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Abstract. Semantic networks inspired by semantic information process-
ing by the brain frequently do not improve the results of text classifi-
cation. This counterintuitive fact is explained here by the multiple in-
heritance problem, which corrupts real-world knowledge representation
attempts. After a review of early work on the use of semantic networks in
text classification, our own heuristic solution to the problem is presented.
Significance testing is used to contrast results obtained with pruned and
entire semantic networks applied to medical text classification problems.
The algorithm has been motivated by the process of spreading neural
activation in the brain. The semantic network activation is propagated
throughout the network until no more changes to the text representation
are detected. Solving the multiple inheritance problem for the purpose
of text classification is similar to embedding inhibition in the spreading
activation process – a crucial mechanism for a healthy brain.
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1 Introduction

The neurocognitive approach to language has not led to practical algorithms [1]
in natural language processing (NLP). Semantic networks, inspired by the work
on human semantic memory, are a convenient way to store general information
about the world. Using graphical notation network nodes are identified with con-
cepts, and edges with semantic relations, allowing for direct logical inferences [2].
This seemed to be an obvious improvement over the most popular representation
of texts in form of vectors built by counting the number of distinct words in a
“bag-of-words” approach [3].
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In [4], experiments with bag-of-words, stemmed words, noun phrases, stem-
med noun phrases, key phrases, stemmed key phrases, WordNet synonyms, and
WordNet hypernyms were presented. In WordNet [5], a huge lexical database
of the English language, words are grouped together by their synonymy with
basic semantic relations between them. An artificial intelligence scholar would
call it one of the largest non-monotonic logical systems. Unfortunately, in [4]
experiments did not demonstrate the superiority of using synonyms and hy-
pernyms over a bag-of-words. Only certain combinations of phrases and words
improved results. In case of a general purpose semantic network using synonyms
and hypernyms does not help much. This was unacceptable and non-intuitive
for many researchers. How can adding knowledge to a representation based on
a simple word count degrade text classification performance? Isn’t adding such
associations the key to how brains work?

Let us think of a simple example: “Humans have two legs”, “John is a hu-
man”, “John has one leg”. In this semantic network, ”John” inherits multiple
contradictory properties: having one leg and having two legs. Such a small se-
mantic network exposes an important fact: in real life not all assertions about
the world are true all the time. In such cases, how should the knowledge encoded
in a semantic network be used for inference? While episodic memory may come
to rescue [6], it would lead to significant complication of the algorithm. It took
many years to find the answer to this problem. In essence, a general purpose
semantic network must be pruned before it may be used to enhance a text rep-
resentation. From the artificial intelligence and NLP perspective, one needs to
solve the multiple inheritance problem before using a non-monotonic knowledge
representation system.

Inspired by many findings relevant to neurolinguistics [7, 8, 9], our goal is
to create a neurocognitive language processing approach inspired by the spread-
ing neural activation over a large semantic brain network [6]. Thus far, we have
developed a practical method for pruning semantic networks in a way that im-
proves the results of text categorization. Our algorithm spreads activation from
one term to the other, inferring facts not present in the text, but preserving only
those facts that improve text classification, avoiding unnecessary inheritance.
In this way relevant “pathways of the brain” [1] are discovered. We will show
that text classification with a pruned semantic network is significantly
better than a baseline model, while using entire network does not lead
to improvements.

2 Background and Significance

Text classification is pursued by the statistical machine learning community;
the term “multiple inheritance” comes from the field of artificial intelligence.
Textbooks on artificial intelligence mention statistical learning, but the converse
is rarely true. The multiple inheritance problem has been rarely addressed in
literature on text classification. Google Scholar cites over 10,100 articles that
mention “text classification” and some version of a semantic network. Only 127



Table 1. Text classification with semantic networks started in 1998 and continues
today. This table summarizes only the early work. Multiple sources were used to create
semantic networks, but none of the papers addressed the multiple inheritance problem.

Publication Task Semantic Network Data set Algorithm

[11] Categorization WordNet Reuters Ripper
— — WordNet USENET Ripper
— — WordNet Digital Tradition Ripper
[12] Clustering WordNet Reuters K-center
[13] Clustering WordNet Reuters K-center
[14] Categorization WordNet Reuters SVM
— — WordNet Amazon SVM
[15] Clustering MeSH PubMed K-center
— — MeSH PubMed Hierarchical
— — MeSH PubMed Suffix Trees
[16] Categorization Wikipedia Reuters SVM
— — Wikipedia OHSUMED SVM
— — Wikipedia 20 Newsgroups SVM
— — Wikipedia Movies Reviews SVM
[17] Categorization WordNet Reuters AdaBoost
— — WordNet OHSUMED AdaBoost
— — MeSH OHSUMED AdaBoost
— — AgroVoc FaoDoc AdaBoost

of them mention “multiple inheritance”. That is not to say that the term “mul-
tiple inheritance” is unknown to the language processing community. There are
over 1,600 articles on “multiple inheritance” and “semantic networks”. Most of
them, however, discuss semantic similarity and dismiss the multiple inheritance
problem by taking maximal, average or minimal paths between two terms [10].
Semantic similarity will not be discussed in this paper, the focus will be on text
classification using semantic networks.

Typical work in this field follows four steps: choose a semantic network, match
words from text with the elements from the semantic network, expand the text
representation by adding or replacing semantically related elements, and then
classify documents using the expanded representations (see Table 1). Using this
scheme various research groups made important observations.

In [11], it was shown that more general terms give better categorization than
less general terms. The optimal level of generalization, however, was different
for each data set. In [12], the same was shown for clustering. In addition, it
was concluded that it is better to keep terms from lower levels of hierarchy
rather than just replace them with terms from higher levels. In [13], the results
from [12] were replicated and mapping terms from WordNet was further studied.
It was found that ambiguities present in WordNet might render it useless when
adding hypernyms. It was concluded that part of speech tagging is insufficient for
disambiguation of word senses. Taking the most frequent meaning, as in [12], is
helpful but clearly not sufficient. In [14], mapping text to WordNet was improved
by using the Steiner tree cost. The effect of sample size on levels of generalization



was studied. First, it was found that adding hypernyms works better for small
data, but the depth of generalization does not show any regularity. Second, it
was discovered that as the sample size is increased, the behavior of different
depths stabilizes and converges, but at the cost of decreased improvements.

WordNet was not the only source of adding semantics. In [15], Medical Sub-
ject Headings (MeSH) was used for representing the text and improving clus-
tering. In [16], Wikipedia was used as a semantic network: Wikipedia’s articles
became concepts and links from the articles to most similar web pages became
associative relations. In [17], WordNet, MeSH, and the United Nations Food
and Agriculture multilingual agriculture thesaurus (AgroVoc) were used with
marginal text categorization improvements.

Work in the early years of text classification with semantic networks lacked
a mechanism vital to the healthy brain: inhibition. Google Scholar cites around
46,000 publications on inhibition in brains. Brain studies show that inhibition
is crucial for normal functioning of associative memory [18], and too low inhibi-
tion may lead to epilepsy, schizophrenia and a “formal thought disorder” [19].
Surprisingly, the neurofunctional and neuroanatomical “lack of inhibition” has
a long-lost brother in the field of artificial intelligence: the multiple inheritance
problem in non-monotonic reasoning [20, p. 206]. A machine retrieves all related
nodes from a semantic network with the same conviction as a patient with a
formal thought disorder. Inheritance along all edges cannot be allowed because
not every fact about the world is true or relevant in a given context. General
solutions like “default logic”, “circumscription”, or “truth maintenance systems”
require inference with negations, rules for overriding default values, closed-world
assumption, or infinite computing power [2]. These requirements make them
unsuitable for the large semantic networks that are currently available for auto-
mated text processing.

Evidently finding the ideal solution to the multiple inheritance problem is
going to be quite difficult. In this paper an algorithm is proposed that removes
just enough inference paths to significantly improve text classification perfor-
mance. We contrast it with a scenario where no pruning of semantic network is
done, and problems due to the multiple inheritance cancel advantages of added
semantics, making classification improvements statistically not significant.

3 Databases and Document Collection

OHSUMED. The OHSUMED document collection, named after the Oregon
Health and Science University School of Medicine, was created to benchmark
information retrieval algorithms. It contains 348,566 PubMed papers published
between 1987-1991 in 270 medical journals [21]. All papers have titles but only
233,445 have abstracts of an average length of 167 words. The papers have
been manually indexed with 14,626 distinct Medical Subject Headings (MeSH).
There are on average 253 papers per one MeSH. The inter-indexer consistency
measured using 760 papers was between 61%-75% [22]. The challenge is to create



Fig. 1. Example of spreading activation matrices using semantic network with and
without a solution to the multiple inheritance problem. The top right matrices show the
features space and distances after entire semantic network has been applied (Figure 2
with all nodes and edges). The bottom right matrices show the feature space and
distances after solving the multiple inheritance problem (Figure 2 without the dotted
nodes and edges). Documents cluster according to the class labels only if the pruned
semantic network is used.

an automated system that will do the indexing with competency comparable to
human experts.

Researchers have created many such systems [23, 24, 25]. It is rare that
someone would use all the data to develop and benchmark an algorithm but there
is no consensus on how to split the data. One might say that the “Heart Diseases”
(HD) subset is a common one. It has 12,417 training instances (years 1987-
1990), 3,630 testing instances (1991 year), and 119 MeSH codes. The multiple
inheritance problem is very complex so for clarity we have reduced the data set
down to just ten MeSH codes. 4 of them, ”endocarditis, bacterial”, ”aortic valve
stenosis”, ”heart neoplasms”, and ”mitral valve stenosis” are used to develop the
edge/node pruning algorithm and 5 of then, ”mitral valve insufficiency”, ”atrial
fibrillation”, ”aortic valve insufficiency”, ”cardiomyopathy, hypertrophic”, and
”heart arrest” are used for final benchmarking.

The UMLS Metathesaurus. The Unified Medical Language System (UMLS)
is a set of tools, websites and databases created and maintained by the National
Library of Medicine, a division of U.S. National Institutes of Health. The UMLS
has two main components: implementation resources (software) and knowledge
sources (databases). We are interested just in one knowledge source - Metathe-
saurus - and one implementation resource - MetaMap. In particular, we used the
2009AB version of the Metathesaurus as a source of medical semantic data and
the 2009 version of MetaMap Transfer (MMTx) to map PubMed abstracts and
titles to UMLS Metathesaurus medical concepts. After parsing the HD data set,
MetaMap discovered 21,127 unique concepts out of the 2,181,062 available in
the Metathesaurus. Every concept had to be part of one root branch of the se-
mantic network: “clinical finding”, “body structure”, “substance”, “procedure”,
or “pharmaceutical”, otherwise the concept was discarded.



The 2009AB version of the UMLS Metathesaurus is a conglomerate of 101 in-
dividual biomedical semantic networks, also called “source vocabularies”. Each
sub-network has its own set of concepts and relations; when these are com-
bined, it contains 26,762,104 relations. We followed the 21,127 concepts present
in the HD data set along the following edge types: “other related” (RO), “related
and possibly synonymous” (RQ), “similar or like relationship’ (RL), “children”
(CHD), “parent” (PAR), “broader” (RB), “narrower” (RN), and “source as-
serted synonymy” (SY). After 14 steps of spreading activation, we reached all
2,131,301 semantically related concepts using 11,250,022 distinct connections3.
As a solution to the multiple inheritance problem, we proposed an algorithm that
reduces the 11,250,022 connections to a bare minimum that improves automated
indexing of PubMed citations.

4 Problem Identification and Methods of Solution

The Multiple Inheritance Problem. Let’s start with an illustrative text
categorization problem. There are four documents, each containing just one of
the following medical terms: “aortic valve insufficiency”, “aortic valve stenosis”,
“mitral valve insufficiency”, “mitral valve stenosis”. Let’s say that the first two
documents belong to the class “A” and the other two to the class “B”. The vector
space representation would look like the first matrix on the left in Figure 1.
There would be equal distances between all documents, offering no learning
generalization. Let’s assume now that the four terms come from a semantic
network like the one in Figure 2. As with every medical dictionary, a disease
can be categorized by a location or by a pathophysiology. That is the case in
our “small world” example: each disease inherits two concepts. Even though
the inheritance by location and by pathophysiology is always true, it is not
always relevant to the categorization task at hand. If unpruned network is used
(Xt+1 = XtR) the distances calculated for enhanced representation do not lead
to good clusters (upper right matrix in Figure 1), and will lower the chances of
correct classification.

On the other hand, if the relative frequency of a medical term in a class is
used to denote its belongingness, we would find that certain edges connect med-
ical terms from opposite classes. When that happens, documents from opposite
classes become more similar and less distinguishable. In our example, connec-
tions to “valve insufficiency” and “valve stenosis” come from opposite classes.
This situation can be repaired by removing at least one edge connecting “valve
insufficiency” and at least one edge connecting “valve stenosis”. Removing both
edges will allow for removing also the nodes “valve insufficiency” and “valve
stenosis”. This leads to a reduced semantic network shown in Figure 2, with-
out the elements marked with dotted lines. Spread activation (Xt+1 = XtR

′)
in the pruned network leads to a representation of documents from the same

3
CHD = 2,137,767; PAR = 2,137,767; RB = 1,087,501; RL = 34,066; RN = 1,087,501; RO =

5,304,808; RQ = 287,280; SY = 49,846.
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Fig. 2. Semantic network with an imposed document/term classification task. First,
relative frequency is used to assign class to a node (see Figure 1). Second, edges that
connect nodes belonging to different classes are identified. Third, conflicting nodes and
edges (marked with dotted lines) are removed. This procedure prunes the semantic
network, solving the multiple inheritance problem in text classification tasks.

New node 5
belonging to
“this” class

New node 6
belonging to

“other” class

Old node 1
belonging to
“this” class

Old node 2
belonging to
“this” class

[6]oo

[4]

OO

[2]

>>

[7] -- Old node 3
belonging to

“other” class

[8] //

[1]

OO

[3]

``

[5]mm

Old node 4
belonging to

“other” class

Fig. 3. Generalized semantic network with an imposed document/term classification
task. Just by using relative frequencies we identify four types of nodes that receive
activation and eight types of edges that carry the activation. We can empirically check
which edge-pruning procedure improves the text classification task and use it as a
heuristic solution to the multiple inheritance problem. Edges are enumerated in the
order of their performances in Table 3.

class grouped tighter than documents from opposite classes (lower right matrix
Figure 1). Is there a way to do this programmatically on a larger scale?

Edge pruning. The conflict and non-conflict edge types shown in Figure 2, can
be generalized for any binary classification problem. Let’s call the positive class
“this” and the negative class “other”. The relative frequency will be used
to assign class to a node. If we include spreading activation, it will give us four
types of nodes: an old node belonging to the class “this”, an old node belonging
to the class “other”, a new node belonging to the class “this”, and a new node
belonging to the class “other”. If we exclude feedback loops, we will have eight
edge types that connect the four node types, as shown in Figure 3. The learning
process in a given context (here text categorization) should empirically determine
which semantic associations should be inhibited. Therefore in the training phase
a check is made to see if any improvement will result from removal of selected
edge types. This will indirectly show whether the distances between vectors



representing documents change in favor of or against the two-class separation.
This is not an ideal solution, where all unnecessary nodes are removed, but it
offers sufficient separation. Such pruning method allows for unattended spreading
of concept activations.

What is meant here by “unattended spreading activations”? Let’s say that
f is a Heaviside step function. Our goal of pruning the semantic network is to
get a map, Xt+1 = f(XtR), that can be applied to the data iteratively until
the document/term matrix stops changing Xn+1 = Xn for n � 0. This means
that the pruning process has to be iterative. Let’s say that P i is a function that
removes one type of edge, then R′ = P i(Xt+1, Xt, R). If R′ 6= R, then some
edges were removed, and we need to reset the training matrix Xt := X0 to its
initial state. We keep applying P i(Xt+1, Xt, R) and resetting Xt until R′ = R
for all t. Once the pruning procedure P i is completed, the next procedure, P j ,
is done, and so on. Which pruning procedures improve text categorization and
the order in which pruning is applied should be empirically determined.
Text Categorization. After final representation is generated classification is
done using the support vector machines (SVM) with cosine kernel. This way
SVM becomes insensitive to very short or very long documents. Cosine kernel
SVMs have only one parameter that has to be tuned by the user: “cost” of
regularization. This parameter has been optimized checking results for its values
from 2−1 to 25 with 20.25 increments. All features are binary: the text either
mentions the concept or it does not. The best models were selected using a
16-fold cross-validation, with classification quality measured by the F1 score,
a harmonic mean between precision and recall. Once the best model with the
best pruning procedure was selected, it has been used for the final testing. All
spreading activation models were compared to a model without the feature space
enrichment and tested for significance.
Final testing. The statistical significance of the F1 score improvement is mea-
sured using a paired t-test [26]. For each classification label we have a total of 17
F1 scores for the baseline model and the same number for the enhanced model,
resulting in 17 pairwise comparisons. We used “endocarditis, bacterial”, “aortic
valve stenosis”, “heart neoplasms”, and “mitral valve stenosis” to find the best
pruning procedure. Then we added “mitral valve insufficiency”, “atrial fibrilla-
tion”, “aortic valve insufficiency”, “cardiomyopathy, hypertrophic”, “cardiomy-
opathy, congestive” and “heart arrest” to see if the improvement generalized
over different labels, a total of ten labels. Thus, the t-test across all experiments
has 170 pairwise comparisons. The Pearson correlation coefficient is used to see
if the data is improved by the same factor across different classes. If the baseline
model is correlated with the enhanced model there is a stable improvement.
Concept space visualization. The changes to the semantic network rely on
assigning medical concepts to a class based on the relative frequency measure.
We use the class belongingness to identify edges connecting nodes from different
classes. We can visualize the process. Each medical concept is represented by two
relative frequencies4: rf3this and rf3other. If the semantic network separates two

4
The power = 3 greatly enhances signal for concepts with rfclass ≈ 1.



classes well, we should see concepts travel to the top-left corner and the bottom-
right corner (rf3this � rf3other or rf3this � rf3other). On the other hand, if the
network does not separate classes, then most concepts will have similar relative
frequencies (rf3this ≈ rf3other) and will lie along the x = y line.

Relative frequency snapshots might not be enough to see a divergent or con-
vergent trend, but if we follow the centers of the relative frequencies and connect
them with arrows, the trend becomes apparent. If the arrows point outward, then
the trend confirms separation by spreading activation. If the arrows are parallel
to the x = y line, then there is no separation trend, and spreading activation
causes more harm than good.

5 Results

Spreading activation without the edge-pruning technique. First exper-
iments had to determine which semantic relationships and their combinations
yield the best results. Table 2 shows that only parent relationships (“is-a”) im-
prove classification performance. Other relationships or combinations tried did
not improve the results. This finding is consistent with the work already pub-
lished (Table 1). The vector feature space increases in size from 21,127 concepts
to 40,134 concepts. Surprisingly, it takes almost 60 iteration steps before the
feature space stabilized (lower right graph in Figure 4). Sixty multiplications of
such huge matrix, even in a sparse format, is computationally demanding. It
would be impractical for the full OHSUMED data set and impossible for the full
PubMed database. If we look carefully at the relative frequency pathways, we
notice a peculiar behavior where two classes initially diverge but then collapse
(lower right graph in Figure 4). This is also congruent with others’ work, where
they would find a step of iteration with the largest separation, for example step 9,
and use that for testing, sometimes without much success [11, 12, 13, 14]. Other
authors also reported that each class requires a different number of iterations,
so this would not be a good source of generalization.

Figure 4 and Table 5 support evidence that 152,559 parent-child relations are
enough to cause very complex behavior. There is some improvement in perfor-
mance but not statistically significant (p-value=0.01259 at best, p-value=0.02618
overall). The improvement is almost random because it does not correlate well
with the baseline model. The Pearson correlation coefficient between the base-
line model and the enhanced model over all 170 runs of SVM is 0.66; it ranges
between 0.29 and 0.81 depending on the class label. In summary, this means that
152,559 relations react differently to different classes, need more computational
time and are not a reliable source of background knowledge.
Spreading activation with edge-pruning technique. This is uncharted ter-
ritory. At the start 152,559 parent-child relations are included. Spreading acti-
vation and removing one edge type at a time requires restart of the process each
time there is a change to the semantic network. After 60 iterations the algorithm
stops. This means that Xt+1 = f(XtR

′) and rfclass must be calculated on



Table 2. Performance of various UMLS relation types after 60 steps of spreading acti-
vation without the edge-pruning technique. This table shows the SVM macro F1 using
16-fold cross-validation, improvement when compared to a model with no spreading
activation (δ), and the number of unique edges and unique nodes used during the 60
steps of activation. The best-performing relationship is PAR (parent), and it has been
used for network pruning experiments.

REL Type FCV
1 (δCV ) Edges (Nodes)

RL + RB + SY 0.6286 (-0.1212) 129,003 (41,972)
RB + SY + PAR 0.6477 (-0.1021) 225,796 (51,672)
RL + RB 0.6523 (-0.0976) 116,592 (38,544)
RL 0.7064 (-0.0435) 35,231 (23,897)
RL + SY 0.7091 (-0.0408) 41,868 (25,870)
SY + PAR 0.7103 (-0.0395) 167,126 (43,354)
RB + PAR 0.7356 (-0.0143) 207,727 (47,888)
RB + SY 0.7488 (-0.0010) 78,939 (31,266)
RB 0.7498 (-0.0001) 68,270 (28,294)
SY 0.7509 (+0.0010) 24,437 (20,459)
PAR 0.7758 (+0.0252) 152,559 (40,134)

Table 3. Performance of PAR relationship after 60 steps of spreading activation with
eight types of edge removal procedures. Edge types are defined in Figure 3. This table
shows the SVM macro F1 using 16-fold cross-validation, improvement when compared
to a model with no spreading activation (δ), and the number of unique edges and
unique nodes used during the 60 steps of activation. The best four edge types were
chosen for permutation experiments.

Node A → Node B FCV
1 (δCV ) Edges (Nodes)

Old Other → Old Other [8] 0.7485 (-0.0014) 18,786 (18,782)
Old This → Old Other [7] 0.7487 (-0.0012) 18,942 (18,844)
Old This → Old This [6] 0.7535 (+0.0037) 19,375 (18,926)
Old Other → Old This [5] 0.7593 (+0.0095) 19,618 (18,879)
Old This → New This [4] 0.7736 (+0.0237) 147,857 (39,269)
Old Other → New This [3] 0.7740 (+0.0242) 117,064 (32,946)
Old This → New Other [2] 0.7746 (+0.0247) 139,621 (38,039)
Old Other → New Other [1] 0.7757 (+0.0258) 63,957 (24,436)

Table 4. The best sequence of edge removal calculated using macro F1 on classes
“endocarditis, bacterial”, “aortic valve stenosis”, “heart neoplasms”, and “mitral valve
stenosis”. Four out of eight removal procedures from Table 3 were permuted and the
best sequence was chosen for final testing. Removing all edges that connect medical
concepts that did not appear in any of the training documents worked best (edge types
numbered 1-4 in Figure 3).

Node A Node B FCV
1 (δCV ) Edges (Nodes)

(1) Old Other New This [2]
(2) Old Other New Other[1]
(3) Old This New Other[3]
(4) Old This New This [4] 0.7857 (+0.0358) 51,405 (21,684)



Table 5. Final results using PAR relations without edge pruning. PAR relations with-
out pruning offer poor improvement of the F1 score on the cross-validation and the
test sets. None of the improvements offers statistical significance when a paired t-test
was used to compare models with and without the semantic enhancement. ∗Data used
for finding the best types of semantic relationships and the best pruning procedures.

Class name (size) FCV
1 (δCV ) FTEST

1 (δTEST ) p-value

aortic valve insufficiency (239) 0.6026 (-0.0267) 0.6226 (-0.0697) 0.91325
aortic valve stenosis∗ (341) 0.7725 (+0.0096) 0.6621 (-0.0281) 0.25232
atrial fibrillation (222) 0.6511 (+0.0463) 0.6713 (+0.0559) 0.05404
cardiomyopathy, congestive (253) 0.6009 (+0.0171) 0.6092 (-0.0211) 0.23898
cardiomyopathy, hypertrophic (192) 0.7799 (+0.0507) 0.7640 (+0.0140) 0.01259
endocarditis, bacterial∗ (310) 0.8242 (+0.0182) 0.7211 (+0.0017) 0.19099
heart arrest (405) 0.6952 (-0.0071) 0.6966 (-0.0234) 0.68066
heart neoplasms∗ (197) 0.7729 (+0.0275) 0.6512 (+0.1032) 0.17259
mitral valve insufficiency (295) 0.6007 (-0.0338) 0.6087 (+0.0259) 0.86898
mitral valve stenosis∗ (172) 0.7335 (+0.0485) 0.7627 (+0.0448) 0.07377

across all experiments 0.7034 (+0.0150) 0.6770 (+0.0103) 0.02618

Table 6. Final results using PAR relations with the best edge-pruning procedure. Edge
pruning offers good improvement of the F1 score on the cross-validation and the test
sets. Four out of ten data sets achieved statistically significant improvement when a
paired t-test was used to compare models with and without the semantic enhancement.
∗Data used for finding the best types of semantic relationships and the best pruning
procedure. ∗∗Data with statistically significant categorization improvement.

Class name (size) FCV
1 (δCV ) FTEST

1 (δTEST ) p-value

aortic valve insufficiency (239) 0.5924 (-0.0370) 0.6733 (-0.0190) 0.99374
aortic valve stenosis∗ (341) 0.7787 (+0.0158) 0.6853 (-0.0048) 0.15238
atrial fibrillation (222) 0.6731 (+0.0683) 0.7172 (+0.1019) 0.00088∗∗

cardiomyopathy, congestive (253) 0.6363 (+0.0526) 0.6590 (+0.0287) 0.00240∗∗

cardiomyopathy, hypertrophic (192) 0.7879 (+0.0587) 0.8235 (+0.0735) 0.00334∗∗

endocarditis, bacterial∗ (310) 0.8149 (+0.0089) 0.7273 (+0.0078) 0.34398
heart arrest (405) 0.6886 (-0.0136) 0.6667 (-0.0533) 0.79991
heart neoplasms∗ (197) 0.8019 (+0.0565) 0.7229 (+0.1749) 0.01222
mitral valve insufficiency (295) 0.6262 (-0.0083) 0.6452 (+0.0624) 0.56264
mitral valve stenosis∗ (172) 0.7471 (+0.0621) 0.8062 (+0.0883) 0.00429∗∗

across all experiments 0.7147 (+0.0264) 0.7127 (+0.0460) 0.00003

average between 73 and 1,082 times, depending on the edge type from Table 3.
After that the four best-performing edge types are used and the order in which
they are being applied to the semantic network is permuted. The best sequence of
pruning (edge type 2, then 1, then 3, and then 4, see Table 4) requires on average
451 Xt+1 = f(XtR

′) and rfclass operations, but reduces the initial 152,559 edges
to a more modest 51,405, cutting the number of active concepts by half.

Figure 4 and Table 6 offer evidence that 51,405 parent-child relations create a
predictable behavior. Spreading activation stabilizes around the 30th iteration.
It has slightly better separation around ten iterations. After that, the relative



Fig. 4. Relative frequencies of the UMLS Metathesaurus concepts as they change with
spreading activation steps. The X-axis and Y-axis have relative frequencies correspond-
ing to the class “other” and the class “heart neoplasms”, respectively. First three images
show spreading activation on 1, 10 and 60 steps of the 1991 citation year data set. The
top images show spreading activation using PAR relations that were pruned using the
best edge-pruning procedure from Table 4. The bottom images show spreading activa-
tion using PAR relations that were not pruned in any way. The two images on the right
show the 60-step pathway of the relative frequency centers as they move outward or
inward and then settle down and stabilize around the 30th iteration with the pruning
and around the 50th iteration without the pruning.

frequency centers move back (upper right graph in Figure 4), but not nearly as
much as in the case of spreading activation without edge pruning. The improve-
ment is statistically significant in the case of four out of ten labels (best p-value
0.00088), three of which were not used during the best pruning sequence-seeking
process. The improvement across all 170 subsets is statistically significant (p-
value=0.00003). The Pearson correlation coefficient between the baseline model
and the enhanced model over all 170 runs of SVM is 0.72 and ranges between 0.17
and 0.87, depending on the class label. In summary, the 51,405 parent-child re-
lations offer good performance improvement, need less computational resources,
and are a good source of background knowledge.

6 Conclusion and Discussion

Language competence at the human level may require detailed neurocognitive
models that combine several kinds of memory: recognition, semantic, episodic
and short-term working memory, in addition to the iconic spatial and other types
of imagery that goes beyond representation based on verbal concepts. Such sys-
tems, requiring embodied cognition, are not practical at present. It is therefore
worthwhile to identify and solve specific problems that pose a challenge to the



current NLP approaches. Semantic network stores default and commonsense
knowledge. Multiple inheritance problem can be solved by adding inhibition to
network links. The network is pruned to adjust it to the current knowledge,
avoiding confusion and contradictions. The algorithm presented in this paper
identified PAR relations as the only one that lead to significant improvements.
Although the number of medical concepts in our experiments has been limited
the role of inhibition of some associations has been clearly demonstrated. Under-
standing practical applications of inhibition in the design of semantic memory
shows the way to applications of the same techniques to other types of memories
implemented by other types of networks. Experiments with classification of med-
ical collections of texts show that adding inhibition indeed in many cases leads to
significant improvements of results. This is merely one way of pruning semantic
networks. Insights from granular information processing imply that a dynamic
balancing of semantic generality and specificity could be a useful approach for
subsequent refinements of the proposed method.
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