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Abstract:
Quite often real-world data set contain errors and inaccuracies. Most classification
models are trained using crisp, sharply classified (black and white) examples only. In
many real world problems the soft class labels (shades of gray) are quite natural. In this
paper data regularization method has been presented. The method may help to
strengthen the confidence in a given data set. Further data processing (learning) may
become more stable and may lead to more reliable results.

1 INTRODUCTION

The dilemma that the adaptive models face is: the system must believe in the training data,
but the data may not be dependable. Most classification methods do not solve adequately
problems related to wrong data, sharp decisions borders caused by black and white class
labeling, or by overlapping clusters. Some models try to solve this problem using several
kinds of regularization methods during the learning process. Most regularization methods
add a penalty term to the error function, for example regularization proposed by Poggio
and Girosi [3], Hinton’s weight decay [2] and weight elimination proposed by Weigend [4].
However, even using regularization methods problems mentioned above do not vanish. One
of the reasons is that regularization methods have (almost) the same sensitivity in whole input
space.

Moreover, even experts in most cases are not able to check the data vectors and assign to
each case uncertainty which could help to add powerful information to the learning process.
Well-known data preprocessing methods do not repair the data too.

In the next section the data regularization method is presented with a few variants which
may be useful for different models based on the main concept. The regularization scheme
gives in a natural way the measure of uncertainty of original data. In the last section empirical
examples are shown.

2 DATA REGULARIZATION

The typical goal of classification is to find an underlaying mapping:

f(xi) = yi, i = 1, 2, . . . , N (1)

for given data set S:

S = {〈xi, yi〉 : 1 ≤ i ≤ N} (2)
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where each pair 〈xi, yi〉 consists of input vector xi and class label yi. It is welcome for some
classification models to have the class label yi represented by vector vi with 1 on position
numer equal to the class label yi and rests equal to 0 (for example multi-layered perceptron
networks):

vi = [v1, v2, . . . , vd]T and vk =

{
1 k = yi

0 k �= yi

(3)

then data set consists of pairs of vectors:

Sv = {〈xi,vi〉 : 1 ≤ i ≤ N} (4)

Basing on data set S it is possible to define model P using renormalized Gaussian func-
tion:

Ḡi(x;xi) =
G(x;xi, σ)∑N

j=1 G(x;xj , σ)
(5)

where G(x;xi, σ) (σ is constant) is defined by

G(x;xi, σ) = e−
||x−xi||

2

σ (6)

then model P may be defined by

P (k|x,S) =
∑
i∈Ik

Ḡi(x;xi) (7)

where Ik = {i : 〈xi, yi〉 ∈ S ∧ yi = k}. We can see that

K∑
i=1

P (i|x,S) = 1 (8)

K is equal to the class number. Then P (k|x,S) may be interpreted as probability that given
vector x belong to class k for data set S.

Note that parameter σ from Eq. 6 defines the smoothness of model P . Assuming that σ
is sufficiently small

P (i|xi,S) ≈ 1 (9)

Suppose data set S is not very fragile (is sufficiently dense) and removing a single pair
from data set S model P should not change crucially for most pairs. Let S j design set S with
subtracted pair 〈xj , yj〉 (Sj = {〈xk, yk〉 : 〈xk, yk〉 ∈ S ∧ k �= j}).

Now using probability

P (i|xi,Si) (10)



the certainty that vector xi is consistent with set S may be measured as a consistence test.
Factor σ (Eq. 6) which defines the smoothness of Gauss function may be used to control the
regularization strength of model P . The choosing of σ should depend on the pre-uncertainty
for set S or may be set to D2/N (D is equal to the maximal distance between two vectors
from set S).

Consistence test may be used in several ways in data regularization. Two types of regu-
larization arise from below sets as extension of set S:

SP = {〈〈xi, yi〉, P (yi|xi,Si)〉 : 1 ≤ i ≤ N} (11)

SPv = {〈〈xi, yi〉, P (1|xi,Si), . . . , P (K|xi,Si)〉 : 1 ≤ i ≤ N} (12)

Shades of gray. Data set S consists from black nad white examples only. Now basing on
above sets SP and SPv data set with shades of gray may be produced:

SI = {〈xi, 〈yi, P (yi|xi,Si)〉〉 : 1 ≤ i ≤ N} (13)

or in multi-non-zero output mode:

SII = {〈xi,pi〉 : 1 ≤ i ≤ N} (14)

where

pi = [P (1|xi,Si), . . . , P (K|xi,Si)]T (15)

Wrong pair elimination and class relabeling. It is possible that for some vectors
P (yi|xi,Si) is considerably smaller than P (j|xi (j �= yi), what mean that pair 〈xi, yi〉 is
not consistent (wrong) with original set S. Another possibility is to remove such wrong
vectors from sets SI and SII (Eq. 13 and 14).

Wrong vector will not be labeled with original class label because of small probability
value P (yi|xi,Si)). And for set SII each wrong vector xi will be relabeled with more
certain class:

max
j �=i

P (j|xi,Si) (16)

than with the original one.
In the case of a method must be used with black and white data the information from

sets SP and SPv may help to be excluded or relabeled wrong original pairs from set S, for
example to relabel wrong data set S III may be useful:

SIII = {〈xi, k〉 : 1 ≤ i ≤ N} (17)

where k = arg maxj P (j|xi,Si).

Such regularized data sets may be used to learning with different artificial neural networks
(MLP, RBF, etc.) may be used to used in costs functions in many machine learning methods
to add certainty weighting for each vectors (for example in CART model [ 1]).



3 EXAMPLE OF DATA REGULARIZATION

Simple and fruitful example may concern on regularization of two class data generated inde-
pendently with Gaussian distribution.

Figures 1 and 2 presents data before (triangles — lower for class I and upper for class II)
and after regularization (circles for class I, and crosses for class II). Two solid lines presents
probability of model P for two classes defined by Eq. 7 on original set S. Successive sub-
figures presents results for different dispersions and centers placements.

4 CONCLUSIONS

Data regularization method described in this paper may be successfully used in many differ-
ent models used for classification. Such data regularization may assist the learning process,
especially when the data requires sharp decision borders. Regularization is able to remove
wrong data or to relabel some vectors. Data set class labels transformed to a set with shades
of gray may stabilize the learning process. It may also be used to weight each vector’s con-
tribution to the cost function depending on the uncertainty of this vector.
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Figure 1: Data regularization I.
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Figure 2: Data regularization I.
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