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Abstract. Although it was proven by Vapnik that SVM is capable of
finding optimal solutions, the full success can be achieved only if the
adaptive process parameters (C and kernel functions parameters) are
set to proper values. Manual parameters tuning is sometimes tricky. We
propose a new way of automatic selection of the parameters. The criterion
used to estimate C and kernel parameters aims in optimal accuracy on
unseen data and simultaneously in small number of SVM’s kernels. The
results achieved show that it is possible to reduce the user interaction
to just starting the learning procedure and obtain simple and accurate
SVM models.

1 Introduction

Support Vector Machines [1,2,3] (SVMs) are getting more and more popular.
One of the reasons is the guarantee of optimal margin, they offer. In fact the
method very often yields high accuracy and efficiency. The idea is applicable to
both data classification and function approximation tasks. The statement of the
SVM optimization for classification problems may be the following:

min
w,p,ξ

1
2
||w||2 + C

n∑
i=1

ξi (1)

with constraints:

yi(w�φ(xi) + p) ≥ 1 − ξi (2)
ξi ≥ 0, i = 1, . . . , n (3)

where n is the number of vectors, xi is the i’th data vector and yi is it’s class
label (1 or −1 – the binary classification). The dual problem definition is:

min
α

1
2
α�Qα + e�α (4)

with constraints:

0 ≤ αi ≤ C, i = 1, . . . , n (5)
y�α = 0 (6)
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where e is the vector of 1s, C (a positive value) defines the upper bound on αi

factors, and Q is a matrix defined by:

Qij = yiyjK(xi,xj). (7)

The K function is called a kernel and K(xi,xj) ≡ φ(xi)�φ(xj).
Mostly used kernels are: gaussian, linear, sigmoidal and polynomial. With

the exception of the linear kernel all the others have some parameters of free
choice. The gaussian kernel free parameter is the bias b:

K(x,y) = exp(−b||x − y||2). (8)

The sigmoidal kernel has also a b parameter which in this case plays the role of
the slope:

K(x,y) = tanh(bx�y + θ). (9)

The main problem with the original definition of SVM was that it’s learning
procedure (the quadratic programming (QP)) converged very slowly. Recent
years have brought a few novel methods of acceleration of the QP procedure for
SVM learning. Among the ones deserving the most attention are the methods
proposed by Osuna et. al. [4], Joachims [5], Saunder et. al. [6], Platt [7,8] and
Chang et. al. [9]. Platt’s Sequential Minimal Optimization (SMO) algorithm
for the QP problems is very fast and provides an analytical solution. Further
improvements to the QP procedure were made by Keerthi et. al. [10].

The SMO algorithm augmented by the ideas presented in [10] yield very fast
and accurate solution of SVM learning problem. We have used such a version of
SVM in our research.

1.1 The goal

Despite the recent progress, the C parameter of Eq. 1 and the kernel’s free
parameters must be set manually by means of testing and experience, which can
be tiresome. This is why we got interested in a meta-level of SVM learning which
would be able to automatically determine nearly optimal values of the C and
kernel’s parameters - the ones leading to as high final accuracy (predicted, not
the accuracy on the training set) as possible.

The goal of this paper is to show that it is possible to construct an algorithm
for automatic selection of the parameters. The Meta-SVM learning procedure
reduces the user task to just starting the process.

2 The Meta-SVM algorithm

Adaptive systems in their learning processes adjust their parameters to build
a model for given data set. Adjusting parameters of the learning process is a
meta-level learning, hence the name Meta-SVM learning.

In our algorithm searching for the most interesting SVM parameters is done
by means of a cross-validation for learning performed inside the training set. The
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inner cross-validation algorithm looks for accurate and relatively small models.
We are interested in relatively small models (not just the most accurate), because
they are faster in final decision making and because it is known that smaller
models (if only they represent the knowledge of given data set) have usually
better accuracy [11,12,13] on unseen data (the empirical confirmation, that it is
true also in the case of SVM models can be found in section 3).

Cross-validation for learning. The main loop of the algorithm performs a cross-
validation (CV) as a learning technique. To run a p-fold CV the data set is
divided into p equal (if possible) parts Si, i = 1, . . . , p. In each iteration of
the CV the SVM algorithm is used with different configurations (different val-
ues of the C and kernel parameters) to learn the classification of the set Ŝi =⋃

k=1,...,p, k �=i Sk. The resulting model is validated with Si.
To check different settings of C (Eq. 1) and bias (Eq. 8) we spread a grid over

them, which explores the region [Cmin, Cmax] × [biasmin, biasmax], with steps
Cstep and biasstep respectively. Observation of the variability of the results, while
the C and bias are being changed, clearly shows that the nature of the parameters
is rater exponential than linear. Concluding, it is better if Cmin, Cmax, biasmin

and biasmax represent the powers of 2 instead of linear values. Our tests let us
state, that the most appropriate grid of C and bias is [−5, 5]× [−10, 3] with step
1. It covers the most interesting regions of C and bias, what was observed on all
the tested benchmarks. An assumption is that the data set is normalized.

Let [C1, . . . , Cm], [bias1, . . . , biasn] be Cs and biases which define the above
grid. In each iteration of the cross-validation (for learning), for each Ci and
biasj an independent SVM model is constructed. The k-th iteration stores the
accuracies on the validation parts of the cross-validation in the matrix Acck

Sk
[i, j],

the numbers of support vectors composing the machine in SV k[i, j] and the
numbers of unbounded support vectors in bSV k[i, j].

The matrices Acck
Sk

let us find the pair 〈i, j〉 (in fact the Ci and biasj) for
which the predicted accuracy is the highest:

〈p, q〉 = arg max
〈i,j〉

∑
k

Acck
Sk

[i, j]. (10)

The above model selection criterion may be extended by adding a term which
puts some constraints on the numbers of support vectors and unbounded support
vectors:

〈p, q〉 = arg max
〈i,j〉

∑
k

[
Acck

Sk
[i, j] − α · SV k[i, j] + β · bSV k[i, j]

|Ŝk|

]
, (11)

where |Ŝk| is the number of vectors in Ŝk. If α = 0 and β = 0 the two criteria
are equivalent. In practice the sensible values for α and β are small real numbers
(for example α = 0.15 and β = 0.05).

The criterion of Eq. 11 facilitates reduction of the number of support vectors
which means that it simplifies the structure of the final SVM model. It can be
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seen in section 3 that the aim of model simplification may be obtained without
the cost of worse classification results (when compared to the results of the
criterion defined by Eq. 10).

To reduce the computational cost i.e. the total number of SVMs which must
be trained, it is possible to split the whole of algorithm into two phases. In the
first phase the grid size may be 4 × 4 (4C’s × 4biases). In the second one two
grids of the same size may be composed with the middles in the best (according
to Eq. 11) two pairs. Usually it will be enough to perform the second stage with
the grids of size 3 × 3. The modified search technique requires 48 (or even 34)
SVM models to be built while the search over the [−5, 5] × [−10, 3] grid with
step 1 needs 154 models. Results obtained with these two schemes should be
very similar.

3 Results

The results presented in table 1 were computed for the classification benchmarks
from the UCI repository [14]. Data sets vary in the numbers of vectors from
around hundred up to several thousands. The numbers of vectors, features and
classes are placed in table 1. The precise descriptions of the sets may be obtained
from [14].

Before each data set was used in the computations it was normalized with
5% rejection ratio which means that each feature was scaled in such a way that
all it’s values but 5% of extreme minimal and maximal ones, fell into the [−1, 1]
interval.

In most of the cases the results come from 10-fold cross-validation tests.
Each cross-validation was repeated ten times and average values of accuracy
and standard deviation calculated and put into the table 1. We did not perform
CV tests for the data sets which had their own test set. In such cases also
the training and testing were repeated 10 times and the averaged results are
presented.

In the case of more than two class problems, basing on the experience of
[15], we decided to use one-against-rest method (one SVM model per class).
The estimation of the C and kernel parameters was done independently for each
of the submodels.

Each benchmark was started with the same configuration. No parameters of
SVM learning were manually tuned.

For each benchmark from table 1 the average accuracy is presented for
the testing set (TES column) and for the training set (TRS column). The std
columns present the standard deviations of accuracies for testing and training
sets respectively. The last column shows the average number of support vectors.

For each data set there is a table presenting the results of three ways of SVM
learning (each in a separate row). The top row presents the results of Meta-SVM
learning with α = 0.15, β = 0.05 and the middle one with α = 0, β = 0 (see Eq.
11). The bottom row presents the results obtained with the base SVM learning
algorithm with the C = 1 and bias = 0.1 (bias from Eq. 8). Such values of C
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Data set Correctness (%) #SV

TES std TRS std

APPENDICITIS (2/106/7)
(0.15, 0.05) 86.69 0.09 89.69 0.009 32

(0, 0) 86.26 0.09 90.89 0.15 46
– 87.71 0.082 88.88 0.009 35

AUSTRALIAN CREDIT (2/690/14)
(0.15, 0.05) 84.97 0.039 89.8 0.016 211

(0, 0) 85.68 0.04 86.49 0.017 383
– 85.34 0.04 89.79 0.005 260

DIABETES (2/768/8)
(0.15, 0.05) 76.7 0.046 79.2 0.014 367

(0, 0) 77.15 0.044 78.7 0.009 394
– 76.6 0.045 79.6 0.006 387

DNA (3/2000+1180/60)
(0.15, 0.05) 94.23 0.0019 99.41 0.003 1268

(0, 0) 94.27 0.0038 99.84 0.001 2379
– 64.58 1e-16 1 0 5803

FLAG (8/193/28)
(0.15, 0.05) 42.2 0.098 71.2 0.074 405

(0, 0) 41.6 0.11 77.7 0.063 513
– 32.8 0.098 74.2 0.018 867

GLASS (6/214/9)
(0.15, 0.05) 65.2 0.09 87.34 0.036 293

(0, 0) 64.26 0.09 87.55 0.038 424
– 56.30 0.056 63.4 0.02 394

HEART (2/303/13)
(0.15, 0.05) 82.54 0.07 86.48 0.009 118

(0, 0) 82.5 0.073 85.7 0.018 142
– 80.86 0.076 89.2 0.005 146

Data set Correctness (%) #SV

TES std TRS std

HEPATITIS (2/155/19)
(0.15, 0.05) 82.73 0.072 94 0.031 66

(0, 0) 80.8 0.087 94.54 0.033 73
– 79.38 6.6 96 0.01 97

IONOSPHERE (2/200+151/34)
(0.15, 0.05) 98 0 99 0 73

(0, 0) 98 0 99 0 125
– 98 0 95 0 100

KR-VS-KP (2/3196/36)
(0.15, 0.05) 99.65 0.003 99.93 0.0006 302

(0, 0) 99.53 0.046 99.95 0.0004 517
– 96.76 0.008 97.1 0.001 697

SONAR (2/208/60)
(0.15, 0.05) 87.02 0.073 99.78 0.005 104

(0, 0) 87.04 0.074 99.8 0.004 125
– 78.12 0.088 83.92 0.015 151

WISCONSIN BREAST (2/699/9)
(0.15, 0.05) 96.54 0.004 97.45 0.003 59

(0, 0) 96.68 0.004 97.17 0.006 110
– 96.81 0.019 97.29 0.0021 76

VOTES (2/435/16)
(0.15, 0.05) 94.25 0.034 97.54 0.009 89

(0, 0) 94.5 0.03 96.9 0.008 105
– 90.6 0.045 99.2 0.002 245

VOWEL (6/871/3)
(0.15, 0.05) 85.3 0.036 90.1 0.009 579

(0, 0) 85.0 0.034 90.4 0.01 969
– 72.5 0.042 73.1 0.007 1158

Table 1. Results comparison for meta-SVM learning. On the right side of the
database name the “(C/V/F)” values inform about the numer of classes (C), the
number of vectors (V) and the number of features (F) respectively. The top row
for each database presents the results of Meta-SVM learning with α = 0.15, β =
0.05, the middle one with α = 0, β = 0 (see Eq. 11), and the last row presents
the results obtained with the base SVM learning algorithm with C = 1 and
bias = 0.1.
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and bias are not accidental – they are selected as the setting which yields good
results in average for most of the benchmarks.

The search grid described in section 2 had the same parameters for all the
data sets: C ∈ [−5, 5] with step 1 and bias ∈ [−10, 3] with step 1. Each Meta-
SVM learning was based on 3-fold inner cross-validation.

As it can be seen some results are better for const C = 1 and bias = 0.1
than for Meta-SVM. The reason is, that C = 1 and bias = 0.1 are really good in
average and it happens that these values are very close to optimal, while finding
them with the presented estimation algorithm (especially for small data sets)
is not simple. Sometimes it is possible to find values of the parameters which
perform well in cross-validation test, however it must be pointed out, that one
should not use the whole data to find the best parameters and then run tests with
the chosen parameters, because in such case the parameters selection exploits
the information contained within the test data (which should be unseen). For
example our estimation algorithm run on the whole appendicitis data set gives
C and bias which then in CV test are 88.82% accurate. Of course, the results,
we present in the table are not obtained this way.

Figures 1 and 2 present densities for two benchmark databases: wisconsin
breast cancer (fig. 1) and glass (fig. 2). For each database there are four density
plots. The first (upper left) presents the density for the Meta-SVM criterion (Eq.
11), the second (upper right) presents the predicted accuracy, and 3-rd and 4-th
(lower left and right) show the densities of the numbers of support vectors and
unbounded support vectors respectively. The red square represents the optimal
values of the log2 C and the log2 bias.

4 Conclusions

It is known that SVM is an optimal margin classifier, however the setting of the
learning process parameters plays crucial role in accurate SVM construction. The
advantages of the scheme of automated parameters choosing presented here are
confirmed by the results of several benchmarks. The method usually enlarges the
test accuracy (improves the generalization abilities) of the final model (except
accidental lucks as presented in section 3. The structure of the final SVM is
significantly smaller which reduces the computation costs (typical SVMs have
more complex structure than RBF networks trained on the same data).

We do not compare the results with any other kind of systems, because the
goal of this paper is not to prove that SVM is the best method for all data sets, or
that it is able to win all the competitions. The aim is to show an efficient method
which automatically selects the SVM learning parameters and finds simple and
accurate SVM models for given data set without user interaction.
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Fig. 1. Densities of Meta-SVM criterion, accuracy, number of support vectors
and number of unbounded support vectors for wisconsin breast cancer bench-
mark.
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