is presented. This algorithm is called “The Smart Distance Calculation Algorithm” and has been invented by Krzysztof Grąbczewski [private communication]. It is more efficient than the brute-force version in two cases: for probabilistic VDM-type measures (in which computation of a one-dimensional distance contributions is particularly expensive), and in case of very high-dimensional data. The proposed algorithm is based on neglecting the computation of the one-dimensional distance contributions if the partial distance exceeds the value of the largest total distance pre-computed earlier. Such distance functions, which when summing one-dimensional distances compare partial result to Dmax(1,k) (see below) and when it exceeds Dmax(1,k) the loop running over all dimensions is broken, will be called ‘smart distance functions’.  Below the details of the algorithm follow (recall, that the aim of this step is to compute all the distances from the query case Xi to all the instances Yj from the training set T (j = 1…M) using some similarity measure):

1. For j = 1 to k,
a. Calculate the distance D(X​​i,Yj) from the current test case Xi to case Yj from the training library using some similarity measure,

b. Remember the largest distance computed so far (denoted by Dmax(1,k)),

2. For j = k + 1 to M,

a. Calculate the distance D(Xi,Yj) from the current test case Xi to case Yj using the ‘smart versions’ of the similarity measures. (This is the first place were one saves CPU time by breaking computation of the distances. Only that l distances that were not broken will be used in the next step to find neighbors for Xi).

3. Find among l training samples, k nearest neighbors to Xi. (This is the second place were we save CPU time, since the value of l may be significantly lower than the total number of training samples M).

4. Perform the classification step for Xi, update the number of wrongly/correctly classified cases, number of impasses and discarded instances.

5. Report the results

1.8.3 The Kernel Classification Step

Here our implementation of the kernel classification step is presented and the advantages and disadvantages of approach discussed. Let Ri be the nearest neighbor set for the query case Xi. The algorithm proceeds as following:

1. While the number of calculated nearest neighbors to a current test (query) case Xi is lower or equal k, add the nearest neighbor reference cases to Ri.

2.  While there are more nearest neighbor reference cases having the same distance as the last already computed neighbor add them to Ri.

3. Check for impasses (i.e. situations when the majority class of cases from Ri cannot be computed). If there is impasse include cases corresponding to the higher value of the distance from query case Xi and go to step 2.

4. Compute the predicted class for Xi, which is the majority class of reference cases in Ri.

In the above algorithm we have omitted the conditional expression checking if the number of reference cases in Ri does not exceed the total number of cases in the training library. If it does so the test case is moved to the set of cases impossible to classify (the case is discarded).

The advantage of our approach is that randomization of the training dataset does not have any influence on the test result. To illustrate it better consider a differently implemented system which includes only one neighbor (i.e. there is no ‘2’ step in the algorithm above) and that to a particular test case there correspond two (or more) nearest neighbors, all of the same distance from this query case. Assume also that k =1. If we randomize training partition it may happen that different reference cases will be found and if they belong to distinct classes (there may be some wrongly labeled training cases in the library in case when all the attributes have the same features or just that it happens that distance is the same for different reference samples) classification accuracy changes. We can see that in the case of noisy data our approach gives more reliable (and perhaps better) results and this is the main idea behind the implementation that can be found in SBL. However the kernel is more complex in this case and the entire system is slower. Another important issue is the prototype data explanation: if we ask the system to give us k = 1 most similar cases our approach guarantees that we will obtain a complete list of all nearest neighbors having the same distance from the query sample. Otherwise we could often get different neighbors if randomization is on and some of them could be noisy.

1.8.4 Learning and Computing the Final Results

So far, when discussing the kernel algorithms, we had been considering the classification of the single case. But recall that to test the system’s prediction ability a large test set of labeled cases is needed (i.e. which class is known). After training the system the predicted classes of the test cases are computed and confronted with true (real) class,  (i.e. the class with which the test samples are labeled). Having the information how many errors the system makes on the test set the results can be reported, being a merit or a confidence factor to the classification system, expressed in percents of correctly or incorrectly classified cases. Classification accuracy A computed by SBL is given by the following formula:
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where N  is the total number of the samples in the query set, NC is the number of the correctly (or incorrectly) classified cases and Ndiscarded denotes the number of the cases impossible to classify (which with a reasonable size of the training library is usually 0).

SBL is trained by performing leave-one-out test on training partition. SBL in the future will be equipped also with the possibility of learning through m-fold-cross-validation (where m is given by the user) since leave-one-out appears not to be the best method of learning because of overfitting. 

However in SBL, as well as in most wrappers of the plain k-NN method written by other people, learning is performed by carrying out the cross-validation or leave-one-out procedure, in the results obtained using SBL leave-one-out classification accuracy on a training partition is reported (instead of training accuracy) and called learning accuracy. The reason for this is that the commonly adopted training accuracy is a meaningless number in the k-NN model. Briefly speaking other researchers take training partition, train the system by observing the result of the cross-validation test and later use training set as a test partition to calculate the training accuracy. It should be clear that for k = 1 on most data
 training accuracy will be always 100%. There are several traps when trying to merit the system performance by observing the training accuracy. For example k = 1 would be the optimal value of this adaptive parameter since going with greater k the training accuracy usually drops. Even if the value greater than k = 1 giving on the training set 100% is found, the lowest k (i.e. = 1) should be selected since it gives a higher chance to get higher prediction ability. This means that there is no way to optimize the number of nearest neighbors. Also it is unknown whether to perform standardization of data since before and after standardization the training accuracy is 100% for k = 1. Also it is unknown for k = 1 if some other, more complex model performs better since the training accuracy is always 100% (for example it is impossible to optimize similarity function). To summarize one uses cross-validation for learning and optimizing parameters but reporting training accuracy has often little sense. Besides an extra calculation has to be carried out to report this, often meaningless, number! The situation changes if we want to use the different subsets of training cases (reference instances) to benchmark our data. Then the accuracy computed by taking a subset as a training set and the whole training set as the test set is a reported by SBL learning accuracy value. This value is also used to select the optimal reference set for our system. The elimination of a redundant cases is a subject of, so called, partial memory learning research (Michalski R. 1999) TA \s "(Michalski R. 1999)" 
Therefore the training accuracy reported by SBL is just a value of a cross-validation
 test on a training partition. If a 10-fold cross-validation test is performed, leave-one-out is carried out 10 times on all distinct training cross-validation partitions and average is computed. Note that if computing a training accuracy of the leave-one-out test is required, repeating leave-one-out test on training partitions is needed as many times as there are cases in the library. This may be very time consuming, especially if the VDM-type metrics are used. 

1.9 Attribute Selection

Similarity based methods degrade in performance when faced with attributes that are not relevant to predict the desired output. Besides, elimination of redundant attributes is of great interest since it allows understanding the structure of the data better. In some domains, like in the extraction of crisp logical rules, selection of attributes is achieved in a natural way. However noisy attribute elimination in the domain of instance based methods has been considered elsewhere (Wettshereck D. 1995), TA \s "(Wettschereck D. 1995)"  in SBL some new methods for attribute selection have been introduced. Most of them are based on searching heuristics and because of performance factors various best-first search variants are used. However, because of the advent of more and more powerful computers more complex algorithms are planned to be implemented in the future. Note that attribute selection is a sub-case of attribute scaling and by imposing integer weights can be done even by weighting attributes based on minimization of the cost function.

1.9.1 Ranking

Ranking is the simplest and the cheapest attribute selection method. The algorithm proceeds as follows:

1. Perform the leave-one-out test on a training partition with all attributes present and remember the training accuracy A​​T,all. 

2. Repeat for all attributes Yj  

a. Start with all attributes turned on and remember the accuracy A​​​T,j  on a training set with the attribute Yj  turned off. After evaluating the training accuracy turn this attribute back on. 

3. Sort the training accuracies A​​​T,j  in decreasing order.

4. For j = 1…N (number of attributes in problem domain):

a. If A​​​T,j  > A​​T,all
 turn off Yj​  attribute (since the increase of the training accuracy after elimination of the attribute is observed it should be turned off because it is not an important for the problem at hand. 

5. Perform the test on a test partition with attributes that remained turned on.

The advantage of this method is that it is relatively cheap. Note however that since the kernel distances change one cannot pre-compute them and the distance matrix and nearest neighbors have to be recalculated with every attribute that is turned off. It holds unfortunately for many extensions of the k-NN method. The disadvantage of this method is that it is not sensitive on interacting attributes and the decision is made by observing how training accuracy changes with single attribute being turned off independently. The initial ranking of attributes described above is called ‘dropping’ since we start from all attributes and gradually turn them off. Another approach is to use the ranking method called attribute ‘adding’ where we start from attribute vector with each component turned off and gradually turn on attributes. This has been tested in weighting methods based on searching strategy and our numerical experiments indicate that for some datasets only one of the two ranking methods improves the results over plain k-NN method.

1.9.2 Ranking with the Optimization of the Number of Nearest Neighbors

The idea of this method is similar to the previously described algorithm however this method turns on attributes, starting form the most important ones and additionally optimizes k. The algorithm proceeds as following:

1. Perform the leave-one-out test on a training partition with all attributes present and remember the training accuracy A​​T,all. 

2. Repeat for all attributes Yj:

a. Start with all attributes turned on and remember the accuracy A​​​T,j  on a training set with the attribute Yj  turn off. After evaluating the training accuracy turn this attribute back on.  

3. Sort the training accuracies A​​​T,j  in increasing order.

4. For j = 1…N (number of attributes in problem domain):

a. Starting from the most important available attribute, turn it on and optimize k in a predefined range.

b. If A​​​T,j  > ( A​​T,all  leave this attribute turned on, otherwise turn it off.

5. Perform the test on a test partition with attributes turned on corresponding to the highest training accuracy with the optimal value of k.

1.9.3 Full Best-First Search (FBFS) Attribute Selection and its Variants

The full best first search algorithm has a chance to find better attributes to be turned off since it is sensitive to interacting attributes (i.e. attributes that not only when separately turned off improve results but the peak result is obtained using particular combination of turned off attributes). First the basic algorithm will be presented and after that some modifications that may reduce the number of evaluation function trials hopefully without degradation of the final classification accuracy will be discussed. If the dimension of our attribute space is N then FBFS algorithm has N – 1 evaluation levels. The algorithm proceeds as following:

1. Perform the leave-one-out test on a training partition with all attributes present and remember the training accuracy A​​T,all. 

2. Repeat for all attributes Yj :

a. Remember the accuracy A​​​T,j  on a training set with the attribute Yj  turned off. After evaluating the training accuracy turn this attribute on. 

3. Sort the training accuracies A​​​T,j  in decreasing order.

4. Empty the set of candidate attributes {C} to be turned off. 

5. For level l = 1…N  - 1:

a. Empty the set of candidate attributes {Cl} on level l.

b. Turn off attributes Y1 + {C};

c. For i = 2…N, i ( l, i ( {C} :

i. Turn off attribute Yi​ and compare it with the evaluation function with all attributes turned on. If the test is positive move the attribute under consideration to {Cl}.

ii. Turn on Yi.
d. Select the best candidate (if there is one) from {C​l​} (the one with highest training accuracy) and move it to {C}.

6. Perform the test on unseen cases with attributes from {C} turned off.


The value of the evaluation function may have all attributes turned on (so called global reference) it may be the value with attributes turned off that have been found on a previous level (so called local reference). Both > and conditions are permitted. Additional heuristics may be employed to speed up the calculations: one should simply avoid comparisons with attributes that when individually turned off perform worse than the evaluation function with all attributes present. 

Optimizing Scaling Factors (Attribute Weights)

In this thesis two groups of weighing schemes are introduced: optimization of the scaling factors by minimization of the cost function and search-based techniques. To each group belong three algorithms. In the first group they differ by the minimization procedure employed and in the second by the adopted searching strategy.

1.9.4 Methods Based on Minimization

Methods based on minimization are straightforward: leave-one-out procedure on a training partition with a scaled distance function is used as a cost function of the minimization procedure. In SBL three minimization methods are used simplex (Nelder J.A. and Mead, R. 1965) TA \l "(Nelder J.A. and Mead, R. 1965) A simplex method for function minimization. Computer Journal 7 (1965) 308-313." \s "(Nelder J.A. and Mead, R. 1965)" \c 5 , which is a local minimization method and two global methods: multi-simplex (Gupta H.V., Hsu K., Sorooshian S. 1997) TA \l "(Gupta H.V., Hsu K., Sorooshian S. 1997) Superior training of artificial neural networks using weight-space partitioning, Proc. of ICNN'97, Houston, June 1997, pp. 1919-1923" \s "(Gupta H.V., Hsu K., Sorooshian S. 1997)" \c 5  and adaptive simulated annealing (ASA) (Ingberg L. 1996) TA \l "(Ingberg L. 1996) Adaptive simulated annealing (ASA): Lessons Learned. J. Control and Cybernetics 25 (1996) 33-54" \s "(Ingberg L. 1996)" \c 5 . The optimal scaling factors found on a training set are used later on unseen data.

1.9.5 Methods Based on Searching in the Weight Space

In SBL there are three methods belonging to this group. Two of them in fact constitute one method with different ranking procedures (so called adding and dropping). Third method (the tuning method) is used to tune the already obtained optimal weights found by the other methods. Below the relevant algorithms are presented.

Adding and Dropping Attribute Scaling Methods

 The adding and dropping ranking is first performed. The purpose of ranking is to order the attributes according to their decreasing importance. The adding ranking involves the evaluation function to be computed with only one attribute turned on at a time. They are then sorted according to their importance. The dropping ranking adopts the policy of gradual removal (turning off) of attributes and sorting them according to their decreasing importance (i.e. the attribute turned off corresponding to the lowest training accuracy is the most important).

Adding and dropping attribute scaling methods can be used with both adding and dropping ranking. In the numerical experiments carried out in this thesis we used only adding ranking with adding method and dropping ranking with dropping method. 

Adding method is started with the weight vector containing all zeros. Next, with a given step, sampling of the weight space is performed starting from the most important attribute. The best weight is remembered and it corresponds to the highest accuracy on the training partition. Then the next attribute is processed.

The dropping method is started with a weight vector containing all 1’s. The rest of the algorithm is the same as in the adding method.

The terms ‘adding’ and ‘dropping’ apply both to the ranking of the attributes and to the scaling methods themselves. In principle four variants of this algorithm are possible.

The Tuning Attribute Scaling Method

The tuning method has been designed to inexpensively tune already optimal weights found by a different method (seek for a perhaps more optimal solution in the neighborhood of already optimal scaling factors). However, this method itself or after a slight refinement (preceded by a ranking), can be used as a front line weighting method. The algorithm is very simple and – as it is implemented in SBL, involves no ranking. This may significantly degrade its performance – both as a front line model or tuning algorithm. A ( parameter is given and the weights are updated according to the following formula:
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where si are scaling factors. First the first attribute is checked, its scaling factor is set to the most promising value corresponding to its peak training accuracy and then the method proceeds to the next attribute. After the sampling of all weights is finished, ( is divided by 2 and the procedure is continued until no improvement of training accuracy is observed. 

1.10 Optimization of the Number of Nearest Neighbors

Optimization of k involves running over the values from the given by the user range. The upper boundary must be lower or equal to the number of training vectors. The lowest value of k corresponding to the peak training accuracy is always selected as the optimal value. Unlike in other methods, this simple model has many possibilities to be speeded up by various indexing and distance matrix storing techniques.

1.11 Optimization of the Similarity Metric

Optimization of the similarity metric is equally important as optimization of k. The more distance functions the program has implemented, the greater chance to find one that best classifies the data. This model involves running through the selected functions to be optimized and select the best. Minkowski distance requires additionally the exponent to be optimized in a given range with a predefined step.

1.12 Selection of the Reference Instances (Prototype Vectors)

Selection of the reference cases is an important issue in all similarity-based methods. Reducing the size of the training set leads to minimization of the memory requirements and faster classification, usually at slight expense of prediction accuracy on test samples. Eliminating redundant cases and leaving only the most interesting prototypes allows understanding why an unseen case was classified to a particular class by analyzing the prototypes that were selected in the SBM method. The invented by the author algorithm is very simple. Vectors from the training set are removed sequentially, one at a time, and form a so-called reference set. A classification test is performed using reference set as a training set and whole, original training set as a test set. This accuracy is compared with the leave-one-out test value expressed in % on the whole training set (or preset by the given value called the ‘delta parameter’) and if the first is greater a sample is retained in partial memory. Otherwise it is removed. Next we proceed to the next training sample and the process repeats until all training cases are examined. 

1.13 Meta-Learning: Searching in a Model Space

The method described in this has been created because it is hard to find the optimal algorithm sequence in the menagerie of SBM methods. For a given dataset, it is unknown if it is better to run optimization of the number of nearest neighbors followed by the selection of attributes procedure or vice versa until we apply both schemes. The sequence leading to the highest classification accuracy on the training or validation set should be selected as the most promising and the plain k-NN method with optimal parameters found should be performed on unseen cases to compute the classification accuracy.

The aim of the meta-learning is to allow to create a pool of methods belonging to the SBM framework and letting the system find the most promising combination. Of course it is impossible to simply try all variants because of the performance reasons (the calculations should not last longer than the acceptable amount of time). Because of this a variant of the best first search method has been used.

Which nodes of the search tree or simply the methods or their combinations, are visited and evaluated, depends on the so-called ‘interaction’. Interaction is the policy how to combine models in order to create more complex models. Interaction can be encoded in each method so that it cannot be changed or can be defined on demand. To illustrate what the interaction really is let us consider the following two models: the optimization of the number of nearest neighbors and the attribute selection method. The interaction in the first algorithm says: ‘If the attribute selection method is preceding the optimization of k in a model chain, optimize k with the attributes found by the earlier method’. Interaction in the second algorithm tells us that if optimization of k is followed by the attribute selection, use the optimal k found earlier and search for attributes with this value of k preset. If the interaction is deliberately turned off for all the algorithms, the meta-learning algorithm reduces to the single-level ranking of basic models and no composite models are created. If there is no interaction defined for a given pair of models, the system proceeds to the next model pair for which the interaction is defined. If the sequence consists of more than the two models, the parameters defined by the interaction are sequentially passed from the first to the next model in the chain until the last one is reached. For greater performance the parameters passed are checked. If, for example, the preceding model is optimization of k, and the optimal number of nearest neighbors is the same as the preset value of k in the current model (the last in the chain), the interaction is turned off and the program proceeds to the next sequence. The number of evaluation levels is equal to the number of initial models (denoted by M) in the pool and on the l’th level the model sequences consisting of l initial algorithms are considered. The meta-models on the level l can be split into the best algorithm consisting of l - 1 basic models evaluated on the previous levels (this is so called the ‘best model’) and the ‘current models’ (on the level l there may be maximum of M – l + 1 of such algorithms but this number is usually lower because not all of the methods can interact with each other). The ‘final model’ that is evaluated is constructed by applying interaction between the current and the best model. The best model is constructed by gradually applying interaction from the model found as the most promising on the first level to the best method found on level two, etc. until the l – 1 model is reached. If the interaction is disabled for a particular combination of methods or there is no reason to pass the parameters because they are the same in both algorithms, the program proceeds to the next step.

To present the algorithm of meta-learning, let us start with some definitions. M is the number of initial models in the pool as well as the total number of best first search levels. By l we will denote the current value of the level on which the evaluation of the models takes place. The meta-learning algorithm proceeds as follows:

1. On the first level evaluate all the initial basic models from the pool (without any interaction) and note the accuracy on the training set of the best method.

2. For l = 2 to M:

a. Apply the interaction between the ‘best model’ and all the current methods (those methods from the pool that remained, i.e. every l’th model, in a loop, one at a time). In other words determine whether the both methods should interact and check if the relevant adaptive parameters that should be passed from the best model to a current model are the same.

b. If the interaction in the previous step is forbidden for the pair: best model – current model or the parameters agree (and there is no reason to pass them) go to step a, i.e. continue with the next current model. Otherwise create the final model by applying the interaction, evaluate it and go to step a to continue the loop.

c. Note the training accuracy of the best final method at the current level l and store the model parameters of this ‘current method’ that turned out to be the best at this particular level.

3. Select the best model with respect to the training accuracy on levels 1…M (if there are several sequences on a particular level that have the same training accuracy, select the first). If there is more than one the most promising method (on distinct levels) select the model of the lowest complexity (i.e. the one with the lower value of l) and perform the test on the unseen cases.

The sample interaction matrix might look as follows:

	The Current                Model

The 

Preceding

Model
	k-NN
	Attribute- selection-NN
	Weighted-NN
	k-Optimization-NN

	k-NN
	-
	-
	-
	-

	Attribute- Selection-NN
	k, selected attributes
	-
	k
	selected attributes

	Weighted-NN 
	k, weights
	-
	-
	weights

	k-Optimization-NN
	optimal k
	Optimal k
	optimal k
	-


Table 3.7‑1: The sample interaction matrix for the meta-learning classification strategy

We have to note here, that the final result may strongly depend on the ordering of the initial algorithms (i.e. the case when there are two or more with the same training accuracy on the particular level). To circumvent this problem we could include them all in the search procedure. This would correspond to the variant of the beam search method, which should give better results on unseen cases.

The natural extension of the interaction matrix in the above example dataset is to allow inheriting the selected attributes by the weighted method from the attribute selection method and to search for weights with this attributes turned off. As we can see there is quite a lot of freedom in defining the interaction matrix and various settings can lead to a completely different results.

Another possible extension of the plain best-first search algorithm is swapping. Consider for example the sequence consisting of the weighted method followed by the similarity function optimization algorithm. The simplest interaction that can be defined for this ordered model pair is to inherit the weights (and perhaps the k) by the metric optimization routine from the preceding algorithm. But of course the weights found with the metric used in the weighted method do not have to be optimal for the metric found by the similarity function optimization routine. Therefore, if the size of the problem permits for it, the weighted method should be recomputed with the optimal measure. 

Another important issue is what to do with the multiple variants of the models. If we have to reduce the complexity of the algorithm as much as possible because of the size of the datasets, a good policy is to select independently the best variant of each of the methods and later include these models into the pool. But a better solution is to put all the variants into the pool since it may happen that the variant of some method that performs worse on the first level, with combination with the rest of the methods in the pool will be a winner.

Numerical Experiments

1.14 Introduction

The algorithms described in this thesis have been tested on a number of datasets: hepatobiliary disorders, ionosphere, monk1, monk2, monk3, nevi, tumors, lancet and promoters. Except for the three monk datasets, which are artificial, the remaining data are of medical or physical nature. All the datasets, except tumors, lancet and promoters, contain a separate test set. This makes it easier to list the optimal parameters and significantly reduces the time required to carry out numerical experiments. Please note that, in the case of a separate test set, since we train our systems by leave-one-out cross-validation, only attribute weighting methods based on minimization require repeating the calculations to obtain the standard deviation. The rest of the models have zero variance. Only the tumors data set has been divided by the author into the training and test set, however some cross-validation calculations also had been performed. First, the description of each dataset is given and next the best results obtained are discussed. 

1.15 A Description of the Datasets Used and Numerical Results

In this section a short description of the datasets is given. The nature of the problem that was to be solved with this data is described. Also the past use of this data (if available) is given. Next, the information on the number of training and test samples, number of attributes and their labels as well as their types, number and distribution of classes is provided.  

1.15.1 Tumours Dataset

Tumours dataset consists of 700 histological images of the central nervous system collected and classified from microscopic slides by Janusz Szymas, the medical senior expert in the Department of Patology at the University School of Medicine in Poznan, Poland. Each image has 512 x 512 pixels, 256 levels of intensity for each base color component, RGB (3 x 8 bits/pixel) and shows a fragment of particular microscopic section magnified 200 times. The database contains 14 classes of tumours, which form one of the main groups of brain tumours, i.e. tumours of the neuropithelial tissue. There are 50 images per class. Distinguishing these types of tumours is a nontrivial task and the first approach to build an expert system to support this classification task has been carried out in (Jelonek J., Krawiec K., Slowinski R, Stefanowski J., Szymas J. 1994) TA \l "(Jelonek J., Krawiec K., Slowinski R, Stefanowski J., Szymas J. 1994) Neural networks and rough sets: comparison and combination for classification of histological pictures, in: W. Ziarko, ed., Rough Sets, Fuzzy Sets and Knowledge Discovery. Workshops in Computing Series (Springer-Verlag, London, 1994) 426-433." \s "(Jelonek J., Krawiec K., Slowinski R, Stefanowski J., Szymas J. 1994)" \c 5  and (Jelonek J. Krawiec K. Slowinski R. Szymas J. 1995) TA \l "(Jelonek J. Krawiec K. Slowinski R. Szymas J. 1995) Rough set reduction of features for picture-reasoning, in T.Y. Lin, A.M. Wildberger, eds, Soft Computing (The Society for Computer Simulation, San Diego, 1995) 89-92." \s "(Jelonek J. Krawiec K. Slowinski R. Szymas J. 1995)" \c 5 . A high number of features has been recognized as main difficulty in this application (Jelonek J. Krawiec K. Slowinski R. Szymas J. 1995). For these reasons, Jelonek and Stefanowski (Jelonek J. Krawiec K. Slowinski R. Szymas J. 1995) showed using rough set theory (Pawlak Z. 1991) TA \l "(Pawlak Z. 1991) Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dodrecht, 1991." \s "(Pawlak Z. 1991)" \c 5 , that it was possible to remove the number of approximately 90% of attributes without decreasing significantly the prediction accuracy. Because of the slight degradation of classification accuracy, Jelonek and Stefanowski in (Jelonek J. and Stefanowski J. 1997) TA \l "(Jelonek J. and Stefanowski J. 1997) Feature subset selection for classification of histological images. Artificial Intelligence in Medicine 9 (1997) 227-239." \s "(Jelonek J. and Stefanowski J. 1997)" \c 5  proposed a compound method of beam search employing a case based classifier. 

The best visible parts of the images are cell nuclei (usually seen as small black dots) and the artifacts (blood vessels, calc tuff, haemorrhage). According to the opinion of medical experts, nuclei play the main role in the process of classification. Jelonek and Stefanowski in (Jelonek J., Krawiec K., Slowinski R, Stefanowski J., Szymas J. 1994) focused their attention mainly on the structure, texture and colors of the images. They extracted three groups of attributes used later in their approach. The first of them is HIST – a histogram of three principal color components (RGB – red, green, blue). The second group of attributes is co-occurrence matrix (COOC) – the well-known image feature extraction method invented by Haralic, Shanmugasm and Dinstein (Haralic R. M., Shanmugasm K., Dinstein I. 1973) TA \l "(Haralic R. M., Shanmugasm K., Dinstein I. 1973) Textural features for image classification. IEEE Trans. Systems, Man, Cybernetics, 3 (6) (1973) 610-620." \s "(Haralic R. M., Shanmugasm K., Dinstein I. 1973)" \c 5 . The last group of images is the density of the nuclei cell (DENS) extracted from images. The final number of attributes is 67 (HIST), 69 (COOC) and 96 (DENS).  Jelonek and Stefanowski  treat the three considered groups of attributes separately. In the calculations carried out by Jelonek and Stefanowski in (Jelonek J. and Stefanowski J. 1997), they point out that the most predictive from all the three groups of attributes is HIST and the least predictive is DENS. The results of classification using HIST in 10-fold cross-validation test are at the level of 90% and the classification accuracy using DENS does not exceed 30%. In (Jelonek J. 2000) TA \l "(Jelonek J. 2000) Zastosowanie złożonego systemu klasyfikacyjnego n2 z mechanizmem konstruktywnej indukcji cech do wieloklasowych problemów uczenia Maszynowego. PhD Thesis (in Polish), Instytut Informatyki, Politechnika Poznańska." \s "(Jelonek J. 2000)" \c 5  Jelonek used n2 and k-NN classifiers and performed a smart 5-fold cross-validation test assuring that the cases from the same patient are not divided into training and test partition. This dataset uses only 124 HIST attributes. We have only erroneous preliminary results from the draft of the PhD thesis were Jelonek admits that he did not perform internal cross-validation for learning in the 5-fold cross-validation test but he trained his systems on the entire partitions. With all attributes present, the reported by Jelonek 5-fold cross-validation results using k-NN classifier are at the level of 35% (without normalization). Employing attribute selection he managed to improve the classification accuracy up to 50% (also without normalization). After normalization of data and selection of attributes he reached 52.5%. The best results reported by Jelonek using k-NN classifier are obtained for the normalized dataset. Employing selection of attributes and attribute weighting the k-NN classifier achieved 53% of classification accuracy. With the n2 classifier Jelonek reached nearly 82% of classification accuracy.

Our Experiments

The dataset used in this thesis is the same one as described in (Jelonek J. 2000). There are 700 cases and 14 classes. Each class contains 50 samples (10 cases for 5 different patients). There are 124 HIST attributes. The experiments have been carried out on a separate training and test partitions. We prepared partitions to avoid using cases from the same patient in both training and test samples. 10 cases from 4 patients per class were used for training and 10 cases from one patient per class for test partition. There are 560 training and 140 test cases. The base rate is 7.14%. The best SBL model (plain 1-NN with standardization and Manhattan metric attained 48.57% (90.89% learning accuracy). However, 1-NN with Canberra metric and without standardization gave lower test accuracy 45.71% but with higher learning accuracy of 92.68%. Any attempts to improve over the above results with any extensions proposed in this thesis failed. The results obtained by most other well-known systems are much worse (ZeroR: 7.14%, OneR: 24.29%, NaiveBayes: 37.86%, ID3 with prior discretization: 40.71%). Only neural network trained with back-propagation with no validation set, 500 epochs, 1 – hidden layer, learning rate = 0.3, momentum = 0.2 attained 48.57% classification accuracy on the test set.

The problem is that for SBL learning we used k = 1 and leave-one-out cross-validation so the learning accuracy is quite high. That is because the nearest neighbor case is probably the one of the same patient as the query instance.

1.15.2 The Nevi Dataset

Expert systems for medical diagnosis support require logical rules for pattern classification. An alternative to crisp or fuzzy logical rules are prototype-based rules briefly investigated in (Duch W. 2000) TA \s "(Duch W 2000)" . SBL is a prototype-based classifier capable of selection of the most informative cases (Grudziński K. and Duch W. 2000) TA \s "(Grudziński K. and Duch W. 2000)" . Having unknown medical case, a medical doctor can make his diagnosis by refereeing to the nearest typical case to a query case for which diagnosis (i.e. class label) is known.

The nevi data was collected in the Outpatient Center of Dermatology in Rzeszów, Poland, to support distinguishing among 4 types of melanoma: Benign nevus, Blue nevus, Suspicious nevus and Melanoma malignant. The main database, NEVI-414 has been reviewed in details in (Hippe Z.S. 1999) TA \l "(Hippe Z.S. 1999) Data mining in medical diagnosis. In Kącki E. (Ed.) Computers in Medicine, Polish Society of Medical Informatics, Łódź 1999, Vol. 1, pp. 25-34." \s "(Hippe Z.S. 1999)" \c 5 . Currently the database contains 250 cases with almost equal distribution of classes. The data contains a collection of descriptive attributes required for calculation of the TDS (Total Dermatoscopy Score) index (Braun-Falco et. al. 1990) TA \l "(Braun-Falco et. al. 1990) Eine Vereinfachung der Auflichtmikrskopie von pigmentierten Hautveranderungen, Hautarzt 40 (1990) 131-135." \s "(Braun-Falco et. al. 1990)" \c 5 , an important tool used in diagnosing melanoma. Calculation of the TDS index is based on 4 variables: Asymmetry, Border, Color, and Diversity of the skin cancer mark’s structure. Variable Asymmetry has three different values: symmetric spot, 1-axial asymmetry and 2-axial asymmetry. Border is a numerical attribute, with values from 0 to 8. Color has six possible values: white, blue, black, red, light brown and dark brown, each coded as binary variables (several 1’s are possible at the same time. Diversity has five values: pigment globules, pigment dots, branched strikes, structureless areas and pigment network, also coded as binary variables. In all of these 11 binary attributes for Color and Diversity the value are 0 or 1, 0 meaning lack of the corresponding property and 1 meaning occurrence of the property. 

Thus, every record in the database has 13 attributes. The TDS index is computed from these attributes using the following formula (so called ABCD formula):

TDS = 1.3 Asymmetry + 0.1 Border + 0.5 ( Colors + 0.5 ( Diversities

where for Asymmetry the value symmetric-spot counts as 0, 1-axial symmetry counts as 1 and 2-axial symmetry counts as 2. The term ( Colors is the sum of all values of the six color attributes and ( Diversities is the sum of all values of the five diversity attributes.

A separate dataset, NEVI-T14, contains collection of 26 newer cases used for testing the quality of the developed learning model. This dataset preserves almost equal distribution of classes. The data may be analyzed with or without the TDS coefficients.

Before the SBL results are presented the past usage of this data is described.

 The GTS (general to specific) algorithm (Hippe Z.S., Hippe T.M. 1997) TA \l "(Hippe Z.S., Hippe T.M. 1997) An attempt to automatize modeling of medical data. In: Kącki E. (Ed.) Computers in Medicine, Polish Society of Medical Informatics, Łódź, pp. 24-31." \s "(Hippe Z.S., Hippe T.M. 1997)" \c 5 , (Hippe Z.S.,1997) TA \l "(Hippe Z.S.,1997) Machine Learning - A promising strategy for business information processing? In: Abramowicz W. (Ed.) Business Information Systems'97, Academy of Economy Edit. Office, Poznań 1997, pp. 603-622." \s "(Hippe Z.S.,1997)" \c 5  is a learning system starting from the most general rules and developing more specific rules in the learning process. It is a new type of covering algorithm and in its recent version the user may interactively guide the development of the learning model. The number of attributes used for classification is decreased in a controlled way; this may be supported by application of specially designed computer program system VVT (Hippe Z.S., Iwaszek G. 2000) TA \l "(Hippe Z.S., Iwaszek G. 2000) From research on a new method of development of quasi-optimal decison trees. In: Kłopotek M., Michalewicz M., Wierzchoń S.T. (Eds.) Intelligent Information Systems IX, Instytut Informatyki PAN, Warszawa 2000, pp. 31-35." \s "(Hippe Z.S., Iwaszek G. 2000)" \c 5 . Selection of the proper combination of attributes in the process of generating a learning model is based on two parameters: Frequency and Ranking. After some experimentation among 14 descriptive attributes only a few found to be important: TDS, color C-blue and diversity D-structureless-areas. Various sets of decision rules were generated, selecting the following combinations of attributes: TDS & C-Blue & Asymmetry & Border, TDS & C-Blue & D-structureless-areas, TDS & C-Blue and exclusively TDS. Learning models with 2-4 attributes had accuracy on the level of 81-85% of error rate. On the other hand, the learning model based exclusively on the attribute TDS has lower effectiveness. GTS generated a large number (198) of rules and only after combination and generalization of these rules a simplified version of 4 rules has been found. These rules make only 6 errors on the training and no errors on the test set. TDS turned out to be the most important attribute for correct distinction among Benign nevus, Suspicious nevus, and Melanoma malignant classes.

SSV is a decision tree (Grąbczewski and Duch 1999) TA \s "(Grąbczewski and Duch 1999)"  based on a separability criterion, maximizing an index of separability for a given split value for continuous attribute or a subset of discrete values. Decision tree is easily converted into a set of crisp logical rules, with the number of correctly classified cases divided by the number of total cases that the rule classifies giving a measure of confidence in diagnosis. Various pruning techniques are used to ensure the simplest set of rules that will generalize well. The advantage of the method is that it is fully automatic and very efficient so it can be used with cross-validation tests to provide estimators of statistical accuracy of the extracted rules. SSV finds two relevant attributes (TDS, C-BLUE). With the default setting of the only user-defined parameter, which is the degree of pruning, SSV gives 98% accuracy (5 errors) on the training set and 100% accuracy on the test set.

MLP2LN (Duch W., Adamczak R., Grąbczewski K. 2001) TA \l "(Duch W., Adamczak R., Grąbczewski K. 2001) A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 12 (2001) 277-306." \s "(Duch W., Adamczak R., Grąbczewski K. 2001)" \c 5  allows converting standard MLP neural network into a network performing logical function. This function is then written as a set of crisp logical rules, although fuzzy rules with soft-trapezoid membership functions may also be extracted. The procedure is almost fully automatic, giving the user a choice between the simplest possible description of the data and perhaps more accurate, but more complex description. MLP2LN gave essentially the same rules as the SSV decision tree.

FSM (Duch W., Adamczak R., Jankowski N. 1997) TA \l "(Duch W., Adamczak R., Jankowski N. 1997) New developments in the Feature Space Mapping model. 3rd Conf. on Neural Networks, Kule, Poland, Oct. 1997, pp. 65-70." \s "(Duch W., Adamczak R., Jankowski N. 1997)" \c 5 , Feature-Space Mapping, is a neural network estimating probability density of data using separable transfer functions. Each component of a transfer function may be interpreted as a context-dependent membership function. Using rectangular functions crisp logic rules are derived, while trapezoid, triangular or Gaussian functions derive fuzzy logic rules. The learning algorithm includes attribute selection and network pruning. Rectangular functions were used to obtain logical rules. 7 such nodes are created on average giving in 10-fold cross-validation 95.5% and 100% accuracy on the test set.

SBL Results

It is not surprising that for the 1-NN method the best result is obtained for VDM metric giving 96.15% (or 1 error) classification accuracy on test and 97.6% learning accuracy. For all metrics the optimal value of k is 1. The best result of attribute selection for VDM metric gives 99.2% of learning accuracy and 92.31% on test. The attribute selection method for Euclidean metric and k = 1 attains 100% accuracy on test with 98% learning accuracy. TDS and C-Blue attributes were left as the most important. Finally the prototype selection was used to reduce the number of reference vectors. This selection procedure  left only 13 prototype vectors (7 for the first class and 2 for every other class) still giving 100% accuracy on the test set and 6 errors on the training set minus reference set (237 = 250 – 13 vectors) corresponding to 97.5% training accuracy. Reducing the number of prototypes further to 7 (2 or 1 prototypes per class) decreases the training set accuracy to 91.4% but makes no errors on the test set. This proves that one cannot judge the expected accuracy of classification methods using results obtained on small test set only. Meta-learning gave 100% on test with 98.4% of learning accuracy. The optimal model was found to be attribute selection + optimization of distance function. Minkowski metric with exponent of 0.25 worked best in this combination of models.

1.15.3 The Ionosphere Dataset

This radar data was collected by a system in Goose Bay, Labrador by Vince Sigillito from Johns Hopkins University. There are two classes: “good” and “bad”. “Good” radar returns are those showing evidence of some type of structure in the ionosphere.  “Bad” returns are those that do not; their signals pass through the ionosphere. There are 350 cases divided into 200 training and 150 test samples. The number of attributes is 34 plus the class attribute. All the attributes are continuous. There are no missing values. Sigillito investigated using backprop and the perceSigptron training algorithm on this database. The linear perceptron attained 90.7% and non-linear perceptron 92% of classification accuracy on this dataset. With backpropagation it was possible to get an average of 96% of classification accuracy. The test dataset is not representative since it does not preserve the distribution of classes: the training set contains 99 (49.5%) of “bad” samples and 101 of “good” instances. The test set contains only 27 “bad” cases (18%) and 123 “good” samples (82%). Therefore the base rate (classification accuracy of the majority classifier) is rather high (82%).

David Aha found that nearest neighbor attains an accuracy of 92.1%, that Ross Quinlan's C4 algorithm attains 94.0% (no windowing), and that IB3 attained 96.7% (parameter settings: 70% and 80% for acceptance and dropping respectively).

SBL Results

The best 1-NN result for this dataset is obtained for the Manhattan metric for both raw and standardized data with accuracy values of 87.5% (learning accuracy) and 96% classification accuracy on test data. With attribute selection ranking method (with optimization of k) it was possible to remove the following attributes without degradation of prediction ability of the system on unseen cases and increasing the learning accuracy to 91.5%: 1, 2, 4, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 34. The 5-fold averaging of weighted simplex models, 5-fold committee of weighted models and a hybrid of 5-fold averaging and 10-fold committee of weighted methods preserve the earlier best result for this dataset. The summary of the results for this dataset is given in the table below.

	Method
	Accuracy %
	Reference

	IB3
	96.7
	Aha

	1-NN, Manhattan
	96.0
	SBL, GM kNN 

	MLP+BP
	96.0
	Sigillito

	C4.5
	94.9
	Hamilton

	3-NN Canberra
	94.7
	GM kNN

	RIAC
	94.6
	Hamilton

	C4 (no windowing) 
	94.0
	Aha

	C4.5 
	93.7
	Bennet and Blue

	SVM 
	93.2
	Bennet and Blue

	Non-linear perceptron
	92.0
	Sigillito

	FSM + rotation
	92.8
	Our

	1-NN, Euclidean
	92.1
	Aha, GM kNN 

	DB-CART
	91.3
	Shang, Breiman

	Linear perceptron
	90.7
	Sigillito

	OC1 DT 
	89.5
	Bennet and Blue

	CART
	88.9
	Shang, Breiman

	GTO DT 
	86.0
	Bennet and Blue


Table 4.2‑1: A summary of the classification results for the ionosphere data.
1.15.4 The Hepatobiliary Disorders Data

The hepatobiliary disorders data has been obtained from the Tokyo Dental and Medical University. It has 536 cases from which 163 are used as test, 9 attributes (values of medical tests) and 4 classes. This dataset has been used before (Hayashi. Y., Imura A., Yoshida K. 1990) TA \l "(Hayashi. Y., Imura A., Yoshida K. 1990) Fuzzy neural expert system and its application to medical diagnosis. In: 8th International Congress on Cybernetics and Systems, New York City 1990, pp. 54-61." \s "(Hayashi. Y., Imura A., Yoshida K. 1990)" \c 5  using knowledge-based fuzzy MLP with the results in the range of 33% to 63.3% depending on the actual fuzzy model used.

SBL Results

The best 1-NN result is obtained for standardized data and Manhattan metric (77.91% on test, 79.09% on training partition). With Canberra distance function, on raw data, it is possible to get even 80.37% of classification accuracy but the learning accuracy drops to 76.14%). With Minkowski metric, the exponent value of 0.6 and standardized data, the highest 1-NN learning accuracy is obtained (80.16%). The accuracy on test in this case is however only 74.23%. For the ASA minimization weight scaling procedure with Minkowski metric (exponent = 0.6) one observes improvement of the learning accuracy to 83.4% and the prediction ability on test is 82.8%

The summary of the results for this dataset is given in the table below.

	Method
	Training set
	Test set
	Reference

	IB2-IB4
	81.2-85.5
	43.6-44.6
	WEKA, our calculation

	Naive Bayes
	--
	46.6
	WEKA, our calculation

	1R (rules)
	58.4
	50.3
	WEKA, our calculation

	T2 (rules from decision tree)
	67.5
	53.3
	WEKA, our calculation

	FOIL (inductive logic)
	99
	60.1
	WEKA, our calculation

	FSM, initial 49 crisp logical rules
	83.5
	63.2
	FSM, our calculation

	LDA (statistical)
	68.4
	65.0
	our calculation

	DLVQ (38 nodes)
	100
	66.0
	our calculation

	C4.5 decision rules
	64.5
	66.3
	our calculation

	Best fuzzy MLP model
	75.5
	66.3
	Mitra et. Al

	MLP with RPROP
	 
	68.0
	our calculation

	Cascade Correlation
	 
	71.0
	our calculation

	Fuzzy neural network
	100
	75.5
	Hayashi

	C4.5 decision tree
	94.4
	75.5
	our calculation

	FSM, Gaussian functions
	93
	75.6
	our calculation

	FSM, 60 triangular functions
	93
	75.8
	our calculation

	IB1c (instance-based)
	--
	76.7
	WEKA, our calculation

	kNN, k=1, Canberra, raw
	76.1
	80.4
	WD/SBL

	K* method
	--
	78.5
	WEKA, our calculation

	SBL 1-NN, 4 features removed, Manhattan
	76.9
	80.4
	our calculation, KG

	SBL 1-NN, weighted (ASA)
	83.4
	82.8
	our calculation, KG


Table 4.2‑2: A summary of the classification results for the hepatobiliary data.

1.15.5 The Lancet Dataset

This data was originally studied in (Walker A. J. et. al 1999) where the authors describe a new system of visualization of multidimensional data TA \l "(Walker A.J. et. al 1999) Walker A.J., Cross S.S., Harrison R.F. Early Report. The Lancet,Vol 354" \s "(Walker A. J. et. al 1999)" \c 5 . We are grateful to the authors of this study for making their data available to us. The data consists of 692 consecutive adequate specimens of fine-needle aspirates of breast lumpus received at the Department of Pathology, Royal Hallamshire Hospital, Sheffield during 1992-1993. The final diagnosis of benign or malignant disease was made by open biopsy or, if this information was not available, on the clinical details of the request form, mammographic findings (when available), and by absence of further malignant specimens. A malignant outcome was confirmed by histology of the open biopsy or clinical details when the primary treatment was chemotherapy or hormonal therapy. 

The eleven input variables (plus class: benign or malignant) were patient’s age and observations of the ten defined features (which description we omit). All features were coded in binary format (0 if absent, 1 if present).

In the table below the leave-one-out classification results are contained. 

	Method
	Test set
	Reference

	Logistic
	96.1
	WEKA, our calculation

	K*
	95.8
	WEKA, our calculation

	SVM
	95.7
	WEKA, our calculation

	Backpropagation
	95.5
	WEKA, our calculation

	IB1
	95
	WEKA, our calculation

	NaiveBayes
	94.2
	WEKA, our calculation

	1R
	90.2
	WEKA, our calculation

	ZeroR
	66
	WEKA, our calculation


Table 4.2‑3: Leave-one-out results obtained with the WEKA data-mining tool for the lancet database.

SBL Results

The best leave-one-out result from SBL system (95.7% of both learning and classification accuracy) was obtained for Minkowski metric with exponent 0.3 and k=1 for raw data. Surprisingly VDM metric did not work best for this data. Any attempts to improve over the above result with more sophisticated SBL models failed. It is interesting to note that in the 10-fold cross-validation test, using reference selection SBL model, only in average 16.1 reference samples for each training partition were used to attain an excellent result of 95.7% of learning and 94.2% classification accuracy. It should be noted that there is no degradation of learning accuracy and that test result is only slightly worse than the one obtained with all reference vectors. It is very important from the point of view of case-based data explanation.

1.15.6 The Promoters Dataset

The promoter gene sequences database was first described in (Harley C. and Reynolds, R. 1987), where an analysis based on canonical pattern matching approach was made. In (Towell G., Shavlik J. and Noordewier M. 1990) a first machine learning approach to distinguishing between member/non-member of class of sequences with biological promoter activity was made. The results of this study indicated that machine learning techniques performed as well or better than classification based on canonical pattern matching – a method commonly used in TA \l "(Towell G., Shavlik J. and Noordewier M. 1990) Refinement of Approximate Domain Theories by Knowledge-Based Artificial Neural Networks. In Proceedings of the Eighth National Conference on Artificail Intelligence (AAAI-90)." \s "(Towell G., Shavlik J. and Noordewier M. 1990)" \c 5 

 TA \l "(Harley C. and Reynolds, R. 1987) Analysis of E. Coli Promoter Sequences. Nucleic Acids Research, 15: 2343-2361." \s "(Harley C. and Reynolds, R. 1987)" \c 5  biological literature. There are 57 attributes, which are sequential nucleotide positions (starting at position –50 and ending at position +7). Each of these fields is filled by one of the {A, G, T, C} nucleotides. There are two classes (positive or negative). Additionally an instance name was provided in the original database. The data is purely symbolic. There are no missing values. Classes are equally distributed (53 positive and 53 negative instances. The summary of the 10-fold cross-validation results is given in the table below. The calculations with the WEKA data mining tool have been performed by Tomasz Winiarski, B.Sc., and are indicated as (T.W.)

	Method
	Accuracy % 
	Reference

	NaiveBayes
	93.40
	WEKA (T.W.)

	NaiveBayesSimple
	93.40
	WEKA (T.W.)

	SMO (SVM)
	92.45
	WEKA (T.W.)

	adtree
	88.68
	WEKA (T.W.)

	VFI
	88.68
	WEKA (T.W.)

	Logistic
	87.74
	WEKA (T.W.)

	j48.PART
	87.74
	WEKA (T.W.)

	kstar
	83.96
	WEKA (T.W.)

	kernelDensity
	83.02
	WEKA (T.W.)

	IB1
	81.13
	WEKA (T.W.)

	IBk
	80.19
	WEKA (T.W.)

	j48.J48
	79.25
	WEKA (T.W.)

	DecisionTable
	77.36
	WEKA (T.W.)

	Id3
	77.36
	WEKA (T.W.)

	Prism
	76.42
	WEKA (T.W.)

	DecisionStump
	73.58
	WEKA (T.W.)

	OneR
	71.70
	WEKA (T.W.)

	HyperPipes
	68.87
	WEKA (T.W.)

	ZeroR
	47.17
	WEKA (T.W.)


SBL Results

In 10 fold cross-validation test SBL’s model k-NN with VDM probabilistic similarity function attained 90.44%. The model with the Evolving Transformation Metric (same costs), see (Marczak M. et.al 2002) TA \l "(Marczak M. et.al 2002) Marczak M., Duch W., Grudziński K., Naud A. Transformation Distances, Strings and Indentification of DNA Promoters. International Conference on Neural Networks and Soft Computing (ICNSC) 2002. In print." \s "(Marczak M. et.al 2002)" \c 5 , achieved 90.18%. The SBL calculations have been repeated 10 times and average is given. The standard deviation was in both cases slightly above 1%.

1.15.7 Monk Problems

The MONK's problems were the basis of a first international comparison   of learning algorithms. The result of this comparison is summarized in (Thrun S.B. et. al. 1991) TA \l "(Thrun S.B. et. al. 1991) The MONK's Problems - A Performnce Comparison of Different Learning algorithms, Technical Report CS-CMU-91-197, Carnegie Mellon University, 1991." \s "(Thrun S.B. et. al. 1991)" \c 5 . One significant characteristic of this comparison is that it was performed by a collection of researchers, each of whom was an advocate of the technique they tested (often they were the creators of the various methods). In this sense, the results are less biased than in comparisons performed by a single person advocating a specific learning method, and more accurately reflect the generalization behavior of the learning techniques as applied by knowledgeable users. There are three MONK's problems.  The domains for all MONK's problems are the same (described below).  One of the MONK's problems (monk 3) has noise added. For each problem, the domain has been partitioned into a train and test set. Below is given information concerning original data. 

1. Number of Instances: 432

2. Number of Attributes: 8 (including class attribute)

3. Attribute information:

           1. class: 0, 1 


     2. a1:    1, 2, 3

     3. a2:    1, 2, 3

     4. a3:    1, 2

     5. a4:    1, 2, 3

     6. a5:    1, 2, 3, 4

          7. a6:    1, 2

    8. Id:    (A unique symbol for each instance)

4.   Missing Attribute Values: None

      5.   Target Concepts associated to the MONK's problem:

           MONK-1: (a1 = a2) or (a5 = 1)

MONK-2: EXACTLY TWO of {a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, a6 = 1}

MONK-3: (a5 = 3 and a4 = 1) or (a5 /= 4 and a2 /= 3) (5% class noise added to the training set).

Our Experiments

Despite of the fact that MONK’s problems are hard for an instance based classifier we managed to obtain on some problems quite good results.

Monk 1 Problem

The plain 1-NN with Euclidean metric without standardization gives 85.88% on test with 76.61% learning accuracy. Optimal value of k for this model is however 3 (82.26% learning accuracy) but this degrades the result on test to 80.56%. Probabilistic similarity functions with different parameters work best for this model attaining 87.04% on test with 85.48% of learning accuracy and optimal value of k = 1.

Ranking attribute selection method finds redundant attributes (a4, a5, a7) for both Euclidean metric (k = 1) and VDM function (k = 1). The ranking attribute selection model attains 100% learning and classification accuracy for the VDM metric and 96.77% and 100% respectively for Euclidean measure. The ranking with the optimization of the number of nearest neighbors identifies correctly k = 1 as the optimal value of this parameters for this method. Learning and test accuracies for ranking with optimization of k and full best-first search methods are the same as for the plain ranking method for both Euclidean and VDM metric.

The ‘adding’ variant of attribute scaling based on searching performs poorly attaining 75% on test and 73.39% learning accuracy for the Euclidean metric and k = 1. On the other hand the ‘dropping’ variant gives the maximal 100% accuracies for test and learning with weight vector 1, 1, 0, 0, 1, 0 (Euclidean metric, k = 1, standardized data). The adding variant for the optimal VDM similarity function performs much better than for the Euclidean measure attaining 94.44% on test and 95.97% learning accuracy with weight vector 0, 0.1, 0.8, 0.2, 0.1. The ‘dropping’ version with the VDM metric gives 100% test and 98.39% learning accuracy with weight vector 1, 1, 1, 0, 0, 0.1. Tuning method starting from these weights gives 100% accuracy for both test and learning with weight vector 1, 0.9, 1, 0, 0, 0.1. 

From the above weighting experiments it can be observed that the variant of the attribute scaling method, as well as the similarity function used, strongly affect the results and optimal values of parameters.

Other results on this dataset include scaling with the simplex minimization method. For Euclidean metric and k = 1 the system attained 94.7% of classification accuracy on test with relatively high standard deviation of 5.3%. 5-fold weight averaging coupled to simplex minimization method gave 99.6% on test. The standard deviation for this calculation was 0.8%. 10-fold weight averaging slightly increases the prediction ability of the system (99.7%) on test with the same standard deviation. The best result with simplex minimization method has been obtained for the heterogeneous 10-fold committee with five fold averaging. In this case the system attained 99.98% of classification accuracy on test with standard deviation of 0.07%. The above experiments come form the paper (Duch W., Grudziński K. 2001) TA \l "(Duch W., Grudziński K. 2001) Ensembles of Similarity-Based Models. Intelligent Information Systems 2001, Advances in Soft Computing, Physica Verlag (Springer), pp. 75-85." \s "(Duch W., Grudziński K. 2001)" \c 5  where no learning accuracy was noted.

They summary of the preliminary meta-learning calculation is contained in the table below. The algorithm starts from the reference model, k-NN with Euclidean function and k = 1. At the first level the choice is: optimization of k, optimization of the type of similarity function (probabilistic measures have not been included in this calculation), selection of attributes and scaling of attributes.  Attribute weighting (1, 1, 0.1, 0, 0.9, 0), implemented here using a search procedure with the 0.1 quantization step, already at the first level of search for the best extension of the reference model achieves 100% accuracy of he test set with 99.2% (or single error) on the training partition. Additional complexity may not justify further search.

	Method
	Learning Accuracy %
	Accuracy on Test %

	Ref = k-NN, k=1, Euclidean

Ref + k = 3

Ref + Canberra distance

Ref + Attribute Selection (1, 2, 5 – remain)

Ref + Attribute Weights 
	76.6

82.3

79.8

96.8

99.2
	85.9

80.6

88.4

100

100

	Ref = k-NN, Euclidean Weights

Ref + Canberra distance
	99.2

100
	100

100


Table 4.2‑4 SBL metalearning results obtained for the monk 1 problem.
Monk 2 Problem 

The best plain 1-NN result is obtained for this problem for Canberra metric for raw data (90.74% on a test and 89.94% on a training partition). Optimal value of k for this metric is 1. Attribute selection did not improve the results for this dataset. The best result was obtained for the tuning attribute scaling method with raw data, Canberra distance function, k = 1, delta parameter = 0.005 and starting weights = 1, 0.9, 9.5, 1, 0.9, 10 (obtained from the other weighting method). For these settings the system attained 95.14% accuracy on a test and 90.53% learning accuracy on a training partition. The optimal weights are 1, 0.995, 9.5, 1, 0.9, 10. Obtaining such a good result is probably possible only by experimentation by hand.

Monk 3 Problem

The best plain 1-NN result for this dataset is obtained for Manhattan metric for raw data. In this case the system achieves 91.67% classification accuracy on test set and 86.89% learning accuracy. 1-NN attains higher prediction ability with VDM probabilistic metric (93.75%) but the learning accuracy is 84.43% (lower than for the Manhattan metric). Optimization of the number of nearest neighbors works the best for VDM metric. For k = 8, for raw data, the classification accuracy on test is 97.22% and the corresponding learning accuracy is 93.44% With selection of attributes, for VDM metric, raw data and k = 8, it is possible to reduce the number of attributes by dropping a2, a4, a5, and a7 without the loss of prediction ability. Interesting results are obtained for attribute scaling (adding variant). For the weights 0, 0, 1, 0, 0, 0.2 (VDM metric, raw data, k = 8) it was possible to maintain the best result. It is interesting to note that only 18 prototype vectors are needed to maintain the best result. Also with meta-learning it was possible to attain 97.22% classification accuracy on the test set. The comparison of various classifiers on monk data is presented in a table below.

	Method
	Monk-1
	Monk-2
	Monk-3

	AQ17-DCI
	100
	100
	94.2

	AQ17-HCI
	100
	93.1
	100

	AQ17-GA
	100
	86.8
	100

	Assistant Pro.
	100
	81.5
	100

	MFOIL
	100
	69.2
	100

	ID5R
	79.7
	69.2
	95.2

	IDL
	97.2
	66.2
	--

	ID5R-hat
	90.3
	65.7
	--

	TDIDT
	75.7
	66.7
	--

	ID3
	98.6
	67.9
	94.4

	AQR
	95.9
	79.7
	87.0

	CLASSWEB 0.10
	71.8
	64.8
	80.8

	CLASSWEB 0.15
	65.7
	61.6
	85.4

	CLASSWEB 0.20
	63.0
	57.2
	75.2

	PRISM
	86.3
	72.7
	90.3

	ECOWEB
	82.7
	71.3
	68.0

	Neural methods

	MLP
	100
	100
	93.1

	MLP+reg.
	100
	100
	97.2

	Cascade correlation
	100
	100
	97.2

	FSM, Gaussians
	94.5
	79.3
	95.5

	SSV
	100
	80.6
	97.2

	C-MLP2LN
	100
	100
	100

	Other methods

	SBL
	100
	95.14
	97.22


Table 4.2‑5 A summary of the classification results for the MONK's problems

1.16 Detailed Comparison of Selected SBL Algorithms for Several Datasets

In this section a detailed comparison of many SBL algorithms for several datasets described earlier has been conducted. It is a very interesting study and the trends observed in these calculations are summarized at the end of this section.

1.16.1 Notation

By Std we denote standardization. WVDM K. stands for the term distinguishing original from simplified VDM metric. Test accuracy given in bold corresponds to the highest learning accuracy. Underlined test accuracy is the highest observed system’s prediction ability. Exp. denotes Minkowski’s metric exponent. FBFS is a full best first search attribute selection method and 1 and 2 are versions for speeding up the calculations. Other SBL settings are described in Chapter 3.

1.16.2 The Monk1 Dataset

Influence of the choice of distance measures and standardization of data on accuracy. 
	1-NN ,Settings for Adaptive Parameters
	Test

Accuracy (%)
	Learning Accuracy (%)

	Euclidean, Std = OFF
	85.88
	76.61

	Euclidean, Std = ON
	81.48
	72.58

	Manhattan, Std = OFF
	85.65
	76.61

	Manhattan, Std = ON
	84.03
	75.81

	Chebychev, Std = OFF 
	81.94
	76.61

	Chebychev, Std = ON
	82.41
	76.61

	Canberra, Std = OFF
	88.43
	79.84

	Canberra, Std = ON
	74.54
	63.71

	VDM, Std = OFF, WVDM K. = ON
	87.04
	85.48

	VDM, Std = OFF, WVDM K. = OFF
	87.04
	85.48


	k-Optimization-NN
	Test

Accuracy (%)
	Learning Accuracy (%)
	Optimal k

	Euclidean, Std = OFF
	80.56
	82.26
	k = 3

	Euclidean, Std = ON
	69.91
	79.03
	k = 13

	Manhattan, Std = OFF
	81.48
	82.26
	k = 3

	Manhattan, Std = ON
	73.84
	79.84
	k = 10

	Chebychev, Std = OFF
	81.94
	76.61
	k = 1

	Chebychev, Std = ON
	82.41
	76.61
	k = 1

	Canberra, Std = OFF
	78.01
	84.68
	k = 6

	Canberra, Std = ON
	65.05
	70.16
	k = 4

	VDM, Std = OFF WVDM. K = ON
	87.04
	85.48
	k = 1

	VDM, Std =  OFF WVDM.K = OFF
	87.04
	85.48
	k = 1


	Metric-Optimization-NN
	Test

Accuracy (%)
	Learning Accuracy (%)
	Optimal  Metric

	k = 1, Std = OFF (incl. Minkowski M., Exp = (0.25…10, 0.25), WVDM K. = ON /OFF
	87.04
	85.48
	VDM

	k = 1, Std = ON (incl. Minkowski M., Exp = (0.25…10, 0.25), WVDM K. = ON /OFF
	87.04
	85.48
	VDM


	Attribute Selection-NN
	Test

Accuracy (%)
	Learning Accuracy (%)
	Attributes Turned Off

	Ranking, Global Ref., >/>=, Euclidean, k = 1, Std = OFF
	100.00
	96.77
	3, 4, 6

	Ranking, Global Ref., >/>=, Euclidean, k = 1, Std = ON
	100.00
	100.00
	3, 4, 6

	Incr. Ranking, Local Ref., >/>= Euclidean, k = 1, Std = OFF
	100.00
	96.77
	3, 4, 6, k = 1

	Incr. Ranking, Local Ref., >/>= Euclidean, k = 1, Std = ON
	100.00


	100.00


	3, 4, 6, k = 1

	FBFS/FBFS 1, Local/Global Ref., >/>=, Euclidean, k = 1, Std = OFF
	100.00
	96.77
	3, 4, 6

	FBFS/FBFS 1/2, Local/Global Ref., >/>=, Euclidean, k = 1, Std = ON
	100.00


	100.00
	3, 4, 6

	FBFS 2, Local/Global Ref., >, Euclidean, k = 1, Std = OFF
	97.22
	94.35
	3, 4



	FBFS 2, Local/Global Ref., >=, Euclidean, k = 1, Std = OFF
	100.00
	96.77
	3, 4, 6


	Attribute Selection-NN
	Test

Accuracy (%)
	Learning Accuracy (%)
	Attributes Turned Off

	Ranking, Global Ref., >/>= WVDM K. = ON/ OFF, VDM, k = 1, Std = ON/OFF
	95.83
	95.97
	3, 4

	Incr. Ranking, Local Ref., >/>=, WVDM K.= ON/ OFF, VDM, k = 1…10, Std = ON/OFF
	100.00
	98.39
	3, 4, 6, k = 1

	FBFS, Local/Global Ref., >/>=, WVDM K.= ON/ OFF, VDM, k = 1, Std = ON/OFF
	100.00


	98.39


	3, 4, 6

	FBFS 1, Local/Global Ref., >/>=, WVDM K.= ON/ OFF, VDM, k = 1, Std = ON/OFF
	95.83


	95.97
	3, 4

	FBFS 2, Local/Global Ref., >/>= WVDM K. = ON, k = 1, Std = ON/OFF
	95.83
	95.97
	3, 4




	Attribute Weighting-NN
	Test

Accuracy (%)
	Learning Accuracy (%)
	Optimal Weigths

	Searching-Adding, 0…1, 0.1 Euclidean, k = 1, Std = ON/OFF
	75.00
	73.39
	0, 0, 0, 0, 1, 0

	Searching-Dropping, 0…1, 0.1 Euclidean, k = 1, Std = OFF
	100.00
	99.19
	1, 1, 0.1, 0, 0.9, 0

	Searching-Dropping, 0…1, 0.1 Euclidean, k = 1, Std = ON
	100.00
	100.00
	1, 1, 0, 0, 1, 0


	Attribute Weighting-NN, (VDM, k = 1)
	Test

Accuracy (%)
	Learning Accuracy (%)
	Optimal Weigths

	Searching-Adding, 0…1, 0.1, WVDM K. = ON/OFF, Std = OFF
	94.44
	95.97
	0, 0.1, 0.8, 0.2, 0, 1

	Searching-Dropping, 0…1, 0.1, WVDM K. = ON/OFF, Std = OFF
	100.00
	98.39
	1, 1, 1, 0, 0, 0.1

	Tuning, Delta = 0.1, Starting W. = 1, 1, 1, 0, 0, 0.1, WVDM K. = ON/OFF, Std = OFF
	100.00
	100.00
	1, 0.9, 1, 0, 0, 0.1


1.16.3 The Monk2 Dataset

	1-NN 
	Test

Accuracy (%)
	Learning Accuracy (%)

	Euclidean, Std = OFF
	76.62
	67.46

	Euclidean, Std = ON
	81.02
	66.27

	Manhattan, Std = OFF
	76.39
	65.68

	Manhattan, Std = ON
	83.56
	72.78

	Chebychev, Std = OFF 
	80.32
	62.72

	Chebychev, Std = ON
	82.64
	69.82

	Canberra, Std = OFF
	90.74
	89.94

	Canberra, Std = ON
	76.62
	62.72

	VDM, Std = ON/OFF, WVDM K. = ON
	74.54
	61.54

	VDM, Std = ON/OFF, WVDM K. = OFF
	74.54
	60.95


	k-Optimization-NN
	Test

Accuracy (%)
	Learning Accuracy (%)
	Optimal k

	Euclidean, Std = OFF
	76.62
	67.46
	k = 1

	Euclidean, Std = ON
	74.07
	71.60
	k = 4

	Manhattan, Std = OFF
	76.39
	65.68
	k = 1

	Manhattan, Std = ON
	83.56
	72.78
	k = 1

	Chebychev, Std = OFF
	80.32
	62.72
	k = 1

	Chebychev, Std = ON
	82.64
	69.82
	k = 1

	Canberra, Std = OFF
	90.74
	89.94
	k = 1

	Canberra, Std = ON
	75.69
	69.82
	k = 2

	VDM, Std = ON/OFF WVDM. K = ON
	74.54
	61.54
	k = 1

	VDM, Std =  ON/OFF WVDM.K = OFF
	74.54
	60.95
	k = 1


	Metric-Optimization-NN
	Test

Accuracy (%)
	Learning Accuracy (%)
	Optimal Metric

	k = 1, Std = OFF (incl. Minkowski M., Exp = (0.25…10, 0.25), WVDM K. = ON /OFF
	90.74
	89.94
	Canberra

	k = 1, Std = ON (incl. Minkowski M., Exp = (0.25…10, 0.25), WVDM K. = ON /OFF
	83.56
	72.78
	Manhattan

	Attribute Selection-NN (Euclidean, k = 1)
	Test

Accuracy (%)
	Learning Accuracy (%)
	 (Attributes Turned Off)

	Ranking, Global Ref., >/>=,  Std = OFF; FBFS/FBFS 1/2, Global Ref., >/>=
	76.62
	67.46
	-

	Ranking, FBFS, FBFS 1/2, Global Ref., >/>=,, Std = ON
	81.02
	66.27
	-

	Incr. Ranking, Local Ref., >/>=, Std = ON/OFF; FBFS, Local Ref,  >/>=,Std = OFF
	64.35
	71.60
	1, 2, 4, k = 1; 1, 2, 4

	FBFS, Local Ref., >/>=, Std = ON
	62.50
	65.09
	1, 2, 4, 5

	FBFS Global Ref., >, Std = OFF
	76.62
	67.46
	-

	FBFS 1/2, Local Ref., >/>=, Std = OFF
	71.06


	63.91
	2

	FBFS 1/2, Local Ref., >/>=, Std = ON
	75.00


	63.31
	5


	Attribute Selection-NN (Canberra, k = 1)
	Test

Accuracy (%)
	Learning Accuracy (%)
	Attributes Turned Off

	Ranking, Global Ref., >/>=,  Std = OFF; Incr. Ranking, Local Ref., >/>=, Std = OFF; FBFS, FBFS 1/2, Global Ref., >/>=, Std = OFF
	90.74
	89.94
	-; -, k = 1;-

	FBFS, FBFS 1/2, Local Ref., >/>=, Std = OFF
	89.35
	86.39
	4

	Ranking, Global Ref., >/>=, Std = ON;
	63.19
	62.72
	1, 2, 4, 5, 6

	Incr. Ranking, Local Ref., >, Std = ON
	68.29
	67.46
	2, 5, k = 4

	Incr. Ranking, Local Ref., >, Std = ON
	67.59
	66.27
	2, 5, 6

	FBFS, Local Ref., >/>=, Std = ON; FBFS, Global Ref., >, Std = ON; FBFS, Global Ref., >=, Std = ON;
	80.56
	73.96
	2, 3, 4, 5, 6; 2, 3, 4, 5; 2, 3, 4, 5, 6

	FBFS 1, Local Ref., >/>=, Std = ON; FBFS 1, Global Ref., >, Std = ON; FBFS 1, Global Ref., >=, Std = ON
	84.26
	68.05
	2, 4, 5, 6; 2, 4, 5; 2, 4, 5, 6

	FBFS 2, Local/Global Ref, >/>=, Std = ON
	79.40
	67.46
	2, 5


	Attribute Weighting-NN, (Euclidean, k = 1)
	Test

Accuracy (%)
	Learning Accuracy (%)
	Optimal Weigths

	Searching-Adding, 0…1, 0.1, Std = OFF/ON
	63.43
	63.31
	0, 0.1, 0, 0, 0, 1

	Searching-Dropping, 0…1, 0.1, Std = OFF
	64.35
	71.60
	0, 0, 1, 0, 1, 1

	Searching-Dropping, 0…1, 0.1, Std = ON
	84.03
	76.92
	0.6, 1, 1, 1, 1, 1

	Tuning, Delta = 0.1, 0.2, 0.5 Starting W. = 0, 0, 1, 0, 1, 1 Std = OFF
	64.35
	71.60
	0, 0, 1, 0, 1, 1


	Attribute Weighting-NN (Canberra, k = 1), Std = OFF
	Test

Accuracy (%)
	Learning Accuracy (%)
	Optimal Weigths

	Searching-Adding, 0…1, 0.1, 
	63.43
	63.31
	0, 0.1, 0, 0, 0, 1

	Searching-Dropping, 0…1, 0.1
	72.92
	74.56
	1, 0, 1, 0.6, 0.9, 1

	Tuning, Delta = 0.1, Starting W. = 1, 0 ,1, 0.6, 0.9, 1
	92.13
	92.90
	1, 0.99375, 0.9875, 0.6, 0.9, 1

	Tuning, Delta = 0.1, Starting W. = 1, 1, 1, 1, 1, 1 
	90.51
	90.53
	1, 0.9, 1, 1, 1, 1

	Tuning, Delta = 0.5, Starting W. = 1, 1, 1, 1, 1, 1 
	92.59
	90.53
	1, 0.75, 9.5, 1, 0.875, 10

	Tuning, Delta = 0.1, Starting W. = 1, 0.75, 9.5, 1, 0.875000, 10
	93.06
	89.94
	1, 0.9, 9.5, 1, 0.9, 10

	Tuning, Delta = 0.005, Starting W. = 1, 0.9, 9.5, 1, 0.9, 10,
	95.14
	90.53
	1, 0.995, 9.5, 1, 0.9, 10


	Attribute Weighting-NN (Canberra, k = 1), Std = ON
	Test

Accuracy
	Learning Accuracy
	Optimal Weigths

	Searching-Adding, 0…1, 0.1, 
	64.35
	71.60
	0, 0, 0.1, 0, 0.2, 1

	Searching-Dropping, 0…1, 0.1
	76.85
	69.82
	0.1, 0.9, 1, 1, 0, 1

	Tuning, Delta = 0.9, Starting W. = 0.1, 0.9, 1, 1, 0, 1
	79.63
	73.37
	0.1, 1, 1, 10, 9.1, 1

	Tuning, Delta = 0.2, Starting W. = 0.1, 0.9, 1, 1, 0, 1
	79.63
	73.96
	0.1, 0.3, 1, 1, 0.8, 1

	Tuning, Delta = 0.2, Starting W. = 0.1, 0.3, 1, 1, 0.8, 1
	79.63
	74.56
	0.1, 0.3, 1, 0.8, 0.8, 1


1.16.4 The Monk3 Dataset

	1-NN 
	Test

Accuracy (%)
	Learning Accuracy (%)

	Euclidean, Std = OFF
	90.97
	86.89

	Euclidean, Std = ON
	82.64
	79.51

	Manhattan, Std = OFF
	91.67
	86.89

	Manhattan, Std = ON
	83.56
	81.15

	Chebychev, Std = OFF 
	80.56
	81.15

	Chebychev, Std = ON
	79.86
	80.33

	Canberra, Std = OFF
	78.47
	83.61

	Canberra, Std = ON
	79.40
	80.33

	VDM, Std = ON/OFF, WVDM K. = ON/OFF
	93.75
	84.43


	k-Optimization-NN
	Test

Accuracy (%)
	Learning Accuracy (%)
	Optimal k

	Euclidean, Std = OFF
	87.50
	89.34
	k = 16

	Euclidean, Std = ON
	87.96
	88.52
	k = 26

	Manhattan, Std = OFF
	92.82
	91.80
	k = 10

	Manhattan, Std = ON
	91.44
	91.80
	k = 28

	Chebychev, Std = OFF
	82.18
	81.15
	k = 1

	Chebychev, Std = ON
	81.25
	83.61
	k = 2

	Canberra, Std = OFF
	84.49
	86.89
	k = 8

	Canberra, Std = ON
	79.40
	80.33
	k = 1

	VDM, Std = ON/OFF WVDM. K = ON/OFF
	97.22
	93.44
	k = 8


	Metric-Optimization-NN, 
	Test

Accuracy
	Learning Accuracy
	Optimal Metric

	k = 1, Std = OFF (incl. Minkowski M., Exp = (0.25…10, 0.25), WVDM K. = ON /OFF
	90.97
	86.89
	Euclidean

	k = 1, Std = ON (incl. Minkowski M., Exp = (0.25…10, 0.25), WVDM K. = ON /OFF
	93.75
	84.43
	VDM


	Attribute Selection-NN, (VDM, k = 8, Std = OFF)
	Test

Accuracy (%)
	Learning Accuracy (%)
	Attributes Turned Off

	Ranking, Global Ref., >; FBFS/FBFS 1/2, Global Ref., >
	97.22
	93.44
	-

	Ranking, Global Ref., >=; FBFS, Local Ref, >/>=; Global Ref, >= 
	97.22
	93.44
	1, 3, 4, 6

	Incr. Ranking, Local Ref., >/>=
	97.22
	93.44
	1, 3, 4, 6, k = 1

	FBFS 1/2, Local Ref., >; FBFS 1/2 Local/Global Ref, >=
	97.22
	93.44
	1; 6


	Attribute Weighting-NN, the Variant of  the SBL Algorithm and the Settings for Adaptive Parameters (VDM, k = 8, Std = OFF)
	Test

Accuracy
	Learning Accuracy
	Optimal Weigths

	Searching-Adding, 0…1, 0.1
	97.22
	93.44
	0, 0, 1, 0, 0, 0.2

	Searching-Dropping, 0…1, 0.1
	97.22
	93.44
	1, 1, 1, 1, 1, 1


	Prototype Selection-NN, (VDM, k = 8, Std = OFF)
	Test

Accuracy (%)
	Training Accuracy (%)
	 ( # Reference Vectors)

	Delta = 95
	97.22
	93.44
	122 (All)

	Delta = Auto (93.44)
	97.22
	93.44
	20

	Delta = 90
	97.22
	93.44
	18

	Delta = 85
	88.89
	87.70
	18


1.16.5 The Nevi Dataset

	 1-NN 
	Test

Accuracy (%)
	Learning Accuracy (%)

	Euclidean, Std = OFF
	69.23
	89.20

	Euclidean, Std = ON
	80.77
	87.20

	Manhattan, Std = OFF
	80.77
	90.00

	Manhattan, Std = ON
	76.92
	88.80

	Chebychev, Std = OFF 
	46.15
	76.80

	Chebychev, Std = ON
	61.54
	83.60

	Canberra, Std = OFF
	76.92
	87.60

	Canberra, Std = ON
	76.92
	84.80

	VDM, Std = ON/OFF, WVDM K. = ON
	96.15
	97.60

	VDM, Std = ON/OFF, WVDM K. = OFF
	88.46
	96.80

	k-Optimization-NN,  
	Test

Accuracy
	Learning Accuracy
	Optimal k

	Euclidean, Std = OFF
	69.23
	89.20
	k = 1

	Euclidean, Std = ON
	80.77
	87.20
	k = 1

	Manhattan, Std = OFF
	80.77
	90.00
	k = 1

	Manhattan, Std = ON
	76.92
	88.80
	k = 1

	Chebychev, Std = OFF
	46.15
	76.80
	k = 1

	Chebychev, Std = ON
	61.54
	83.60
	k = 1

	Canberra, Std = OFF
	76.92
	87.60
	k = 1

	Canberra, Std = ON
	76.92
	84.80
	k = 1

	VDM, Std = ON/OFF WVDM. K = ON
	96.15
	97.60
	k = 1

	VDM, Std = ON/OFF WVDM. K = OFF
	88.46
	98.80
	k = 10


	Metric-Optimization-NN
	Test

Accuracy (%)
	Learning Accuracy (%)
	Optimal Metric

	k = 1, Std = ON/OFF (incl. Minkowski M., Exp = (0.25…10, 0.25), WVDM K. = ON; WVDM K. = OFF 
	96.15; 88.46
	97.60; 96.80
	VDM; VDM


	Attribute Selection-NN, (VDM, k = 1, Std = OFF, WVDM K. = ON)
	Test

Accuracy (%)
	Learning Accuracy (%)
	 (Attributes Turned Off)

	Ranking, Global Ref., >;>= 
	88.46; 92.31
	98.00; 97.60
	1, 3,  6, 7, 12;       1, 2, 3, 5, 6, 7, 10,  12

	Incr. Ranking, Local Ref., >;>=
	92.31; 84.62
	99.20; 98.00
	1, 3, 6, 12, k = 5; 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, k = 3 

	FBFS , Local Ref., >/>=;FBFS, Global Ref., >; FBFS, Global Ref., >=
	84.62
	99.60
	1, 5, 6, 8, 9, 12; 1, 5; 1, 5, 12

	FBFS 1, Local Ref., >/>=, FBFS 1, Global Ref., >=; FBFS 1/FBFS 2, Global Ref., >
	92.31
	99.20
	1, 7, 12; 1

	FBFS 2, Local Ref., >; FBFS 2, Local Ref., >=; FBFS 2, Global Ref., >=
	92.31
	99.20
	1, 7; 1, 7, 12; 1, 12


	Attribute Selection-NN, (Euclidean, k = 1, Std = OFF)
	Test

Accuracy (%)
	Learning Accuracy (%)
	Attributes Turned Off

	Ranking, Global Ref., >;>= 
	100; 100
	96.8; 97.2
	2  3  5  7  8  9  10  11  12  13; 2  3  5  6  7  8  9  10  11  12  13

	Incr. Ranking, Local Ref., >,>=
	100
	98
	1  2  3  5  7  8  9  10  11  12  13, k = 2;

	FBFS, Local Ref., >/>=;FBFS, Global Ref., >/>=
	100; 73.08
	98; 94.4
	1  2  3  5  7  8  9  12  13; 8 5 1 




	Attribute Selection-NN, (Manhattan, k = 1, Std = OFF)
	Test

Accuracy (%)
	Learning Accuracy (%)
	 Attributes Turned Off

	Ranking, Global Ref., >;>= 
	100
	97.6
	1  2  3  5  7  8  9  10  11  12  13; 1  2  3  5  6  7  8  9  10  11  12  13

	Incr. Ranking, Local Ref., >, >=
	100
	98
	1  2  3  5  7  8  9  10  11  12  13, k = 2

	FBFS, Local Ref., >; FBFS, Local Ref., >=;FBFS, Global Ref., >/>=
	100; 100; 88.46; 80.77
	97.6; 98; 94; 94.4
	1  2  3  5  6  7  8  9  10  11  12  13; 1  2  3  5  7  8  9  12  13; 3 13; 1  5  8


	Attribute Weighting-NN, 
	Test

Accuracy
	Learning Accuracy
	Optimal Weigths

	(Manhattan, k = 1, Std = OFF) Searching-Adding, 0…1, 0.1
	88.46
	98.8
	0.1, 0, 0, 0.6, 0.8, 0, 0, 0, 0, 0, 0.2, 0, 0.2, 1

	(Manhattan, k = 1, Std = OFF) Searching-Dropping, 0…1, 0.1
	80.77
	96.8
	0.5, 1, 0, 1, 0.1, 1, 0.5, 0, 0.3, 1, 1, 1, 0, 1

	(Euclidean, k = 1, Std = OFF) Searching-Adding, 0…1, 0.1
	96.15
	98
	0.1, 0, 0, 0.1, 0.2, 0, 0, 0, 0, 0, 0.3, 0, 0.1, 1

	(Euclidean, k = 1, Std = OFF) Searching-Dropping, 0…1, 0.1
	69.23
	92.4
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1


1.16.6 The Hepatobiliary Disorders Dataset

	1-NN 
	Test

Accuracy (%)
	Learning Accuracy (%)

	Euclidean, Std = OFF
	66.26
	65.95

	Euclidean, Std = ON
	77.91
	72.65

	Manhattan, Std = OFF
	71.17
	69.44

	Manhattan, Std = ON
	77.91
	79.09

	Chebychev, Std = OFF 
	65.03
	65.68

	Chebychev, Std = ON
	77.30
	70.24

	Canberra, Std = OFF
	80.37
	76.14

	Canberra, Std = ON
	64.42
	67.56


	k-Optimization-NN
	Test

Accuracy
	Learning Accuracy
	Optimal k

	Euclidean, Std = OFF
	66.26
	65.95
	k = 1

	Euclidean, Std = ON
	77.91
	72.65
	k = 1

	Manhattan, Std = OFF
	71.17
	69.44
	k = 1

	Manhattan, Std = ON
	77.91
	79.09
	k = 1

	Chebychev, Std = OFF
	65.03
	65.68
	k = 1

	Chebychev, Std = ON
	77.30
	70.24
	k = 1

	Canberra, Std = OFF
	80.37
	76.14
	k = 1

	Canberra, Std = ON
	64.42
	67.56
	k = 1


	Metric-Optimization-NN
	Test

Accuracy (%)
	Learning Accuracy (%)
	Optimal Metric

	k = 1, Std = OFF (incl. Minkowski M., Exp = (0.25…10, 0.25) 
	80.37
	76.14
	Canberra

	k = 1, Std = ON (incl. Minkowski M., Exp = (0.25…10, 0.25)
	76.69
	79.36
	Minkowski, Exp. = 0.75

	k = 1, Std = ON, Minkowski M., Exp = (0.1…10, 0.1)
	74.23
	80.16
	Minkowski, Exp. = 0.6


	Attribute Selection-NN (Canberra, k = 1, Std = OFF)
	Test

Accuracy (%)
	Learning Accuracy (%)
	Attributes Turned Off

	Ranking, >
	79.75
	78.08
	8;

	Ranking, >=
	69.94
	72.39
	3,8,9

	Incr. Ranking, >, >=; Full Search, Local Reference, >, >=, Full Search, Global Reference, >; Full Search, Global Reference, >
	79.75
	78.02
	8,9, k = 1; 8,9; 8


	Attribute Weighting-NN 
	Test

Accuracy (%)
	Learning Accuracy (%)
	Optimal Weigths

	Searching-Adding, 0…1, 0.1, (Canberra, k = 1), Std = OFF
	79.75
	78.82
	1, 0.4, 0.8, 0.6, 0.2, 0.7, 0.8, 0.3, 0.7

	Searching-Dropping, 0…1, 0.1, (Canberra, k = 1), Std = OFF
	79.14
	79.09
	1, 1, 1, 1, 1, 1, 1, 0, 0.4



	Searching-Adding, 0…1, 0.1, (Minkowski, k = 1, Exp = 0.6), Std = ON, 
	82.82
	79.62


	1, 0.5, 0.8, 0.5, 0.2, 0.4, 0.1, 0.7, 0.4

	Searching-Dropping, 0…1, 0.1, (Minkowski, k = 1, Exp = 0.6), Std = ON,
	78.53
	79.62
	1, 1, 1, 1, 0.4, 1, 0.8, 1, 1


1.16.7 The Ionosphere Dataset

	1-NN  (for probabilistic: weighted kernel: ON)
	Test

Accuracy (%)
	Learning Accuracy (%)

	Euclidean, Std = OFF; Euclidean-VDM; Euclidean-P(C|X)
	92; 91.33; 93.33
	85; 85; 85.5

	Euclidean, Std = ON
	92
	86

	Manhattan, Std = OFF; Manhattan-VDM; Manhattan-P(C|X)
	96; 96; 96
	87.5; 87; 87.5

	Manhattan, Std = ON
	96
	87.5

	Chebychev, Std = OFF, Chebychev-VDM; Chebychev-P(C|X); 
	91.33; 91.33; 91.33;
	84; 83; 83.5

	Chebychev, Std = ON
	92.67
	81

	Canberra, Std = OFF, Canberra-VDM; Canberra-P(C|X);
	90; 90
	85; 84

	Canberra, Std = ON
	80.67
	73

	VDM, Std = OFF, WVDM K. = ON (all calculations); P(C|X); DVDM;
	82.67; 92.67; 91.33
	74.5; 77; 62

	Minkowski, STD = ON, Exp = 0.5, STD = OFF, Exp = 0.6, 
	95.33
	89.5


	k-Optimization-NN 
	Test

Accuracy (%)
	Learning Accuracy (%)
	Optimal k

	Euclidean, Std = OFF
	92
	85
	 k = 1

	Euclidean, Std = ON
	92
	86
	k = 1

	Manhattan, Std = OFF
	96
	87.5
	k = 1

	Manhattan, Std = ON
	96
	87.5
	k = 1

	Chebychev, Std = OFF
	94
	86.5
	k = 4

	Chebychev, Std = ON
	92.67
	81
	k = 1

	Canberra, Std = OFF
	95.33
	89.5
	k = 2

	Canberra, Std = ON
	80.67
	73
	k = 1


	Attribute Selection-NN, (Manhattan, k = 1, STD = OFF)
	Test

Accuracy (%)
	Learning Accuracy (%)
	 (Attributes Turned Off)

	Ranking, Global Ref., >;>= 
	95.33; 95.33
	89.5; 90.5
	4, 6, 12, 13, 14, 17, 20, 21, 22, 27, 30, 31;

2, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17,  18, 20, 2, 22, 25, 26, 27, 28, 30, 31, 32

	Incr. Ranking, Local Ref., >;>=
	96
	91.5
	1  2  4  6  9  10  11  12  13  14  15  16  17  18  19  20  21  22  24  25  26  27  28  30  31  32  34; 

	FBFS , Local Ref., >; FBFS, Local Ref. >=,  Global Ref., >; FBFS, Global Ref., >=
	89.33; 90
	93; 93.5
	1  2  4  6  9  10  11  12  13  14  15  17  18  19  20  22  23  24  25  26  27  28  30  31  32;            
1-4, 9-14, 17-23, 26-34


	Weighted-NN 
	Test

Accuracy
	Learning Accuracy
	Optimal Weigths

	Weighting Searching-Adding, 0…1, 0.1, (Manhattan, k = 1), Std = OFF
	88.67
	94.5
	0.4, 0, 0, 0, 0.4, 0, 0.2, 0.1, 0, 0, 0, 0, 0, 0, 0, 0.4, 0, 0, 0, 0, 0.1, 0.1, 0, 0, 0, 0, 1, 0, 0.5, 0, 0, 0, 0, 0.1

	Weighting by Searching (Dropping), 0…1, 0.1, (Manhattan, k = 1), Std = OFF
	96
	90.5
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0.3, 1, 1, 1, 1 



	Weighting by Searching (Adding), 0…1, 0.1, (Canberra, k = 1), Std = OFF, 
	86.67
	90.5
	0, 0, 0, 0, 0, 0.6 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 0, 0, 0.6, 0, 0.9 0, 0.1, 0, 0, 0, 1, 0, 0.2, 0, 0.9, 0.6, 0, 0

	Weighting by Searching (Dropping), 0…1, 0.1, (Canberra, k = 1), Std = OFF,
	87.33
	91
	1, 1, 0.1, 0, 1, 0, 1, 1, 0.4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0.5, 1


1.17 Trends

In the above large scale comparison of various SBL models several trends can be observed. 
First, the result with optimal learning accuracy is very often worse that the best result obtained for the test set. The reason is mainly overfitting and sometimes (but rarely) the test set was not representative for the underlying data distribution. The overfitting may be eliminated by learning through repeated cross-validation with randomization instead of leave-one-out learning. Also the introduction of the validation partition could significantly improve the results. The problem with validation is that it is rarely performed in machine learning and is rather more common in the neural network community. This makes it hard to compare the results with ones obtained by other researchers. 

Another observation is also that different attribute selection methods give usually different output attributes and it is hard to find the best method by observing only learning accuracy. In this case also repeated cross-validation should be used and validation partition should be created.

What concerns weighting, the adding method zeros much more weights than the dropping method. Usually only one weighting method worked well for a given dataset. It should be noted that because of the searching technique employed in adding and dropping method the weights are very simple. Those generated from methods based on minimization (not listed in the experiments above) are much more difficult to interpret.

1.18 Conclusions and Further Research

In this thesis several new extensions of the nearest neighbor method have been presented. Numerical experiments indicate that often those methods improve the prediction ability of the plain k-NN method. The SBL system turned out to be in the top among many other, well known systems in benchmark tests. The results could be much better after introduction of repeated cross-validation as a method of learning (instead of the leave-one-out procedure) and with the help of validation test. The result of the research carried out in this thesis is the SBL program which when the first version is finished will be released, free of charge, to the scientific community. The further steps will include implementation of the k-NN neural network, the attempt of deriving prototype and crisp logical rules, implementation of new similarity functions, optimization of the positions of the prototype instances and introduction of local measures in different areas of the input space. 
The framework of similarity-based methods (SBM) is very rich and only a small fraction of the proposed methods have been implemented. A lot of precious time took the adaptation of the SBL program so that it could be used by the researchers who are not familiar with the similarity-based methods: the program is equipped with a simple but functional graphical user interface. A strong emphasis in the future will be put on speeding up the program so that it could be used on large data. The program in its current form is only a low-scale prototype single-processor version optimized for low memory consumption.
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� If k = 1 and there are more than one reference vector with the minimal distance it is strongly advised to include them all to the classification procedure. This holds also for k > 1, for example if k = 3 and the shortest distances to the reference cases are 1, 1, 1, 2, 3, 3, 4, … k should be reset to 5.  For more details see Section � REF _Ref10709183 \r \h ��3.1.3� where we also explain what to do with ‘ties’ (situations where majority rule is not applicable, for example if k = 2 and there are two reference cases belonging to two distinct classes.) 


� See for example (Waltz 1995)� TA \l "Waltz D.L (1995) Memory Based Reasoning. In: M. A. Arbib, ed, The Handbook of Brain Theory and Neural Networks (MIT Press), pp. 568-570" \s "(Waltz 1995)" \c 5 � for an application where 200.000 reference patterns and millions vectors for classification have been used.


� Currently SBL can be trained exclusively with the leave-one-out cross-validation procedure. 


� Stability means having by a model low classification accuracy variance in multiple runs on the same training set. The definition of stability also applies to models trained on slightly modified (perturbed) training sets.


�  If we consider one method it must posses stochastic elements so that the results on the test set are not repetitive – i.e. having nonzero classification accuracy variance, alternatively we may train completely different models which not necessarily have to be stochastic but each of them may give slightly different results on test. Note, that a stochastic system may have a very low training accuracy variance (for example due to employing a global minimization procedure) but the optimized free parameters may be different for each training step (the case of many global minimums leading to the same training accuracy) and the variance on test may be still high. This is particularly common for the attribute scaling methods based on global minimization.


� Having a kernel with the breaking of impasses the result may be less than 100%.


� In this thesis we had been exclusively using leave-one-out cross-validation learning.


� Alternatively one can use the condition: A���T,j   A��T,all.
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