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Abstract— Reliable classification of EEG data based on a
low  number  of  electrodes  is  of  great  practical  importance.
Brain  reactions  to  sensory  stimuli  may  serve  as  digital
biomarkers  for  detecting  and monitoring  the  progression of
dementia.  Traditional  approaches  to  the  analysis  of  event
related  potentials  (ERP)  based  on  amplitude  and  latency
variations do not have sufficient sensitivity to provide reliable
biomarkers.  Searching  for  a  better  approach  we  have
combined time-frequency (TF) spectral  representation of  the
EEG  signal  with  recurrence  quantification  analysis  (RQA).
The  non-linear  features  derived  from  the  recurrence  plots
constructed in this way help to discriminate subtle differences
of  EEG signals.  Auditory  and visual  stimuli  were  used in  a
single-trial oddball-type BCI experiments. Simple EEG using
16 electrodes was sufficient to achieve state-of-art classification
accuracy  of  auditory  and  visual  stimuli,  using  linear  SVM
method with selected RQA features. The differences between
the  standard  linear  amplitude  ERP  analysis  and  TF-RQA
approach is also shown in the histograms of the SVM linear
projection and in the Uniform Manifold  Approximation and
Projection (UMAP) plots. The small scale of these experiments
and lack of longitudinal observations does not allow justifying
the hypothesis linking mild cognitive impairment (MCI) with
auditory response degradation, but the TF-RQA should be a
good tool in creation of such biomarkers. 

Keywords—Recurrence  Quantification  Analysis,  Event
Related  Potential,  Short-Time  Fourier  Transform,  Takens
embedding theorem, EEG Time Series

I. INTRODUCTION

In the highly developed countries dementia affects about
5%  of  the  population.  Alzheimer's  Disease  International
(ADI) reports that there were about 55 million people living
with  dementia  in  2022  around  the  world,  and  there  are
almost  10  million  new  cases  each  year.  With  the  aging
population,  the  number  of  dementia  cases  is  expected  to
almost double in the next 10 years, reaching 78 million in

2030 [1].  Initial  symptoms of  mild cognitive impairments
(MCI),  related to  memory loss,  problems with the use of
language,  visuospatial  perception,  or  executive  function,
may signal the slow onset of Alzheimer's disease, the most
common form of dementia that accounts for 60-70% of all
such cases  [1].  Dementia is  currently the seventh leading
cause of  death among all  diseases,  and  one  of  the  major
causes  of  disability  and  dependency  among  older  people
globally.  It  has  significant  social  and  economic
consequences  in  terms  of  direct  medical  and  social  care
costs  and  the  cost  of  informal  care  [1].  In  2019,  the
estimated total social cost of dementia worldwide was 1.3
trillion USD, and it is expected to exceed 2.8 trillion USD
by 2030 [1].

The  causes  of  dementia  still  remain  unclear,  despite
many theories that  involve genetic  and cellular  processes,
influenced  by  a  lifestyle  and  environmental  factors  [2].
Early  diagnosis  is  important  because  cognition-based
training in  people  with  MCI may improve their  memory,
executive  function,  attention,  and  general  mental
performance  [3].  Therefore,  development  of  AI-based
applications to support early screening for MCI, combined
with  various  interventions  designed  to  maintain  healthy
cognition, is of utmost importance. 

Brain activity,  expressed  in  the  oscillations of  electric
potentials  generated  by  neural  populations,  changes  in
response  to  the  sensory  stimulation  and  the  internal
neurodynamics  [4].  Electroencephalography  (EEG)  is  a
cost-effective,  non-invasive  technique  that  measures
electrical activity of the brain, providing in vivo data with
high temporal resolution. EEG has been used successfully in
the study of neurocognitive disorders, such as epilepsy [4],
schizophrenia  [5],  autism [6],  Alzheimer  disease  [7]  and
many other disorders. 



Interpretation  of  noisy,  non-stationary  EEG  signals  is
difficult  [8].  Linear  amplitude  analysis  of  event-related
potentials (ERPs) are the most reliable technique, based on
averaging  EEG  signals  arising  in  response  to  repetitive
sensory or visual stimuli. Averaging signals over many trials
removes background noise, increasing signal-to-noise-ratio,
exposing relatively stable electrophysiological responses to
identical  sensory  stimuli  [9].  Plotting  changes  of  electric
potential  as  a  function  of  time  after  the  onset  of  stimuli
shows several  components,  such as decrease after 100 ms
(N100),  increase  starting  after  300  ms  (P300),  and  later
N400  and P600  components  seen  in  language  processing
experiments [10].  Averaging a large number of  trials that
differ  by  latency  and  amplitude  does  not  allow  for
observation of true variations of the neural response, effects
of  attention,  priming, habituation, or  fatigue [8].  Methods
for  single-trial  ERP  analysis  based  on  regularization  of
linear discriminant analysis (LDA) by shrinkage filters are
popular in applications to the brain-computer interfaces, but
not in medical diagnostics, where frequently ERPs from a
single electrode are analyzed.

We  are  interested  in  diagnostic  methods  that  do  not
require large number of  trials,  and could provide detailed
analysis  of  properties  related  to  neurodynamics.  Deep-
learning  methods  applied  to  analysis  of  EEG  gain
popularity, but are still difficult to interpret [11]. One of the
promising,  and  still  little  explored  approach,  is  based  on
analysis  of  recurrence  patterns,  that  provides  non-linear
interpretable features [6]. Analysis of time-frequency (TF)
spectrograms, illustrating changes in time of distribution of
power in different frequencies, is another good approach to
learn EEG structure [12].  In this paper,  we combine both
approaches,  using TF signal representation (power spectra
for  each  time  point)  with  similarity  evaluation  of  such
vectors  to  create  recurrence  plots  and  extract  non-linear
features  for  classification using RQA, hence the TF-RQA
acronym.   

Recurrence  plots  (RPs)  are  visual  representation  of
recurrence matrices, that store information about similarity
of the current state X(t) of the system to the previous states.
One  can  define  recurrence  using  some  distance  metrics
D(t,t’)=||X(t)-X(t’)||,  or  use  tolerance  threshold   (usually𝜀
related to the noise in the system) and a step function to
create  binary  matrices  R(t,t’)=( ( -||𝚯 𝜀 X(t)-X(t’)||).  If  the
current  trajectory  is  closer  than   to  the  previous  one𝜀
element of the recurrence matrix is equal to 1, otherwise it is
0.  Other  possibilities  may use  instead of  trajectory points
X(t’) a  few optimized reference points  X(tk),  allowing for
reduction  of  dimensionality  of  the  state  vectors,  Y(t,tk)=||
X(t)-X(tk)||. This approach creates fuzzy partition of the state
space, leading to Fuzzy Symbolic Dynamics  [3, 13].

Recurrence  Quantification  Analysis  (RQA)  defines  a
number  of  features  that  can  be  derived  from  the  binary
recurrence  matrices  [9].  Recurrence  rate  RR  is  the
percentage of 1 bits in the recurrence matrix (or black dots
in the recurrence plots RPs). Vertical lines are used to create
3  features:  trapping  time TT is  calculated  as  the  average
length  of  the  vertical  lines,  laminarity  LAM  is  the
percentage of  recurrence points which form vertical lines,
and Vmax is the length of the longest vertical line. Diagonal
lines  also  contribute  3  features:  determinism DET is  the
percentage of  recurrence  points  which  constitute  diagonal
lines, AvgL is the average diagonal line length, and Lmax
the  longest  diagonal  line  length.  Other  features  include

various  entropy  measures  (classical  Shannon  entropy,
information  entropy)  that  should  be  calculated  in  an
unbiased  way  and  applied  to  the  RQA  features  [14].  In
contrast to other non-linear analysis methods, RQA can be
applied to relatively short non-stationary time series.  

Andrade  et  al.  [8]  have  used  recurrence  analysis  in  a
small  study  (11  subjects)  to  distinguish  rare and  frequent
tones in an oddball study. They have calculated ERPs and
classified  responses  to  tones  using  linear  amplitude  (LA)
analysis  of  P300  component.  Takens  embedding  theorem
requires selection of embedding dimension  m and delays 𝜏
to sample original signal at times [x(t),  x(t+ ), …  𝜏 x(t+(m-
1) )].  Since  optimal  values  of  these  parameters  change𝜏
between trails and subjects, they have averaged them for all
values  from  1  to  20.  Using  different  embeddings  of  the
original EEG signals and fixing the number of neighboring
states 6 recurrence features were calculated and in this space
classification performed. Results of RQA discrimination of
responses to different tone types in this oddball experiment
were based on AvgL values for the Pz electrode. They have
not  been  significantly  different  from the  linear  amplitude
analysis. However, RQA features were calculated from the
single trials, and values averaged later for rare and frequent
tones. 

Our approach differs in many aspects. In this study, we
probed  the  potential  of  the  Recurrence  Quantification
Analysis to improve the characterization of single trial EEG
responses. Below we present results of the RQA analysis of
ERPs from BCI experiments using 16-channel EEG system
and  signal  representation  based  on  Short-Time  Fourier
Transformation  (STFT)  power  spectra,  instead  of  the
standard  signal  embedding  approach  used  in  EEG  signal
classification. This simplifies interpretation, as each state is
simply  a  power  spectrum created  from trials  of  1200 ms
lengths,  and  recurrence  matrices  show similarity  of  these
spectra. The goal is to recognize ERP signals resulting from
the auditory vs. visual stimuli.  

II. MATERIALS AND METHODS

A. EEG acquisition and preprocessing

The EEG dataset used in this paper has been provided by
one of the current project's co-authors and a member of a
previous study [15] conducted with 16 BCI-naïve subjects
(mean age 21.8 with a standard deviation of 0.75). All the
original experiments, first reported in [15], were performed
at the Life Science Center of TARA, University of Tsukuba,
Japan.  The online EEG BCI experiments  were  performed
following  the  WMA  Declaration  of  Helsinki  -  Ethical
Principles for Medical Research Involving Human Subjects.
The  subjects  of  the  experiments  received  financial
gratification. 

The 200 ms long unimodal (visual or auditory) stimuli
were delivered from five different spatial locations. In the
case  of  visual  speller  paradigms,  large-size  hiragana
characters  were  flashed  one  at  a  time on  a  big  computer
display positioned in front of  the subject  (as  it  is  usually
offered in the oddball-based P300 visual speller). In the case
of the auditory modality, a sound source was positioned at a
spatial location congruent with a visual letter (set at -45°, -
22.5°, 0°, 22.5°, and 45° in front of the head). The subjects
were instructed to spell five random sequences of hiragana
letters presented visually or audibly in each session. Each



target was presented ten times. Each subject first conducted
a short psychophysical test with a button press response to
confirm understanding of each modality's experimental set-
up.

During the original online BCI experiments, as described
in  [15],  the  EEG  signals  were  captured  with  16  active
electrodes using amplifier system g.USBamp by g.tec, with
a sampling frequency of 512 Hz. The electrodes were placed
at the following head locations Cz, CPz, POz, Pz, P1, P2,
C3, C4, O1, O2, T7, T8, P3, P4, F3, and F4, as in the 10/10
extended  international  system.  The  ground  and  reference
electrodes were attached at FCz and the earlobe. After EEG
signal acquisition, time-series epochs were extracted within
an interval of -200 to 1000 ms around each stimulus onset.
Afterward,  each  epoch's  and  condition's  data  (visual  and
auditory)  were  preprocessed.  Bad  epochs  were  identified
using the auto-reject extension for MNE software (Jas et al.,
2016, 2017) with a  global rejection criterion and dropped
from the data. In the current project, we model dementia-
related and delayed P300 responses [16, 17, 18, 19] using
auditory BCI paradigm responses from the study mentioned
above [18] and normal EEG using visual ERPs (non-delayed
and with higher amplitude).  A working hypothesis  of  the
current study is to evaluate the possibility of successfully
discriminating between two types of ERPs carrying standard
(visual  P300)  versus  delayed  and  with  lower  amplitude
(auditory P300 modeling dementia). 

B. Methods

For every electrode and each epoch acquired separately
for  every subject  STFT vectors  were computed in  sliding
time windows separately. For this purpose, we have used the
TensorFlow  implementation,  defining  Hamming  window
type with 240 samples (corresponding to 1488 ms), shifted
by a single sample. This number of samples proved to be a
good  compromise,  as  shorter  time  frames  will  introduce
uncertainty  in  the  frequency determination  of  the  Fourier
transform, and larger windows increase uncertainty of time
in which calculated spectra arise. 

STFT analysis returns samples representing each vector
for each time window, with the number of frequency bins
nfft  set  to  512.  This  operation  resulted  in  a  matrix  S
containing a representation of time series based on STFT.
These vectors have a clear interpretation, showing peaks of
characteristic frequency. 

Next,  distance  matrices  were  calculated  from  the
obtained  STFT  vectors  using  Euclidean  metric.  For  the
recurrence  plots  the  matrices  were  binarized  applying
similarity  tolerance  threshold  ε  equalled  to  the  35th
percentile of the distance distribution.

Non-linear  features  were  calculated  from  the  recurrence
matrices using the recurrence quantitative analysis (RQA).
We  have  used  our  own  implementation  of  recurrence
quantification  analysis,  based  on  modification  of  the
recurrence_python software  [20].  The  RQA  features
included  quantities:  recurrence  rate,  determinism,  average
diagonal  line  length,  entropy  diagonal  lines,  laminarity,
trapping time, longest vertical line length, entropy vertical
lines,  average  white  vertical  line  length,  entropy  white

vertival lines. At this point seperate RQA for each epoch,
electrode, condition and subject were obtained. Next, values
of  the  features  were  averaged  between  epochs  for  each
electrode  and  condition  in  a  similar  manner  as  the  event
related  potentials  are  obtained  as  the  average  potential
calculated between epochs. 

Since  the  recurrence  rate  feature  was  constant,  for  the
selection of the threshold parameter value it was considered
irrelevant and dropped for the further analysis.

Fig. 1. LA(a) and RQA(b) pipeline. ERP - Event Related Potential, STFT -
Short-Time  Fourier  Tranformation,  RP  -  Rcurrence  Plots,  RQA  -
Recurrence Quantification Analysis.

The data  from the  remaining  features  was  normalized
and cleaned from outliers using Robust Chauvenet Outlier
Rejection  [21].  Furthermore,  to  exclude  redundant
electrodes and features, we have performed recursive feature
elimination with 10-fold cross-validation using scikit-learn
function.  In  every  step  of  this  process,  the  algorithm
decreased the number of component from the data by one,
based on the lowest absolute value of the SVM coefficient
and  performing  cross-validation  in  the  space  of  reduced
dimensionality.  The  analysis  resulted  in  28  chosen
components.  Those feature components were then used as
an input to the classifiers. 

We  have  tested  several  classifiers:  support  vector
machine (SVM) with linear kernel, and with quadratic and
cubic  kernels,  Gaussian  density  Bayesian  classifier  that
provides linear decision boundaries (LDA), and a Random
Forest  Classifier  (RFC),  all  implemented  in  the  popular



scikit-learn  package  [22].  The  predicted  outcome  was
evaluated using leave-one test.

III. RESULTS

An artificial  intelligence and neurotechnology approach
using machine learning to  identify task load (by different
modality),  which  was  proposed  as  a  model  for  cognitive
responses for dementia [18], has resulted in an encouraging
accuracy of rate of classification. 

We obtained results  from a dataset  of sixteen subjects.
The true statistic mean accuracy for 95% confidence interval
was  estimated  using  bootstrap  procedure.  The  results
(median  of  the  mean  distributions  and  upper  and  lower
bounds)  are  summarized  in  Figure  2.  and  Table  1.

The  best  results  were  obtained  for  linear  SVM -  with
accuracy  rate  of  100%.  SVM  with  quadratic  and  cubic
kernels  give  slightly  worse  results,  with  some  variance,
while Gaussian-based LDA and Random Forest Classifiers
(RFC) are significantly worse.

Fig. 2.  Median cross-validation accuracies for all subject dataset of 
modality (auditory - visual) classification. 

In Fig. 3 RQA vectors used for classification using linear 
SVM are projected using the SVM weight vector. 

Fig.3. Histograms of the projection of 28 RQA feature values used for classification, 
selected by the random forest, for all subjects, and for all data.

Fig. 4. UMAP visualization of the 28 dimensional vectors based on the STFT-RQA 
approach for all subjects.

Fig. 5. Recurrence plots for visual condition and target stimulus type for
electrodes Cz, CPz, POz, Pz, P1, P2, C3, C4, O1, O2, T7, T8, P3, P4, F3,
and F4, as in the 10/10 extended international system.

Such visualization helps to distinguish cases that are quite
distinct from those that are similar. In this case our method
found representation that distinguishes all cases clearly. This
is also confirmed by UMAP visualization (Fig. 4) that shows
wide separation of clusters for auditory and visual stimuli.  



Fig. 6. Recurrence plots for auditory condition and target stimulus  type for
electrodes Cz, CPz, POz, Pz, P1, P2, C3, C4, O1, O2, T7, T8, P3, P4, F3,
and F4, as in the 10/10 extended international system.

Fig. 7. Recurrence plots for visual condition and nontarget stimulus  type
for electrodes Cz, CPz, POz, Pz, P1, P2, C3, C4, O1, O2, T7, T8, P3, P4,
F3,  and  F4,  as  in  the  10/10  extended  international  system.

 CONCLUSION

In  this  study  we  have  tested  the  effectiveness  of  ERP
classification  using  TF-RQA  approach,  a  combination  of
short-time Fourier transformation (as in spectrograms) with
recurrence  quantification  analysis.  Results  were  compared
with the standard method based on linear amplitude analysis
(LA). Instead of focusing on ERP features, such as the P300,
we  have  used  non-linear  features  extracted  from  the
recurrence  plots  (such  as  shown  in  Fig  5-7)  that  show
similarity of power spectra at different points in time. These

plots  show ERP patterns  measured by  various electrodes,
showing significant differences between visual and auditory
stimuli that are expressed in RQA features.  

Classification results for four methods are presented in
Table 1.  Linear  SVM achieves in  this  case perfect  100%
accuracy. For SVM with quadratic or cubic kernel we have
96.9%, LDA gave 87.5% and RFC 71.9%. where we find
that  for  a  low number  of  features  like  28  RFC is  not  a
optimal method. 

Classification
method

Mean Performance

Median 95% CI

SVM linear 100.0 [100, 100]

SVM poly 96.9 [90.6, 100]

LDA  87.5 [75.0, 96.9]

RFC 71.9 [56.2, 87.5]

Tab. 1. Accuracies for all subject dataset of modality (auditory - visual)
classification.  SVM  -  Support  Vector  Machines,  LDA  -  Linear
Discriminant Analysis, RFC - Random Forest Classification

RQA  combined  with  linear  SVM  provided  a  perfect
distinction between the responses to the two main modalities
in  the  oddball  experiment  (visual  and  auditory).  Linear
amplitude  analysis  of  ERPs  has  also  high  discrimination
power, reaching almost 90% in the leave-one-out tests, with
auditory stimuli discrimination being slightly more difficult.
Our initial hypothesis was that such experiments may help
to distinguish people at the onset of MCI problems, when
the auditory perception starts to fail, and visual perception
still  works  fine.  However,  to  test  this  hypothesis,  more
complex  tasks  with  larger  number  of  participants  are
necessary. In this pilot experiment, we can only point to the
accuracy  of  STFT  signal  representation  combined  with
recurrence analysis in analysis of such data. 

RQA can extract a different type of information from the
EEG signal, as suggested by the theoretical basis of RQA.
Despite  higher  computational  demands  and  conceptual
complexity of the method, RQA should be preferred over
amplitude analysis (LA) to discover features that can help in
more detailed characterization of brain responses to event-
related stimulation. RQA can be used as a complementary
tool in the analysis of single samples of electrophysiological
data. In particular, analysis of pooled EEG data with other
modalities  that  provide  additional  variables  (such  as
psychometric tests or fMRI) may be useful for elucidating
various  neural  correlates  of  measures  of  amplitude  and
complexity, such as provided by RQA.
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