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Abstract: Can computers have intuition and insights, and be cre-
ative? Neurocognitive models inspired by the putative processes in
the brain show that these mysterious features are a conse-
quence of information processing in complex networks.
Intuition is manifested in categorization based on evalua-
tion of similarity, when decision borders are too complex
to be reduced to logical rules. It is also manifested in
heuristic reasoning based on partial observations, where
network activity selects only those paths that may lead to
solution, excluding all bad moves. Insight results from rea-
soning at the higher, non-verbal level of abstraction that
comes from involvement of the right hemisphere networks
forming large “linguistic receptive fields.” Three factors are
essential for creativity in invention of novel words: knowledge
of word morphology captured in network connections,
imagination constrained by this knowledge, and filtering of
results that selects the most interesting novel words.
These principles have been implemented using a sim-
ple correlation-based algorithm for auto-associative
memory. Results are surprisingly similar to those
created by humans. 

O ne of the objections against compu-
tational intelligence considered by
Alan Turing in his famous article,
“Computing machinery and intelli-

gence,” [1] recalls Lady Lovelace’s objection (written in 
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her memoirs in 1842) that a machine can “never do anything
really new,” and in particular the Analytical Engine of Babbage
(an early idea for a universal computer) “has no pretensions to
originate anything. It can do whatever we know how to order it to
perform.” Turing’s response can be summarized as: “the evi-
dence available to Lady Lovelace did not encourage her to
believe” that machines could be creative, although “it is quite
possible that the machines in question had in a sense got this
property.” He continues, “suppose that some discrete-state
machine has the property. … universal digital computer …
could by suitable programming be made to mimic the machine
in question.” It is difficult to ascertain that something is really
new, and Turing admits that “machines take me by surprise
with great frequency.” 

The last section of Turing’s article is devoted to learning
machines as our best hope to realize computational intelligence
and creativity. After proposing (albeit in very vague terms)
“the child machine” in the final paragraph of the paper, the
author writes: “We may hope that machines will eventually
compete with men in all purely intellectual fields. But which
are the best ones to start with? Even this is a difficult decision.
Many people think that a very abstract activity, like the playing
of chess, would be best.” This has indeed proved to be true
and before the turn of the century—as Turing predicted—
computers exceeded human level competence in chess. How-
ever, the connection between memory capacity and speed of
calculations in chess is quite obvious, therefore the famous Big
Blue—Kasparov match has been accepted more as a demon-
stration of sheer computer power rather than true machine
intelligence. Turing also suggested another approach: “It can
also be maintained that it is best to provide the machine with
the best sense organs that money can buy, and then teach it to
understand and speak English. This process could follow the
normal teaching of a child. Things would be pointed out and
named, etc.” Many people turn now to this, much harder,
approach hoping that autonomous mental development using
real embodiment of perception/action in robot brains may be
the answer (see special issue of CIM [2]). Highly abstract sym-
bolic activity and fully embedded processes drawing on per-
ception and exploration of the world are two extremes, with a
lot of fertile ground in between. 

Many low level cognitive functions [3] involving percep-
tion and motor control already have reasonable neural models
that capture more details every year. With growing sophistica-
tion of algorithms, software implementations, and new inspira-
tions from neuroscience the field seems to be on a good track,
and some notable successes are already evident [4], although
reaching animal-level proficiency may still take some time.
Understanding and modeling of higher cognitive functions,
including visual and auditory scenes, the use of language,
thinking, reasoning, planning, problem solving or building
architectures to coordinate all cognitive functions is in much
worse shape. Models of thinking processes have been dominat-
ed mostly by search and rule-based symbolic Artificial Intelli-
gence (AI) algorithms, with a few toy examples based on

connectionist approaches in linguistic domain [2]. Conscious-
ness is considered to be the most mysterious of all mental phe-
nomena [5], but it may not be so difficult to realize in artificial
systems. Brain-like information processing must lead to claims
of consciousness in systems that are able to comment on their
internal states [6]. These comments are needed to make sense
of narrative history of one’s own life, as well as to learn any
complex skill that requires coordination of perceptions, reason-
ing and actions [6]. Unraveling detailed brain circuits involved
in creation of such comments, as well as computational imple-
mentation of complex systems based on recurrent modules that
implement this type of information processing, may take a
long time. Research on many aspects of consciousness is quite
active [5], but there are other, quite neglected faculties that all
child machines or any artificial minds must possess. 

Arguably, the three most important (and most mysterious)
faculties of the mind needed for intelligent behavior are intu-
ition, imagination and creativity. Babies and animals do not
reason making logical inferences, be it crisp or fuzzy, but even
birds use intuition, imagination and creativity to solve prob-
lems [7]. Computers need to show similar qualities. 

1. Intuition
The MIT Encyclopedia of Cognitive Sciences [8] has 10 arti-
cles devoted to various aspects of logic, and almost 100 index
references to logic. Intuition is not mentioned in the index at
all, although several articles mention definitions that agree with
some intuitions. The word “intuitive” in biology, psychology,
mathematics, physics and sociology is treated as a synonym of
naïve understanding in these fields. Yet, in everyday activity
very few people (and certainly no animals) base their decisions
on logical analysis of all options. Most cognitive functions,
such as understanding of human and animal intentions and
emotional states, meaning of words or creative thinking, can-
not be reduced to logical operations. Why then is intuition
played down, and so much effort spent on logic? Perhaps we
have been blinded by the apparent power of logics in the early
models of brain functions, leading to AI focus on logical meth-
ods in symbol manipulation for problem solving. Computa-
tional functionalism in philosophy of the mind separated neural
and mental processes focusing on symbolic analysis of thinking
processes. Logical approaches to truth, language and under-
standing of behavior gave rise to many technical questions
keeping experts busy for many years, although little progress
towards the initial goal has been made. It is much easier to
develop existing theories and formalisms rather than to come
up with new conceptualizations of the problem.

Intuition is defined in dictionaries as immediate knowing
without the conscious use of reasoning, or cognition without
evident rational thought and inference. Deliberate thinking is
critical, analytic and reasoning-like, while intuitive thinking is
rapid, effortless, and perception-like. The subject of intuition
has been abandoned by science, left mostly to esoteric psychol-
ogy or at best to psychoanalysis. Only recently scientific psy-
chology showed some interest in intuition. Social cognitive
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neuroscience views implicit learning processes as the cognitive
substrate of social intuition [9]. After publication of the book
“Intuition: Its Powers and Perils,” by D.G. Myers [10], a
review in Scientific American called intuition “… a rich
emerging field of scientific inquiry” (quoted from the book
cover). In experimental psychology, studies of subliminal
priming, implicit memory, automatic processing, emotional
cues, nonverbal communication, prejudices and stereotypes,
subconscious use of heuristics, decision making, blindsight and
other brain damage phenomena, are all relevant to understand-
ing intuition. Obviously, simple perception leading to object
recognition in any sensory modality, does not require logical
reasoning but brings immediate knowledge of the objects seen,
heard or touched. Psychologists and neuropsychologists have
thus given the research on intuition some respect, although it
still lacks multidisciplinary focus. 

From a computational perspective, modeling intuition is
relatively simple. Decisions of neural networks (or other mod-
els) that learn from data frequently cannot be justified in terms
of logical rules. In some cases, logical rules that have similar or
even higher predictive power may be extracted from trained
neural networks [11]. In other cases, judgments based on over-
all similarity provide better decisions. For example, data that is
generated from a single oblique Gaussian probability density
function will be classified with high accuracy using a single ref-
erence vector R with Mahalanobis metric ||X − R|| that mea-
sures dissimilarity between the query and the reference vector.
Neural networks may easily learn this type of similarity evalua-
tion, but there is no simple way to express equivalent knowl-
edge in terms of logical rules. Only for additive metric
functions ||X − R|| = ∑

i =1 Wi d(X i, Ri), where d(.,. ) eval-
uates dissimilarity for feature X i , fuzzy interpretation in terms
of membership functions is possible. Using product norm and
exponential transformation: 

T(X,R) =
∏

i =1

µ i(X i),

with µ i(X i) = exp(−Wi d(X i, Ri)),

identical decision borders as with the prototype-based rules
may be recreated. For that reason, it has been conjectured [12]
that prototype-based rules (P-rules) in threshold or nearest-
neighbor form are more general than fuzzy or crisp rules
(F-rules, C-rules), offering more flexibility and biological
plausibility in modeling of perception and decision making (see
[13] on interesting relations between uncertainty in data, mul-
tilayer perceptrons and fuzzy rules). If several such prototypes
are needed, P-rules can still handle the problem in an easy way
while approximations based on fuzzy rules will almost always
be of poor accuracy and will require many rules, making the
whole system incomprehensible. Psychologists have noticed
that rules and similarity judgments form a continuum, with
logical rules (including threshold logic and fuzzy logic rules)
applicable in relatively simple cases, while prototype-based
rules are applicable in situations when many factors are simul-

taneously taken into account for similarity judgments [14]. For
example, medical doctors may use simple norms based on
thresholds for some tests, but in case of emergency they have
to make fast intuitive judgments, taking many factors into
account. Experience leads to intuition, and it is obviously
related to similarity evaluation and memorization of many pro-
totypes. Even for simple benchmark medical data, a single P-
rule may offer more accurate explanation than sets of logical
rules [15]. 

Intuition is usually invoked in context of reasoning and
decision making. Herbert Simon claimed that AI has reached
the stage where intuition, inspiration and insight could be
modeled [16]. Intuition in problem solving has two defining
characteristics: (1) the solution has to be reached rapidly, and
(2) an explanation of why the steps leading to solution has
been selected could not be given. In various experiments,
novices and experts solving the same problem were compared,
and the use of intuition has been clearly correlated with the
ability to evaluate similarity and with the number of patterns
stored in long term memory. Knowledge obtained through
implicit learning or derived from partial observations (in con-
trast to the usual supervised learning situation, when full
knowledge is provided) over a long period of time cannot be
used directly in explicit reasoning. It is represented in diffuse,
rather weak connections, partially in the right brain hemi-
sphere, and thus cannot be accurately summarized in symbolic
form. Some attempts to capture intuition in chess have been
made recently [17] using a rather sophisticated representational
scheme. The claim is that “the postulated architecture models
chess intuition as an emergent mixture of simultaneous dis-
tance estimations, chunk perceptions, abstract role awareness,
and intention activations.” Our brains constantly learn to pay
attention to relevant features and remember many patterns.
Even in tasks for which rules of correct actions exist, intuitive
learning comes before rules are discovered.

Knowledge required for solving pattern recognition prob-
lems is usually quite limited, in most cases gained from a single
dataset given for training. Problems that require systematic rea-
soning are solved in AI by using a lot of background knowl-
edge, selecting and combining relevant rules in a process of
searching for a solution. Combinatorial explosion may be
avoided if high level macro-operators are used as a shortcut;
such strategies are based on the idea of chunking (grouping)
knowledge in hierarchical fashion, used in some AI systems
such as SOAR [18]. Hierarchical Temporal Memory model,
recently proposed as a general cortex mechanism, works using
this principle [19], learning common spatial and temporal
sequences to discover causes. This is quite similar to hierarchi-
cal correlation learning used already in the pandemonium
model [20] almost half a century ago, which has also been used
in brain-inspired vision systems [4]. 

Intuitive machines should learn from partial observations,
correlating subsets of features to create chunks of knowledge. In
many domains, strong symbolic rules are not known. Instead,
implicit learning creates a number of neural modules that
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capture some correlations between selected variables. This is
quite common in natural situations, for example observing ani-
mal behavior patterns various cues are memorized, and predic-
tions of future activity and intentions are made. Some animals
actively tease predators to test their reactions and gain valuable
knowledge [7]. In the original PDP Books [21], several articles
have been concerned with problems that required combinatori-
al constraint satisfaction. Relations between two or three vari-
ables constraining their possible values have been defined, and
Boltzmann machines and harmony theory have been used to
search for self-consistent states of these networks. Such methods
proved to be rather inefficient because a stochastic training
algorithm does not scale well with the size of the problem.
Recently multilayer restricted Boltzmann machines and deep
belief networks have been introduced [22], based on stochastic
algorithms and binary representations, but their use has been
restricted to pattern recognition problems so far. 

Solutions of complex problems, including inferences about
observed behavior, combine systematic search with intuitive
recognition based on partial observations. An approach to cap-
ture essential aspects of intuitive reasoning based on systematic
search has been proposed in [23]. Intelligence is sometimes a
matter of fast intuitive estimation of what can, and what can-
not be true. Suppose that a number of relations between small
subsets of all features characterizing complex system are known
a priori or are derived from observations. For example, three
features may be constrained by some function F (A, B, C), log-
ical relations, or by observation that (A, B, C) may take only
restricted values. All basic laws of physics have this form. Rela-
tions may also be found for changes in feature values. In the
simplest case, one may assume �A = 0 for no change,
�A = + for increase, and �A = − for decrease. The speed of
changes may of course be quantized into more steps. If only
three values are admitted, for three variables there are 33 = 27
possibilities, from all variables decreasing,
(�A,�B,�C) = (−,−,−) , to all variables increasing,
(�A,�B,�C) = (+,+,+). Introducing A = F(B, C) rela-
tion that is either additive A = B + C, multiplicative
A = B · C or inverse additive A−1 = B−1 + C−1 (most laws
of physics are in this form) excludes 14 out of the 27 possible
patterns of (�A,�B,�C) triples, for example �A = 0 (con-
stant) is impossible if both �B and �C decrease or if both
increase). It is quite surprising that when it comes to change,
many relations show qualitatively the same behavior, shown in
Figure 1 for (V, I, R) variables for V = I · R (Ohm’s law).
There are 13 true facts and 14 false ones, with the strength of
true relations being greater for (�V,�I,�R) = (+,+,+)

then for (�V,�I,�R) = (+,+,−), as the first one is always
true and the second one depends on relative speed of �I and
�R changes. Note that averaging over all observations will
show no correlations between �V and �I, �R, as all three
situations, (+,+,−), (0,+,−), (−,+,−) , are possible.
Instead of calculating correlations, facts are remembered and
the response of a node is getting stronger with the growing
number of observations, as illustrated in Figure 1 using differ-

ent sizes of gray balls. This function is all that is needed for
qualitative reasoning; it may be represented by:

F(X) = F(A, B, C) = exp(−β‖X − (−1,−1,−1)‖2)

+ . . . exp(−β‖X − 0‖2)

+ · · · + exp(−β‖X − (+1,+1,+1)‖2)

with a large constant β . 
It is quite likely that our knowledge of qualitative physics is

internalized in such a simple manner; if the predator runs
quickly the distance decreases fast and the time left before a
deadly encounter is short, so qualitative relations between time,
speed, and distance are important. Checking possibility does
not require writing and solving equations; if the response of
neural node F(A, B, C) > 0 than relation between (A, B, C)

features is not violated. A soft penalty function
F(A, B, C) = exp[−β(A − f (B, C))2] for violation of
A = f (B, C) relation may be used if real feature values instead
of changes are preferred. If the A = f (B, C) relation represents
a law of nature, b may be estimated from the accuracy of
A, B, C measurements. If this is just a preference relation, the
value of β may be selected to account for it. Such a mechanism
allows what is possible and what is unlikely in a purely intuitive
way. Impossible patterns of feature values simply “do not come
to mind,” as there is no activation that corresponds to them.

Another surprising fact is that in complex situations, expec-
tations generated using such weak constraints—bout half of the
relations being true, and the other half false—are very useful. If
many relations are applicable for N ternary features, out of 3N

possible combinations of possible values, only a few will be in
agreement with all constraints that restrict the kind of
situations that may really happen. For example, the relations 
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FIGURE 1  Qualitative changes of three variables related in additive,
inverse additive or multiplicative ways always follows the same 
pattern, with probability of different observations proportional to the
size of the ball.
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f (A1, A2) =A3; f (A2, A3) = A4; . . .

f (AN −2, AN −1) = AN

leave only 4N + 1 solutions that agree with all constraints, a
negligible fraction of all 3N patterns. Such knowledge based
on partial observations may be implemented in several ways
[23]. A network of “knowledge atoms” containing
F(A i, A i+1, A i+2) relations that represent correlations among a
subset of variables (they may be discovered in data using algo-
rithms similar to association rules mining) may be arranged in a
one-dimensional array, connected to relevant input features. If
the values of any two variables in the node (A i, A i+1, A i+2)

are known, than this node may provide unique value (or at
least some constraints) for the third variable. All missing values
are determined in a search with at most N − 2 steps, selecting
nodes in each step that have only one unknown variable. A
slightly more difficult situation occurs when only one feature
in each node has a specific value, for example A1 and A4. This
requires systematic reasoning: suppose that A2 has some specific
value. Is that possible in view of all known constraints and
fixed values of variables? Again, all that is needed is to check
whether F(X) > 0 for subsets of features with known values.
If only A1 and A4 are known, assume that A2 is either −, 0, or
+, starting three branches of a search tree. In the first step,
relation f (A1, A2) = A3 determines A3. In the second step,
f (A2, A3) = A4 is checked for all three branches, stopping the
search if both relations are not fulfilled. A useful heuristics is to
look for a maximally constrained feature, that is to find first the
feature that may assume only one possible value; this requires
checking if F(X) = 0 for all other values. Fixing the values of
successive features restricts the remaining features, making the
search process in most cases rather trivial. 

In the PDP book [21], a simple electric circuit with a bat-
tery and two resistors has been analyzed using Boltzmann
machines and harmony theory. The circuit (Figure 2) can be
fully described using seven variables: current I, three voltages
Vi and three resistances Rj. Most students of physics or electri-
cal engineering will answer questions such as: if R2 increases,
and R1 and Vt are kept constant, what will happen to the cur-

rent I and how will V1, V2 change? Although a novice may try
to deduce the answer transforming Ohm’s and Kirchoff’s equa-
tions to calculate I,V1,V2 from known values, an expert will
answer intuitively without any deliberation. If the question will
change the novice will again have to solve equations, while the
expert will come up intuitively with an immediate answer.

What useful knowledge do we have here? Both the novice
and the expert know Ohm’s law V = I · R and know that
Vt = V1 + V2, but only in the brain of an expert, through fre-
quent observations of currents and voltages in real circuits, the
qualitative behavior captured in the cube (Figure 1) has been
internalized. Focusing on all elements, five applicable laws are
noticed: Vt = I · Rt,V1 = I · R1 , and V2 = I · R2 , and
Rt = R1 + R2,Vt = V1 + V2 . Thus the total heuristic func-
tion is a product of five identical factors:

F(X) = F(Vt,V1,V2, R, R1, R2, I)

= f (�Vt,�I,�Rt) f (�V1,�I,�R1)

× f (�V2,�I,�R2) f (�Rt,�R1,�R2)

× f (�Vt,�V1,�V2)

There are 37 = 2187 different seven-dimensional ternary
vectors X, but only for 111 of them give F(X) > 0, other val-
ues lead to one or more factors equal to zero. Knowing that
�Vt = 0, �R1 = 0, and �R2 = +, the changes of the four
remaining variables should be found. It is easy to check that
assuming �V1 = 0, or +1, or −1, does not zero F(X), as the
unknown change in current I and the voltage V2 may be con-
sistent with any change in V1. However, �Rt = + is the only
solution as f (�Rt,�R1 = 0,�R2 = +) is 0 in other cases.
The current I has to decrease now, and this leads to the
decrease of V1 and increase of V2. No equations are trans-
formed to solve for unknown values. Only the response of
functions that relate unknown to known variables is checked,
in the first pass finding those features for which some factors
may be uniquely determined, and if this is not possible, finding
the most constrained feature and creating search tree with sev-
eral branches. 

Networks of knowledge atoms may solve many problems
where partial observations lead to some constraints, facilitating
intuitive reasoning. Is this really the mechanism behind intu-
itive problem solving? A number of testable predictions on
human intuitive performance can be generated assuming this
mechanism. For example, learning only theory does not lead to
good intuitions. Observations of how things change are need-
ed. Good car drivers may have problems recalling driving rules,
they just make correct assumptions and predictions. If the prob-
lem admits more than one solution, how likely is it that a stu-
dent will find all solutions? This should depend on the working
memory load, or complexity of the search, needed to find all
solutions. In complex situations, hierarchical decomposition of
the problem is necessary, depending on the questions asked.
For example, elements of complex electrical circuits may be
decomposed into larger blocks as there is no need to assign
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FIGURE 2  Electric circuits are good examples of using partial 
knowledge about relations between few variables to infer qualitative
changes. In this example, there are seven variables involved.
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values to all variables. People in such cases analyze graphical
structure of connections and nodes representing the problem,
starting from elements mentioned in the problem statement. 

We have created several software implementations of algo-
rithms for learning from partial observations that quickly find
all solutions if many discrete feature values are missing (T.
Maszczyk, J. Rzepecki, W. Duch, in preparation). Problems of
this type are somewhere in between pattern recognition and
symbolic reasoning problems. Neural networks may be used as
heuristics to constrain search processes (a core AI technology)
in problem solving. Robots, including autonomous vehicles,
need to combine reasoning with pattern recognition in a real
time. Intuitive evaluation of possible solutions to global goals
may help to generate rough plans, find optimal patterns for
behavior of a robot. Other applications include games as well
as industrial installations, where operators learn to interpret
complex signaling patterns. Collecting data for challenging
problems of this kind would be very worthwhile, encouraging
the development of more algorithms to solve them. 

2. Insight
Intuition and insight have some similarities, but the sudden
Aha! experience that accompanies solutions of some problems
has a distinct character [24]. Insight is usually preceded by an
impasse, frustration after a period of lack of progress, followed
by conviction of the imminence of solution, frequently after a
period of incubation when the problem is set aside. A new
way of looking at the problem that leads to the solution is
accompanied by great excitement and understanding. The
mild version of the Aha! experience is fairly common during
discussions when difficult concepts or a confusing description
of some situation is finally grasped. Herbert Simon believed
that the EPAM (Elementary Perceiver And Memorizer) model
developed by Feigenbaum and himself in the early sixties [25],
combined with his GPS (General Problem Solver) model [26],
explains insight. The initial process of searching for the solu-
tion reaches dead end, but during the search new features are
constructed and stored in the long-term memory. After the
failure control mechanism, shift the search to another prob-
lem’s space, and new control structures for this process are cre-
ated in the short term memory. With additional features of the
problem generated in previous runs, the new search has greater
chances to succeed. However, this explanation may be applied
to typical attempts of solving a problem by using several differ-
ent strategies, without any Aha! experience. Only recently
neuroscience has provided a deeper understanding of the
insight phenomenon.

Studies using functional MRI and EEG techniques con-
trasted insight with analytical problem solving that did not
required insight [27]. An increased activity in the right hemi-
sphere anterior superior temporal gyrus (RH-aSTG) has been
observed during initial solving efforts and during insights. This
area is probably involved in higher level abstractions that can
facilitate indirect associations. About 300 ms before insights
occurred, bursts of gamma activity has been observed. This has

been interpreted by the authors as “making connections across
distantly related information during comprehension ... that
allow them to see connections that previously eluded them”
([27], p. 326). Bowden et al. [28] performed a series of fMRI
experiments, confirming these results. In this interpretation,
initial impasse is due to the inability of the left hemisphere,
focused on the problem, to make progress. This deadlock is
removed when the less-focused right hemisphere adds relevant
information, allowing new associations to be formed. The
Aha! experience may result from activation of the pre-existing
weak solution in the right hemisphere suddenly reaching con-
sciousness when the activation of the left hemisphere is
decreased. Although these observations are important, their
explanation is rather nebulous. To understand the insight phe-
nomenon, first the representation of words, concepts and the
whole problem statement in the brain should be elucidated.

Words in the brain are an abstraction of acoustic speech
input, changed into phonological, categorical representation.
Categorical auditory perception enables understanding of a
speaker-independent speech and is more reliable in a noisy
environment. Phonemes, quantized building blocks of phono-
logical representations (typically about 30–50 in most lan-
guages) are linked together in ordered strings by resonant states
that represent word forms. In brains of people who can read
and write, strictly unimodal visual representations of words in
the Visual Word Form Area in the left occipitotemporal sulcus
has been found [29]. Adjacent lateral inferotemporal multi-
modal area reacts to both auditory and visual stimulation and
has cross-modal phonemic and lexical links. It is quite likely
that the homolog of the VWFA in the auditory stream is locat-
ed in the left anterior superior temporal sulcus; this area shows
reduced activity in developmental dyslexics. In the Broca’s area
in the frontal lobe, precise motor representations that generate
speech are stored. All these representations of word forms help
to focus thinking processes. Activations of word forms are cor-
related with activity of other brain circuits, pointing to some
experiences, perceptions and actions that define the meaning
of words. Polysemic words probably have a single phonologi-
cal representation and differ only by semantic extension.
Analysis of the N200 feature of auditory event-related poten-
tials shows that phonological processing precedes semantic
activations by about 90 ms [30]. Similar phonological word
forms activate adjacent resonant microcircuits. To recognize a
word in a conscious way, activity of its subnetwork must win a
competition for an access to the working memory [31]–[34].
Hearing a word activates strings of phonemes, priming
(increasing the activity) all candidate words and non-word
combinations. Context priming selects an extended subnet-
work corresponding to a unique word meaning, while compe-
tition and inhibition in the winner-takes-all processes leaves
only the most active candidate network. Semantic and phono-
logical similarities between words should lead to similar pat-
terns of brain activations for these words.

Language is lateralized usually in the left hemisphere (LH),
with the right hemisphere (RH) responsible for largely non-
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verbal processing of speech information and recognition of a
limited number of words [31]. RH is strongly connected to
the LH, but such long projections cannot carry precise infor-
mation about activations in the word form and extended word
representation areas. RH may thus generalize over similar
“semantic field” activations forming concepts at a high level of
abstraction. Although these concepts have no names, as they
are not associated with any word-form activation, they are
very helpful in making inferences necessary to understand lan-
guage. Simple inferences may be done locally through associa-
tive mechanisms in the LH, but more elaborate inferences
relay on RH activations, involving especially the right tempo-
ral gyrus [35]. This conjecture is confirmed by large psycholin-
guistic literature on the patients with RH damages, and similar
conclusions from functional imaging of normal people: “LH
may focally activate the semantic network, while RH activa-
tion may be more diffuse, coactivating more distantly related
concepts” [36]. Distributed activations in the RH form various
configurations that should activate some regions in the left
hemisphere, enabling it to capture complex relations inherent
in large semantic fields for concepts that have no name but are
useful in reasoning and understanding. For example, “left eye”
sounds correct, but “left liver” sounds strange. The feeling of
understanding is a kind of readiness potential of the brain to
signal that inference processes due to the interplay between the
left and right hemispheres have successfully finished. Associa-
tions at higher levels of abstraction in the RH are passed back
to facilitate LH activations that form intermediate steps in lan-
guage interpretation. A high-activity gamma burst project to
the left hemisphere will prime subnetworks with sufficient
strength to form associative connections linking the problem
statement with a partial or final solution. This is a universal
mechanism that operates in case of difficult problems as well as
in understanding of complex sentences.

High-activity gamma bursts, observed in the insight experi-
ments [28], influence the left hemisphere priming larger sub-

networks with sufficient strength to form associative connec-
tions that link problem statements through a series of interme-
diate transitions to a partial or final solution. Such solutions
may initially be difficult to justify. Therefore, the feeling of
vague but imminent understanding is generated, replaced by
real understanding when all intermediate steps are correctly
linked. The solution may be surprising, being based on a quite
different idea than initially entertained. Gamma bursts also acti-
vate emotions increasing plasticity of the cortex and facilitating
formation of new associations. Emotional reaction should be
proportional to the difficulty of forming new associations;
therefore, grasping a new difficult concept in a discussion gen-
erates only a mild reaction, while solving a difficult problem
generates strong emotions, activating the reward system.

What computational inspirations may be drawn from these
observations? One approach to model insight processes is based
on small-world network analysis at the graph-theoretic level
[37]. Activation of the RH during insight may create shortcuts
between different subnetworks with dense local connections
(small-world subnetworks). The qualitative picture is quite
clear: words and their associations correspond to patterns of
activations that activate more general concepts in a hierarchical
way, and part of the processing proceeds at a non-verbal, high
level of abstraction. The main challenge is how to use inspira-
tions from neurocognitive linguistics to create practical algo-
rithms for Natural Language Processing and problem solving.
It may be necessary to forget the details and look at the high
level, non-conceptual description of the problem. This process
has distant analogy to reasoning at higher levels of ontology
and resembles the process of abstraction that is a formulation of
general concepts by rejecting inessential details, very common
in mathematics. Disambiguation and understanding of con-
cepts requires extensive a priori knowledge that should be
gained preferably from textbooks and structured knowledge
sources. This reference knowledge may be modeled in several
ways. The spreading activation networks [38] could in princi-

ple provide most faithful models, but realistic
large scale networks of this sort have so far not
been created. These networks include both
excitation and inhibition in the spreading acti-
vation process and are a generalization of
semantic networks [39]. Linguistic concepts
should approximate word-form and semantic
field activations in the brain. Therefore, con-
nectionist models should not use nodes that
represent whole concepts, but rather a fine-
grained information about construction of
words, such as morphemes or syllables. Con-
text analysis will then provide guidance for
spreading activation. Clusterization or granular
computing techniques may try to capture simi-
larities between semantic field activations, and
create hidden, internal concepts that corre-
spond to the RH activity, helping to make
inferences during text comprehension. 
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FIGURE 3  Phonetic word-form “ring” has different extended representations.
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Language development is grounded in internal representa-
tions of objects formed by the brain using information derived
from perception, creating non-trivial semantic fields. To what
extent may this process be approximated without embodied
cognition? The main difficulty with neurocognitive approach
to NLP is the lack of structural descriptions of common objects
and concepts. Even the simplest concepts, such as those related
to animals, do not have good descriptions in the dictionaries,
making creation of semantic memories from machine-readable
sources quite difficult [40]. For example, everyone knows how
a horse looks like, but a dictionary definition “solid-hoofed
herbivorous quadruped domesticated since prehistoric times”
(Wordnet), is certainly not sufficient to create correct associa-
tions. There are many proposals on how to gain the missing
knowledge from ontologies, dictionaries, encyclopedias, and
collaborative projects (MindNet, ConceptNet, Open Mind
Common Sense Project). There is an active search for possible
relations between different concepts [40] and active dialogues in
word games to add missing knowledge [41]. Statistical NLP
approaches are based on the vector model, with different nor-
malization methods that change word frequencies into useful
features [42]. Vector approach may be treated as a snapshot of
the network activity after several steps of spreading activation.
In document categorization, a priori knowledge may then be
stored in reference vectors derived from description of con-
cepts, for example names of diseases that documents are related
to [43]. Fuzzy prototypes may also be used instead of single ref-
erence vectors. Semantic smoothing techniques may be used to
simulate spreading neural activation, adding activation to con-
cepts that are related to those discovered in the text. Synonyms
and their parent concepts that are higher in ontological hierar-
chy should be added in the first place. In effect, documents that
may use quite different words are clustered into correct topics
[44]. Knowing the topic and semantic types of concepts helps
to disambiguate the meaning and annotate the text correctly.
The activation of the semantic fields in the whole network has
to be consistent, leading to the idea of active subnetworks, rep-
resented by graphs of consistent concepts [45]. These graphs
should capture relations between concepts in their specific
meanings, inhibiting alternative interpretations. 

Brains are the only known systems capable of understand-
ing natural language. Brain-like representations of linguistic
concepts at the morphological level have unique properties
that facilitate various inferences needed to understand text.
Although linguists are aware of the importance of the neu-
rocognitive basis of language, so far their interest has been
restricted only to the description of specific linguistic phenom-
ena [46]. We do understand what has been missing in logical
and statistical NLP approaches. This is a very fertile area for
computational intelligence, with a lot of effort needed to cre-
ate useful, large-scale, practical algorithms to approximate
dynamical processes involved in language comprehension and
production and to create good semantic memories. This may
still be a faster and easier way toward linguistic competence
than embodied cognition. 

3. Imagination and Creativity
Creativity is one of the most mysterious aspects of the human
mind. Research on creativity has been pursued by educators,
psychologists and philosophers. MIT Encyclopedia of Cogni-
tive Sciences [8], Encyclopedia of Creativity [47] and the
Handbook of Human Creativity [48] described stages of cre-
ative problem solving and tests that can be used to assess cre-
ativity, but do not mention brain mechanisms or
computational models of creative processes. Sternberg [48] has
defined creativity as “the capacity to create a solution that is
both novel and appropriate.” In this sense, creativity manifests
itself not only in creation of novel theories or inventions, but
permeates our everyday actions, understanding of language and
interactions among people. Brain processes behind creative
thinking should not be much different from processes respon-
sible for intuition and insight [49]–[51].

High intelligence is not sufficient for creativity, although it is
quite likely that both have a similar neurobiological basis. Rela-
tionships between creativity and associative memory processes
have been discussed already in [52]. A rich network of associa-
tions, as well as strong RH involvement, are clearly prerequisites
for creativity. Heilman et al. agree that “creative innovation
might require the co-activation and communication between
regions of the brain that ordinarily are not strongly connected,”
binding “different forms of knowledge, stored in separate corti-
cal modules that have not been previously associated” ([53], p.
369). However, these authors do not consider lateralization of
brain functions. One of the most important techniques in exper-
imental psychology is aimed at investigation of priming effects
[54]. The pair-wise word association techniques [54] measure
response times to presentation of verbal stimuli, and are the most
direct way to analyze associations among local networks coding
different concepts. Priming techniques are based on cues that
have influence on responses. Associations may differ depending
on the type of priming (semantic or phonological cues), struc-
ture of the brain network that codes concepts, the activity
arousal due to priming, and many other factors. Creative people
should show greater ability to associate words and should be
more susceptible to priming. Less creative people may not be
able to make remote associations at all, while creative people
should, in this case, show longer latency times proportional to
the difficulty of making an association (presumably related to the
probability of making the transition between the two concepts, a
good measure of distance in neural space). 

In one priming experiment [55], people with high and low
scores in creativity tests saw the first word, followed for a brief
(200 ms) moment by the priming cue (word), before the sec-
ond word of the pair was displayed. More creative people
indeed show greater ability to notice associations, especially for
more difficult associations that less creative people frequently
fail to notice. It should be expected that in a network that has
a small-world structure, higher creativity means that there are
more connections and thus higher transition probabilities
between different subnetworks. However, priming effects
should differ, depending on the type of priming cue. For easy
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associations, positive priming (words that have related mean-
ing) should lead to faster associations in all cases. Neutral prim-
ing, based on nonsensical or unrelated words, may in this case
create in a densely connected network (creative people) a
spread of activation in too many directions, and thus competi-
tion for access to the working memory that will slow down
the response times. In networks with fewer connections (less
creative people), activation will mostly be spread through con-
nections that correspond to easy associations, making the
responses faster. When associations become difficult, indirect
activation routes are needed to facilitate transitions, perhaps
involving inter-hemispheric transfers of activations. They are
too weak or non-existing in less creative people and thus
priming will not help them. Weak connections that exist in
more creative brains may not be sufficient to facilitate quick
transitions between the two paired word representations, but
adding neural noise via nonsensical priming may increase the
chance of such transitions. This is an example of the stochastic
resonance phenomenon [56] that has been reported in visual,
auditory and tactile perception, but evidently can also be
noticed in associative thinking. Adding positive priming based
on spelling activates only phonological representations close to
that of the second word. Therefore, the influence should be
weaker. All these effects have been observed [55]. Experiments
did not analyze the overlap between nonsensical words and the
pair of words given for association at phonological and
grapheme level, although this may reveal the microstructure of
the associative process. These results support the idea that cre-
ativity relies on the associative memory, and in particular on
the ability to link together distant concepts.

The first ingredient needed for creativity is a sufficiently
rich associative network, a neural space capable of supporting
complex states. High intelligence does not guarantee creativity.
The second ingredient is imagination. Mental imagery is a well
established field with its own Journal of Mental Imagery, start-
ed in 1977. Brains try to make sense of subtle cues, forming in
parallel many hypotheses that compete with each other.
Replacing a part of the spoken word by noise is sufficient to
create an impression that the actual word that fits to the later
context has actually been heard. For example [57], in the
phrase “[noise]eel is on the —,” where the last word resolving
the context is either “axle,” “shoe,” “orange” or “table,”
incomplete information at the phonemic level is restored in
the brain and the first word is heard as “wheel,” “heel,”
“peel,” or “meal,” accordingly. The information that is con-
sciously experienced is integrated in a rather broad temporal
window [30]. We are aware of the final result of the massive
competition between various resonant states forming shorter
and longer chains of activation, waiting for additional cues in
form of context to resolve ambiguities. In absence of such
cues, some stronger activations temporarily win the competi-
tion, popping up in the working memory. It is quite likely that
working memory is not a separate subsystem, but simply an
active part of the long-term memory (LTM) network due to
priming and spreading of neural activation (see the review of

the evidence for this point of view in [58]). The same brain
regions are involved in perception, storage and reactivation of
LTM representations. Some activated LTM subnetworks may
be in the focus of attention of the frontal lobe central execu-
tive areas (presumably this is the part we are conscious of) and
some may be activated, but outside of this focus. Imagination
depends on associations that the neural space is able to provide,
but also on the energy and inner drive that may be due to the
strong coupling via the dopamine projections between the
frontal lobes and basal ganglia. 

The final ingredient needed for creativity is the filtering sys-
tem that selects most interesting (from an emotional or cogni-
tive point of view) mental images. Creativity is therefore a
product of ordinary neurocognitive processes and as such
should be amenable to computational modeling. However, lack
of understanding of what exactly is involved in creative activity
is one of the main reasons for the low interest of the computa-
tional intelligence community in creative computing. Problems
that require creativity are difficult to solve because neural cir-
cuits representing object features and variables that characterize
the problem have only weak connections, and the probability
of forming an appropriate sequence of cortical activities is very
small. The preparatory period—reading and learning about the
problem—introduces all relevant information, activating corre-
sponding neural circuits in the language areas of the dominant
temporal lobe, and recruiting other circuits in the visual, audi-
tory, somatosensory and motor areas used in extended repre-
sentations. These brain subnetworks become highly active,
reinforce mutually their activity, and form many transient con-
figurations inhibiting at the same time other activations. Diffi-
cult problems require long incubation periods that may be
followed by an impasse and despair period, when inhibition
lowers the activity of primed circuits allowing for recruitment
of new circuits that may help to solve the problem. In the incu-
bation period, distributed sustained activity among primed cir-
cuits leads to various transient associations, most of them
short-lived and immediately forgotten. Almost all of these acti-
vations do not have much sense and are transient configura-
tions, fleeting thoughts that escape the mind without being
noticed. Only the most interesting associations (from the point
of view of current goals) are noticed by the central executive
and amplified by emotional filters that provide neurotransmit-
ters increasing the plasticity of the circuits involved and forming
new associations, pathways in the conceptual space. 

Very few computational models addressing creativity have
been proposed so far, the most interesting being Copycat,
Metacat, and Magnificat developed in the lab of Hofstadter
[59], [60]. These models define and explore “fluid concepts,”
that is concepts that are sufficiently flexible and context-sensi-
tive to lead to automatic creative outcomes in challenging
domains. Copycat architecture is based on an interplay
between conceptual and perceptual activities. Concepts are
implemented in a Slipnet spreading activation network, play-
ing the role of the long-term memory, storing simple objects
and abstract relations. Links have length that reflect the

48 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 08:42 from IEEE Xplore.  Restrictions apply.



strength of relationships between concepts and change dynam-
ically under the influence of the Workspace network, repre-
senting perceptual activity in the short-term or working
memory. Numerous software agents, randomly chosen from a
larger population, operate in this Workspace, assembling and
destroying structures on various levels. The Copycat architec-
ture estimates “satisfaction” derived from the content of assem-
bled structures and concepts. Relations, and therefore the
meaning of concepts and high-level perceptions, emerge in
this architecture as a result of a large numbers of parallel, low
level, non-deterministic elementary processes. Although this
model has not been directly inspired by neurocognitive con-
siderations, it may approximate some fundamental processes of
creative intelligence. The main application so far was in the
design of new font families [60].

Results of experimental and theoretical research led to the
following conclusions: 
1) Creativity involves neural processes that are realized in

the space of neural activities reflecting relations in some
domain (in the case of words, knowledge about morpho-
logical structures), with two essential components. 

2) Distributed fluctuating (chaotic) neural activity, con-
strained by the strength of associations between subnet-
works coding different words or concepts is responsible
for imagination.

3) Filtering of interesting results, amplifying certain associa-
tions, and discovering partial solutions that may be useful
in view of the set goals. Filtering is based on priming
expectations, forming associations, arousing emotions,
and in case of linguistic competence on phonological and
semantic density around words that are spontaneously
created (density of similar active configurations represent-
ing words).
Arguably the simplest domain in which creativity is fre-

quently manifested is in the invention and understanding of
novel words. This ability is shown very early by babies learn-
ing to speak and understand new words. A neurocognitive
approach to the use of words and symbols should draw inspira-
tions from experimental psychology and brain research and
help to understand putative brain processes responsible for cre-
ativity manifested in novel word creation. This could be a
good area for more precise tests of creative processes using
computational, theoretical and experimental approaches. Inter-
esting names for products and companies are always in great
demand. In languages with rich morphological and phonologi-
cal compositionality, such as latin or slavic families of lan-
guages, novel words that cannot be found in the dictionary
may appear in normal conversation (and more frequently in
poetry). Although these words are newly invented, their mor-
phology gives sufficient information to make them under-
standable in most cases, even without hearing the context. The
simplest test for creative thinking in linguistic domain may be
based on the ingenuity of finding new words and names for
products for Web sites or companies that capture desired char-
acteristics. A test for creativity based on ingenuity in creating

new words could measure the number of words each person
has produced in a given time, and should correlate well with
the more demanding IQ tests. 

Suppose that several keywords are given, or a short text
from which such keywords may easily be extracted, priming
the brain at the phonetic and semantic level. The goal is to
come up with novel and interesting words that capture associa-
tions among keywords in the best possible way. Large numbers
of transient resonant configurations of neural cell assemblies
may be formed in each second, exploring the space of all possi-
bilities that agree with internalized constraints on the phono-
logical structure of words in a given language (phonotactics of
the language). Very few of those imagined words are really
interesting, but they all should sound correct if phonological
constraints are satisfied. Imagination is rather easy to achieve,
taking keywords, finding their synonyms to increase the pool
of words, breaking words into morphemes, syllables, and com-
bining the fragments in all possible ways. 

In the brain, words that use larger subnetworks common to
many words have a higher chance to win competitions as they
lead to stronger resonance states with microcircuits that mutu-
ally support activity of each other. This probably explains the
tendency to use the same word in many meanings and create
many variants of words around the same morphemes. Creative
brains support greater imagination, spreading activation to
more words associated with initial keywords, and producing
faster combinations, but also selecting the most interesting
results through emotional and associative filtering. Emotional
filtering is quite difficult to model, but in the case of words,
two good filters may be proposed based on phonological and
semantic plausibility. Phonological filters are easier to construct
using second and higher-order statistics for combination of
phonemes (in some languages even combination of letters is
acceptable, as spoken and written words are in close corre-
spondence). Construction of phonological neighborhood den-
sity measures require counting the number of words that
sound similar to a target word. Semantic neighborhood density
measures should evaluate the number of words that have simi-
lar meaning to a target word, including similarity to mor-
phemes that the word may be decomposed to. 

Implementation of these ideas in a large scale neural model is
possible, but as a first step, simplest approximations have been
tried [49]–[51]. The algorithm involves three major components: 
1) An autoassociative memory (AM) structure, constructed

for the whole lexicon of a given language at the morpho-
logical level to capture its statistical properties; it stores
the background knowledge that is modified (primed) by
keywords; 

2) Imagination implemented by forming new strings from
combinations of substrings found in keywords (and their
synonyms) used for priming, with constraints provided by
the AM to select only lexically plausible strings; 

3) Final ranking of the accepted strings should simulate
competition among novel words, leaving only the most
interesting ones.
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In the simplest version, a binary correlation matrix [61] has
been used as autoassociative memory using single letters repre-
sented by temperature coding. Experiments with such matrices
show that for unrestricted dictionaries they accept too many
strings (metaphorically speaking such correlation matrices do
not constrain sufficient imagination when random strings are
created) and thus are not sufficient to model the process of
forming candidate words. There are several simple extensions
to this model, either at the level of word representations, more
complex network models, or learning algorithms. The first
possibility has been explored to keep the algorithm as simple as
possible. The list of elementary units has been expanded from
letters to pairs of letters, selected triplets, morphemes, or addi-
tional phonological representations, leading to an increase of
the dimensionality of vectors representing words, and thus cre-
ation of a sparse correlation matrix providing stronger language
model constraints. Word is converted into a string of morpho-
logical atoms. To reflect constraints for filtering novel lexical
strings, binary weights may be replaced by correlation proba-
bilities, taking into account word frequencies. The correlation
matrix W is calculated and normalized by dividing its elements
Wi j by the sum of all elements in a row. Other ways to nor-
malize this matrix have also been included in the program, for
example additional position-dependent weights may stress the
importance of the beginning and end atoms in words.

In the mental imagination step, various combinations of
atoms should be considered. As the number of combinations
grows rapidly, sequential filtering is used, combining pairs first
and adding more atomic components to highly probable com-
binations only. Words are always created in some context. In
practical applications, we are interested in creating novel names
for some products, companies or Web sites. Reading descrip-
tions of such objects people pick up important keywords and
their brains are primed, increasing probability of creating words
based on atomic components found in keywords and additional
words that are strongly associated with these keywords. The
key to get interesting new words is to supply the algorithm
with a broad set of priming words somehow related to the
main concept. In our model, this is realized by priming with an
enhanced set of keywords generated from Wordnet
(wordnet.princeton.edu) synsets (sets of synonyms) to original
keywords. The extended set of keywords may then be checked
against the list generated from our corpus to get their frequen-
cies. To account for priming, the main weight matrix is modi-
fied by adding W + λWp , where Wp is the weight matrix
constructed only from the keywords. Wp is multiplied by a fac-
tor l that controls the strength of the priming effect. Using very
large λ makes the background knowledge contained in the
weight matrix W almost irrelevant; the results are limited only
to a few words because the program filters out almost all words
as the priming set is not sufficient to learn acceptable correla-
tions. A binary Wp matrix may also be used if each row of the
combined matrix is divided by its maximum element. 

In the brain, priming of some words leads to inhibition of
others. This may be simulated by implementation of negative or

inhibitory priming that decreases the weights for words that are
antonyms of keywords. For example, while creating words from
such keywords as unlimited happiness, combinations of “unhap-
py” types, although formally interesting, should be avoided and
usually do not come to our mind. The algorithm for creating
words works at the syntactic level and does not try to analyze
the meaning of the words. Two desired characteristics of a soft-
ware product described by keywords “powerful” and “bound-
less,” analyzed at the morpheme level will lead to a perfect word
“powerless” with a very high score. Yet, in most cases this asso-
ciation will not come to the minds of people inhibited at the
semantic level. This score could be lowered by negative prim-
ing. In current implementation of our algorithm, such words are
ranked low only in the final stage, when the “relevance” and
“interestingness” filters are applied, and associations of the creat-
ed word are searched for. If strong associations with some
antonyms of keywords are discovered, the word gets a low
ranking. Novel words should not have too much resemblance
with the words that are already in the dictionary because they
will not be treated as new, only as misspelled words. One way
to estimate how interesting the word may seem to be is to eval-
uate its “semantic density,” or the number of potential associa-
tions with commonly known words. This may be done by
calculating how many substrings within the novel word are lexi-
cal tokens or morphemes. For longer morphemes, general simi-
larity to other morphemes (rather than string equivalence) is
sufficient. If several substrings are similar to morphemes or
words in the dictionary, the word will certainly elicit a strong
response from the brain networks and thus should be regarded as
interesting. The influence of subjective, personal bias can also
have an impact when judging the obtained results. It may be at a
phonological or semantic level, related to some idiosyncratic
preference that cannot be found in any dictionary. Knowing
individual preferences and favorite expressions, the algorithm
could be personalized to some degree. 

A few examples of results from such algorithms are presented
here. First, interesting names for a Web site offering shoes are
searched for. From the company brochure the priming set of
keywords is extracted, consisting of such words as “running,
sport, youth, health, freedom, air.” Several variants of the
extended ngram model produced the following words: shoebie,
airenet, runnyme, sportip, windway, funkine, runnyme, moveman, run-
ably, sporist,and runniess. Google search for these words shows
that some of them have been already invented by people,
although not necessarily applied in the context of shoes. For
example airnet is a great name for wireless services, and Winaway
is a name of a racing greyhound champion. Although these
words are relatively rare, most of them have been already used
in various ways. The domain www.sportip.com was for sale for
$17,000. Table 1 summarizes the results, quoting approximate
numbers of entries in Google search engine at the end of 2006. 

The second example came from a real request for finding
a good company and portal name; the company wanted to
stress creative ideas, and the priming set consisted of such
concepts as idea, creativity, portal, invention, imagination,
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time and space. The top words discovered in this case includ-
ed ideates, smartne, inveney, timepie, taleney, crealin, invelin, and
visionet. Starting from an extended list of keywords, “portal,
imagination, creativity, journey, discovery, travel, time,
space, infinite,” more interesting words have been generated,
with about three-fourths already used as company or domain
names. For example, creatival is used by creatival.com and cre-
ativery is used by creativery.com. Some words have been used
only a few times (according to the Google search engine); for
example, discoverity that can be derived from: disc, disco, dis-
cover, verity, discovery, creativity, verity, and may mean dis-
covery of something true (verity). Another interesting word
found is digventure, because it is easy to pronounce, and both
“dig” and “venture” have many meanings and thus many
associations, it creates a subnetwork of activity in the brain
that resonates for a long time. This example shows the
importance of using extended keywords. Unfortunately,
novel words in the Internet get immediate attention of com-
panies that try to reserve them for Web sites. 

In the near future, we plan to create a Web server for cre-
ation of novel words starting from short descriptions. 

4. Perspectives
In everyday life, intuition, insight and creativity are used more
often than logic. For many years, AI efforts to understand
higher cognitive functions have been dominated by logics, the
whole 5th generation computer project was focused on logic,
but the results were less then encouraging. Evidently this was
like barking at the wrong tree. The neurocognitive approach
to understanding intuition, insight and creativity is built on a
common set of ideas and is capable of explaining, at least in a
qualitative way, many high cognition phenomena. Obviously,
it is still quite speculative and the actual implementations are
still rather simplistic, but it seems to open the door to model-
ing of creative thinking at least in the narrow domain of word
creation. Brain imaging and electrophysiological studies of the
brain activity during invention of new words, as well as during
analysis of novel words, would make an interesting test of neu-
rocognitive approach to creativity, and may be done with
methods already used to study word representations in the
brain [31]–[35], [62], [63]. Probing associations and transition
probabilities between brain states using priming techniques
[54], [55] should lead to a better understanding of what kind of
associations are most relevant. A research program on creativity,
insight and intuition that includes neuroscience, cognitive psy-
chology and theoretical modeling, focused on word represen-
tation and creation, could be an entry to a detailed
understanding of these fascinating brain processes. 

Intuition is not difficult to explain, both in recognition and
reasoning for solving problems. Understanding insight leads to
interesting inspirations for natural language processing. Cre-
ativity requires prior knowledge of the domain, imagination,
and filtering of interesting results. Imagination should be con-
strained by probabilities of composition of elementary opera-
tions, corresponding to activations of specific brain

subnetworks. Products of imagination should be ranked and
filtered in a domain-specific way. The same principles should
apply to creativity in design, mathematics, and other domains,
although in visual or abstract domain, elementary operations
and constraints on their compositions are not so easy to define
as in the lexical domain. In arts, emotional reactions and
human reactions to beauty are rather difficult to formalize.
Nevertheless it should be possible to create a network that
learns subjective preferences evaluating similarity to what has
been assessed as interesting. Starting from a series of portraits
and working in a space that decomposes visual inputs to shape,
color and movement primitives, in analogous way as the lin-
guistic input is decomposed into morphological parts, it should
be possible to come up with interesting novel variants of paint-
ings. In abstract domains, various measures of relevance or
interestingness may be used for filtering, but to be interesting
creative abstract designs (for example in mathematics) will
require rich conceptual space, reflecting many neural configu-
rations that may be potentially active. 

To estimate practical usefulness of algorithms based on
these principles, their results should be compared with human
inventiveness in a larger number of cases. Humans can obvi-
ously evaluate results in a better way than our scoring system.
It should be quite interesting to see how word creativity tests
correlate with more sophisticated and well established tests.
Computational models of creativity may be implemented at a
different level of neurobiological approximations, from
detailed neural models to simple statistical approaches. Howev-
er, even simple algorithms are capable of producing interesting
words, and the fact that many of these words have already
been invented by humans shows that these algorithms are able
to abstract some important properties of the creative process.
With sufficiently rich concept representation, natural language
processing may progress quite far, alleviating the need to use
embodiment for creation of internal linguistic representation. 

A neurocognitive model of brain processes should link low
level and higher level cognitive processes, and allow for analy-
sis of relations between mental objects, showing how neurody-
namical processes are manifested in inner experience at the
psychological level. A fruitful way to look at this problem [64]
is to start with the neurodynamical description of brain
processes and look for approximations to the evolution of
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AIRENET 770 MOSTLY WIRELESS NETWORKS
FUNKINE 70 MUSIC TERM, “FUNK IN E”
MOVEMAN 24000 MOSTLY MOVING COMPANIES
RUNABLY NEW
RUNNIESS NEW
RUNNYME 220 RUNNYME.DE, COMPANY NAME
SHOEBIE 2700 SLANG WORD, MANY MEANINGS
SPORIST 16400 SPORIST.COM, USED IN TURKISH LANGUAGE
SPORTIP 2500 WEB SITES, IN MANY LANGUAGES
WINAWAY 2400 DOGS, HORSES, CITY NAME
WINDWAY 99500 WINDWAY.ORG, POPULAR, MANY MEANINGS

TABLE 1  Summary of interesting words related to shoes.
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brain states in low dimensional space where each dimension
may be related to inner experience. This idea has been used to
model category learning in experimental psychology, showing
why counter intuitive answers may be given in some situations
[65]. Linking mind and brain at the level of neural models is a
great challenge. This approach should include creative and
intuitive processes. In any case, neurocognitive informatics,
taking inspirations from the high level brain functions, should
have at least as bright a future as artificial neural networks, tak-
ing their inspirations from the lowest single neuron level. 

The last sentence from the paper by Turing [1] is still
the best summary of our current situation: “We can only
see a short distance ahead, but we can see plenty there that
needs to be done.”
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